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Abstract: The accurate estimation of the mass and center of gravity (CG) position is key to vehicle
dynamics modeling. The perturbation of key parameters in vehicle dynamics models can result
in a reduction of accurate vehicle control and may even cause serious traffic accidents. A dual
robust embedded cubature Kalman filter (RECKF) algorithm, which takes into account unknown
measurement noise, is proposed for the joint estimation of mass and CG position. First, the mass
parameters are identified based on directly obtained longitudinal forces in the distributed drive
electric vehicle tires using the whole vehicle longitudinal dynamics model and the RECKF. Then, the
CG is estimated with the RECKF using the mass estimation results and the vertical vehicle model.
Finally, different virtual tests show that, compared with the cubature Kalman algorithm, the RECKF
reduces the root mean square error of mass and CG by at least 7.4%, and 2.9%, respectively.

Keywords: mass estimation; estimation of center-of-gravity; embedded cubature Kalman filter

1. Introduction

Traffic accidents cause a large number of casualties every year and precise vehi-
cle motion control can effectively reduce the occurrence of traffic accidents [1]. Active
safety systems are regarded as one of the most effective solutions for dealing with these
traffic problems. The premise behind these systems is to obtain accurate model parame-
ters [2]. These parameters can be collected through vehicle-to-vehicle communications [3]
or state estimation methods [4]. Considering that the inertial and geometric parameters
of distributed-drive electric vehicles can change significantly according to the actual load
situation, it is necessary to implement online estimations of the vehicle model parameters.
Accurate vehicle model parameters are critical not only for vehicle dynamics control but
also for active vehicle safety technologies such as adaptive cruise control [5] and active ob-
stacle avoidance systems [6]. Although the vehicle mass and center of gravity (CG) position
are nominal values that can be directly obtained from the relevant vehicle manuals, they
can change significantly when the vehicle load changes during actual driving. Considering
that it is difficult for the existing onboard sensors to directly measure the mass and CG,
more and more experts and scholars are using advanced filters and observers to indirectly
estimate key parameters based on intelligent tires [7] or onboard sensors [8]. However,
approaches based on intelligent tires are not widely applied due to their high cost and short
life. Estimation methods based on onboard sensors are more popular.

Recursive least squares (RLS) with forgetting factors is a popular methodology em-
ployed for mass estimation. Zhang et al. [9] designed RLS with a double forgetting factor
to identify mass and proved its effectiveness through tests. Kim et al. [10] designed a
mass estimator based on longitudinal and lateral dynamics and using RLS. Chu et al. [11]
used a filter to collect acceleration information to estimate the vehicle mass using the RLS
algorithm. Wang et al. [12] used lateral dynamics and estimated the mass of a passenger
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vehicle using RLS. Lingman et al. [13] developed a mass estimation based on the tradi-
tional Kalman filter and achieved highly accurate estimations. Other similar methods were
presented in [14–16]. Cai et al. [17] designed a two-layer mass estimation algorithm based
on an extended Kalman filter and improved estimation accuracy. Lei et al. [18] identified
vehicle mass using EKF. In addition, Torabi et al. [19] trained a neural network to predict
vehicle mass. Korayem et al. [20] estimated the mass of a trailer using a feedforward
neural network with 15 fully connected layers. However, these methods demand extremely
high levels of completeness in the data set and are hardly applicable to a wide range
of applications.

Similar to mass estimation, the estimation of the CG position is also a hot topic of
research. Daniel et al. [21] proposed an RLS algorithm for predicting the CG position of a
vehicle. Jounghee et al. [22] developed a vehicle vertical dynamics model for estimating
the CG position. Muhammad et al. [23] used a five-degrees-of-freedom model to indirectly
estimate the CG position using rotational inertia. Huang et al. [24] proposed a combined
estimation method by fusing the adaptive Kalman filter with the EKF to achieve an accurate
identification of the CG position of their vehicle.

The above approaches mainly estimate the mass and CG position separately and do not
regard the influence of unknown measurement noise. In addition, state-of-the-art Kalman
filtering algorithms were demonstrated to enhance the accuracy of vehicle state estimations,
such as the cubature Kalman filter (CKF) algorithm [25]. Therefore, the estimation of mass
and CG position with sophisticated Kalman filtering algorithms is an interesting direction
for research. However, the conventional CKF algorithm still assumes that the measurement
noise is known. To this end, a dual robust embedded cubature Kalman filter (RECKF)
algorithm, which takes into account unknown measurement noise, is proposed for the joint
estimation of mass and CG position.

This paper aims to propose a fusion estimation scheme to achieve the estimation
of mass and CG position. Furthermore, we designed a RECKF estimator to reduce the
effects of unknown noise on the performance of the estimation. Then we demonstrate the
effectiveness of the proposed method through comparative experiments. The remainder
of the paper is organized as follows: Section 2 presents the vehicle model; Section 3
describes the proposed joint estimation scheme in detail; Section 4 shows the test results
and discussion; and finally, Section 5 summarizes the work.

2. Vehicle Model and Problem Formulation

Considering that the estimation of mass and CG position does not involve the control
of four-wheel drive force distribution, the vehicle model is simplified into a longitudinal
motion model, and its dynamics model is shown in Figure 1.
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With a known distributed drive electric vehicle wheel torque and angular speed, the
longitudinal tire forces are given by

Fx f = (Tf − Jω f )/R (1)
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Fxr = (Tr − Jωr)/R (2)

Without considering the effect of the ramp driving conditions during vehicle driving,
the vehicle longitudinal dynamics equations are given by

max = (Fx f + Fxr)−
1
2

CDρAv2
x −mg froll (3)

Fz f =
mgb−mhax

(a + b)
(4)

Fs f =
mga−mhax

(a + b)
(5)

The meanings of specific vehicle model parameters are shown in Table 1.

Table 1. The parameters of the longitudinal motion model.

Symbol Description

m vehicle mass
a distance from the center of gravity to the front axle
b distance from the center of gravity to the rear axle

vx longitudinal velocity
Tr driving moments of the rear wheels
Tf driving moments of the front wheels
Fx f longitudinal forces at the front wheels
Fxr longitudinal forces at the rear wheels
Fz f vertical forces at the front wheels
Fsr vertical forces at the rear wheels
h height of the CG
J wheel inertia

ωr rear wheel speeds
ω f front wheel speeds
R tire radius

CD air drag influence coefficient
ρ air density
A windward area
g weight acceleration

froll rolling resistance coefficient
ax longitudinal acceleration

The longitudinal force generated on each tire depends on the longitudinal slip and the
normal force applied to the tire. In the low slip region, the longitudinal force generated by
a single tire is proportional to its longitudinal slip or the linear part of the friction curve of
the normal force. For all-wheel drive vehicles, the linear relationship between front and
rear wheel slip and longitudinal forces can be expressed as

Fxi = CxiSi F̂zi (6)

si =
ωiR− vx

max(ωiR, vx)
(7)

where i = f , r denotes the vehicle’s front wheels and rear wheels respectively; Cxi denotes
the slope of the vehicle tire slip rate curve; si denotes the vehicle tire slip rate. More details
on the formulation of the linear tire model can be followed in [26].

In order to perform iterative estimations using discrete measurement signals and the
RECKF, we need to transform Equations (1)–(7) into the form of a discrete state space.{

xk+1 = f (xk, uk) + wk
zk+1 = h(xk+1, uk+1) + vk+1

(8)
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where the parameters are presented in Table 2.

Table 2. The parameters of Equation (8).

Symbol Variables

z measurement vector
f state transition function
u input vector
w process noise
h output function
v measurement noise

For mass estimation, x = [m],z = [ax]; For estimation of CG position, x = [a],z = [Fz].
Fz is the vertical force of the tire.

3. Methodology

As shown in Figure 2, the mass is first estimated using information such as lateral
acceleration and longitudinal tire force using the RECKF algorithm. Then the vehicle tire
slip rate is computed from the longitudinal vehicle speed and wheel speed according
to Equation (7). Next, the measured value of tire vertical force is obtained according to
Equation (6), while the theoretical value of tire vertical force is computed according to
Equations (4) and (5). Finally, the measured value and the theoretical values of tire vertical
force are used as input for the RECKF to estimate the CG position.
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3.1. The RECKF

The conventional CKF method enhances the accuracy of the state estimation but
does not account for the impact of unknown statistical properties of the noise. To further
improve the nonlinear fit of the CKF, an embedded CKF is used first for the vehicle state
estimation [3] and this achieves a favorable estimation performance. Inspired by this work,
we propose a RECKF to estimate the vehicle model parameters. The iterative steps of the
RECKF are given by

(1) Initialization:

x̂0 = E(x0) (9)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (10)
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where E means to perform the mathematical expectation calculation, and P denotes the
error covariance matrix of x.

The embedded cubature sampling points ϑi and weight φi are given by.

ϑi = [0]i i = 1; ϑi = ei = [eye(n),−eye(n)]
√

2ρ , i = 2, 3, · · · 2n + 1 (11)

φi = 1− 1
2ρ2 i = 1; φi =

1
2n+1ρ2 i = 2, 3, · · · 2n + 1 (12)

where n is the dimension of x, and ρ is a constant. Some specific details of the formulation
are given in [27].

(2) Time prediction:

Singular value decomposition of Pk−1/k−1.

Pk−1/k−1 = U
[

S 0
0 0

]
VT (13)

Pk−1/k−1 = Uk−1/k−1Sk−1/k−1VT
k−1/k−1 (14)

where S represents a diagonal matrix, and Pk−1/k−1 is the symmetric covariance matrix.
Evaluate the embedded cubature points

χ
(i)
k−1/k−1 = Sk−1/k−1ξi + x̂k−1/k−1 (15)

where x̂k−1/k−1 is a priori estimated value. χ
(i)
k−1/k−1 is an embedded cubature point of

x̂k−1/k−1.
Evaluate the propagated embedded cubature points

χ
∗(i)
k/k−1 = f (χ(i)

k−1/k−1, uk−1) (16)

Evaluate x̂k/k−1 and Pk/k−1

x̂k/k−1 =
c

∑
i=1

ωiχ
∗(i)
k−1/k−1 (17)

Pk|k−1 =
c

∑
i=1

ωiχ
∗(i)
k/k−1χ

∗(i)T
k/k−1−x̂k/k−1 x̂T

k/k−1 + Qk−1 (18)

(3) Measurement prediction:

Singular value decomposition of Pk/k−1

Pk/k−1 = Uk/k−1Sk/k−1VT
k/k−1 (19)

Evaluate the embedded cubature points

χ
(i)
k/k−1 = Sk/k−1ξi + x̂k/k−1 (20)

Calculate the propagated embedded cubature points of the measurement vector

Z(i)
k/k−1 = h(χ(i)

k/k−1, uk) (21)

Evaluate ẑk/k−1, the innovation covariance matrices Pzz,k/k−1, and the cross-covariance
matrix Pxz,k/k−1

ẑk/k−1 =
c

∑
i=1

ωiZ
(i)
k−1/k−1 (22)



Sensors 2022, 22, 10018 6 of 12

Pzz,k|k−1 =
c

∑
i=1

ωiZ
(i)
k/k−1Z(i)T

k/k−1−ẑk/k−1ẑT
k/k−1 + Rk (23)

Pxz,k|k−1 =
c

∑
i=1

ωiχ
(i)
k/k−1Z(i)T

k/k−1−x̂k/k−1ẑT
k/k−1 (24)

The gain matrix Wk and the posterior state x̂k/k are given by

Wk = Pxz,k|k−1P−1
zz,k|k−1 (25)

x̂k/k = x̂k/k−1 + Wk(zk − ẑk|k−1) (26)

According to the relevant conclusions in the literature [28], the error covariance matrix
considering the unknown measurement noise is as follows

Pk/k = (P−1
k/k−1 + P−1

k/k−1Pxz,k/k−1R−1
k PT

xz,k/k−1P−T
k/k−1 − r−2 In)

−1
(27)

where r is a constant to be determined according to the specific object of study.

3.2. The Flowchart of Joint Estimation

Figure 3 depicts the RECKF-based vehicle mass and CG position estimation flowchart.
The RECKF is first used for mass estimation, and then the output of this RECKF is used as
the input for another RECKF to estimate the CG position in real-time. The specific iterative
process of the RECKF is shown in the green box.
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4. Results and Discussion

To verify the effectiveness of the RECKF, a co-simulation platform of Carsim and
Matlab/Simulink was established to conduct simulation experiments under two different
conditions of acceleration and deceleration. The superiority of the RECKF is further verified
by comparing it with the traditional CKF algorithm. The vehicle model parameters are
listed in Table 3.

Table 3. The parameters of the vehicle model.

Symbol Values

m 1270 kg
a 1.015 m
A 2.2 m
Iz 1536.7 kg ·m2

b 1.895 m
Cx f 28

4.1. Acceleration Test

The initial vehicle velocity is set to 1 km/h, the throttle opening is 40%, the process noise
covariance is known, and the measurement noise is unknown. During the whole estimation
process, the vehicle speed and longitudinal acceleration are shown in Figures 4 and 5.
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It can be seen that the vehicle speed varies with the magnitude of acceleration, and
the real measurement of the sensor is simulated by adding Gaussian white noise to the
acceleration. The longitudinal force curve of the vehicle is shown in Figure 6 which
shows that the distributed drive electric vehicle has driving force at all four wheels under
acceleration conditions.
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The results of the different methods used to estimate the mass are presented in Figure 7
where the reference value of mass is 1270 Kg. We can see that the CKF-based estimation
curve rises faster at the beginning but the final stable value is much larger than the reference
value. In contrast, the RECKF-based estimation curve tracks the reference value well. This
is because the RECKF can suppress the effect noise has on the mass estimation accuracy. To
further demonstrate the joint estimation effect, the CG position estimation curve is shown
in Figure 8. The reference value is set to 1.015. The mass estimates obtained from the CKF
and RECKF in Figure 7 are used as inputs to estimate the CG position. It can be seen from
Figure 8 that the RECKF is closer to the reference value. The root mean square error metric
(RMSE) is applied to further compare the estimation accuracy of the two algorithms, as
shown in Table 4. It can also be seen that the estimation performance of RECKF is better
than that of CKF. Specifically, the RMSE for mass estimation is reduced by 30.9% and the
REMS of the CG position estimation is reduced by 2.9%.
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Table 4. The RMSE in the case of acceleration.

Symbol CKF RECKF

m 111.20 76.76
a 0.3691 0.3586

4.2. Deceleration Test

The initial vehicle speed is 80 km/h and the braking operation is applied to the vehicle
after 1 s. The process noise covariance statistics are known, and the measurement noise
statistics are unknown. The estimated process vehicle speed and longitudinal acceleration
are shown in Figures 9 and 10. It can be seen that the vehicle acceleration is positive for
the first 1 s, after which, the vehicle’s speed starts to drop with the braking intervention,
and the vehicle acceleration falls into the negative. It can be seen that the vehicle speed
varies with the magnitude of the acceleration, while the real sensor measurements are
simulated by adding Gaussian white noise to the acceleration. In Figure 11, we can see that
the longitudinal force curve of the vehicle is not equal for the front and rear braking forces.
This indicates that the braking force distribution system is working in real-time to ensure
the stability of braking.
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Figure 9. The vehicle speed in the case of deceleration.

Sensors 2022, 22, 10018 10 of 13 
 

 

and the vehicle acceleration falls into the negative. It can be seen that the vehicle speed 
varies with the magnitude of the acceleration, while the real sensor measurements are 
simulated by adding Gaussian white noise to the acceleration. In Figure 11, we can see 
that the longitudinal force curve of the vehicle is not equal for the front and rear braking 
forces. This indicates that the braking force distribution system is working in real-time to 
ensure the stability of braking. 

 
Figure 9. The vehicle speed in the case of deceleration. 

 
Figure 10. The acceleration in the case of deceleration. 

 
Figure 11. The tire forces in the case of deceleration. 

The results of the different methods used to estimate the mass are presented in Figure 
12. The curves slowly rise from 800 Kg in the first 1 s, and with the addition of braking, 
the curves start to rapidly rise to track the reference value. However, it can also be seen 
that for the CKF at the beginning the rise is fast but the final stable value is much larger 

Lo
ng

itu
di

na
l s

pe
ed

(K
m

/h
)

Lo
ng

itu
di

na
l a

cc
el

er
at

io
n(

m
/s

2 )
Lo

ng
itu

di
na

l t
ire

 fo
rc

e(
N

)

Figure 10. The acceleration in the case of deceleration.

The results of the different methods used to estimate the mass are presented in Fig-
ure 12. The curves slowly rise from 800 Kg in the first 1 s, and with the addition of braking,
the curves start to rapidly rise to track the reference value. However, it can also be seen
that for the CKF at the beginning the rise is fast but the final stable value is much larger
than the reference value. This is due to the unknown measurement noise resulting in a
decrease in the estimation accuracy of the CKF. Furthermore, the RECKF is able to track the
reference value and it fits well.
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Figure 12. The estimated mass in the case of deceleration.

To further demonstrate the joint estimation effect, the CG position estimation curve
under acceleration conditions is shown in Figure 13. It can be seen from Figure 13 that the
RECKF is closer to the reference value. The RMSE is used to further compare the accuracy
of the two algorithms, as shown in Table 5. Also, the estimation error of the RECKF is
smaller than that of CKF. Specifically, the RMSE for mass estimation is reduced by 7.4%
and the REMS of the CG position estimation is reduced by 12.6%.
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Table 5. The RMSE in the case of deceleration.

Symbol CKF RECKF

m 242.33 224.44
a 0.5330 0.4663

5. Conclusions

In this paper, a novel joint estimation scheme is proposed to achieve the estimation of
mass and CG position. This framework contains two RECKF estimators to identify mass
and CG respectively, where the RECKF is a new estimator that combines robust filtering
and an ECKF to suppress the influence of unknown noise. The experimental results of
the virtual tests show that the proposed estimation scheme can achieve a simultaneous
estimation of multiple parameters with high estimation accuracy. On the other hand, the
RECKF can suppress the influence of unknown noise on the estimation accuracy. The
proposed method can be used not only for passenger vehicles but also for commercial
vehicles or intelligent vehicles. In our study, the effect of road slope was not considered, and
the fusion estimation of mass, CG position, and slope will be carried out in the next step to
further improve the identification accuracy of the parameters. Due to limited resources in
some of the objective conditions, we have not conducted real vehicle experiments. We will
conduct real vehicle experiments in the future when equipment and space are available.
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