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Abstract: The protection, control, and monitoring of the power grid is not possible without accurate
measurement devices. As the percentage of renewable energy sources penetrating the existing grid
infrastructure increases, so do uncertainties surrounding their effects on the everyday operation of
the power system. Many of these devices are sources of high-frequency transients. These transients
may be useful for identifying certain events or behaviors otherwise not seen in traditional analysis
techniques. Therefore, the ability of sensors to accurately capture these phenomena is paramount.
In this work, two commercial-grade power system distribution sensors are investigated in terms
of their ability to replicate high-frequency phenomena by studying their responses to three events:
a current inrush, a microgrid “close-in”, and a fault on the terminals of a wind turbine. Kernel
density estimation is used to derive the non-parametric probability density functions of these error
distributions and their adequateness is quantified utilizing the commonly used root mean square
error (RMSE) metric. It is demonstrated that both sensors exhibit characteristics in the high harmonic
range that go against the assumption that measurement error is normally distributed.

Keywords: harmonics; high-frequency transients; measurement error; power systems; sensors

1. Introduction

Achieving the full observability and autonomy of the power system may seem like a
pipe dream to many, primarily due to the large requisite financial investment, as well as
the lack of sufficient technology. Device computational capacity, communication network
limitations, algorithm complexity, and inaccurate measurements are just a few technological
barriers preventing an immediate overhaul of the entire measurement apparatus of the
power grid.

In addition to these known obstacles are those of the unknown. The ever-increasing
percentage of renewable energy sources added to transmission and distribution systems
is contributing to never-before-seen phenomena, some of which may be encoded in the
production of harmonics superimposed upon the 50 and 60 Hz waves we are so accustomed
to working with. In an ideal, fully observable power grid, the various interoperating
systems (i.e., metering, protection, control) work together seamlessly to achieve a very
strict set of outcomes. The proper operation of these systems requires accurate and precise
measurements.

In the Texas Interconnection, a failed surge protector on a combustion turbine con-
nected to a step-up transformer led to a fault during start-up for testing in May of 2021 [1].
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The associated circuit breaker tripped within three cycles, clearing the fault and restoring
the system to normal operation after an estimated loss of 192 MW. In addition to these
losses, a number of solar photovoltaic (PV) and wind plants saw reductions in active power
production caused by the fault; however, it was determined that this loss of renewable
generation was not caused by the fault itself. In the North American Electric Reliability
Council (NERC) September 2021 report on this disturbance (dubbed the “Odessa” distur-
bance), it was found that this simultaneous loss of renewable generation during the fault
time was caused by “inverter-level or feeder-level tripping or control system behavior
within the resources”.

The aforementioned situation is just one of many incidents in which inadequate
knowledge of a system led to undesirable, even catastrophic, events. Such scenarios ideally
could be reduced or even eliminated through the meticulous design and implementation
of a measurement apparatus capable of recognizing, acting on, and even mitigating such
abnormalities. This, of course, is a scenario that currently exists only in an ideal world, and
we are many years away from achieving such lofty goals.

However, the advancement of power system observability has seen a dramatic shift
in recent decades through the deployment of synchrophasors, or phasor measurement
units (PMUs). PMUs provide the advantage of directly measuring the voltage magnitude,
phase angle, frequency, and rate of change of frequency (ROCOF), quantities that would
otherwise be treated as latent variables through other measurement systems, requiring
other real-time-capable signal processing solutions to extract. In spite of these recent
developments, PMUs are typically only capable of measuring fundamental quantities, that
is, the information contained in frequencies beyond 50/60 Hz is lost.

Much work has been carried out on the analysis of errors resulting from PMU measure-
ment chains. In [2], the Gaussian assumption for PMU errors is re-assessed and corrected
using Gaussian mixture modeling (GMM), a technique for describing distributions com-
prised of more than one Gaussian “mode”. The flaw in the Gaussian assumption is further
examined in [3]. The authors in [4] explore the various ways in which PMU errors affect
different applications such as the power system disturbance location, oscillation detection,
island detection, and dynamic line rating. Analysis of PMU errors for state estimation is
also a burgeoning field of study [5–8].

There have been works published on the estimation of harmonic phasors in the form of
Ah = Ahejφh , in which the harmonic h amplitude Ah, phase φh, frequency fh, and sometimes
ROCOF ROCOFh are the variables of interest [9–17]. In [18,19], harmonic phasors are
modeled as complex exponential functions and solved via a least-squares approach applied
to sampled frequency-domain models of the harmonic phasors. However, as the sampling
rate increases, the necessary computational burden increases dramatically, to the point of
being unable to perform the required matrix inversions on an 8-core machine.

Other techniques for extracting harmonic information from signals have been pro-
posed. The authors in [20] employ a series of frequency-modulated finite impulse re-
sponse (FIR) filters to estimate instantaneous harmonic parameters. A variation on the
estimation of signal parameters using the rotational invariance technique (ESPRIT) is pro-
posed in [21,22], where the exact model order is estimated from the data rather than having
to be configured and tuned by hand. The literature on accurate harmonic measurement, in
general, is extremely sparse.

This study analyzes high-frequency transient electrical current waveforms captured by
equipment dubbed hereafter as “point-on-wave (PoW)” sensors. At present, most studies
concerning the non-power frequency content of power system phenomena are reduced to
total harmonic distortion (THD) and power-quality index computations [23]. Harmonics
are detrimental to the power system and measures are typically taken to eliminate or reduce
their effects rather than study them. However, the complete removal of harmonics from
the power system is almost impossible and potentially actionable information may be lost.

PoW sensors capture oscillographic representations of the measured phenomena, typi-
cally sending the resultant analog measurements to a device capable of digitally sampling



Sensors 2022, 22, 8827 3 of 18

at high rates. Two different commercially available PoW sensors are compared with one
another, as well as with a “reference” sensor representing the ideal. Statistical analysis of
the harmonic amplitude and phase error for each sensor over a variety of transient current
waveforms is performed including the estimation of the non-parametric probability density
functions (PDFs) at each chosen harmonic. Note that equipment manufacturers are kept
anonymous in this paper to avoid any perceived endorsement of one particular technology.

The motivation behind studying individual harmonic error probability distributions
is a simple one. In parameter or state estimation applications, measurements are typically
modeled mathematically in the form [24]

Ymeas(t) = Ytrue(t) + err(t), (1)

where err is an error term indicating random deviations between Ymeas and Ytrue. This term
is usually considered a lumped parameter, and includes contributions from systematic and
random errors. In the power system scope, Y is usually an electrical parameter of interest
such as the voltage magnitude, phase angle, or frequency. The work presented in this study
examines errors in electrical current harmonics as a result of high-frequency disturbances
and characterizes the behavior of the harmonic amplitude and phase errors over a variety
of dominant harmonics frequencies.

To the best of the authors’ knowledge, an individual harmonic error distribution
analysis has not been studied in depth. We hope that this study will continue the advance-
ment of the body of knowledge to be used for improving power system observability and
situational awareness.

Research Contributions and Document Format

The contributions of this paper may be summarized as follows:

• A direct comparison of two commercial-grade distribution PoW sensors with a near-
idealized reference in terms of the amplitude percent error, amplitude residual error,
and phase difference.

• Analysis of the Gaussian (i.e., normal) distribution assumption of harmonic errors
using the Anderson–Darling (AD) test. It is shown that some higher-order harmonic
errors exhibit non-Gaussian distributional behavior.

• The use of a non-parametric probability density function estimation technique known
as kernel density estimation (KDE) to learn the generalized distributions of the har-
monic amplitude and phase errors. A mean-square-error goodness-of-fit (GoF) metric
is used to quantify the results of this estimation process.

The remainder of this document is as follows. Section 2 discusses the background of
power system measurement errors, including existing standards and a brief refresher on the
theory of frequency response and linear time-invariant (LTI) systems, and Section 3 provides
an overview of the statistical means of analysis used. Section 4 presents descriptions of
the experiments performed, error metrics used, and statistical methodology used for the
measurement error quantification via kernel density estimation. The results are provided
in Section 5, along with the discussion, and the document concludes in Section 6.

2. Background: Measurement Error in Point-on-Wave Sensors

Instrument transformers can be considered the most common form of PoW sensor.
Although not explicitly “sensors” in the traditional sense, potential transformers (PTs)
and current transformers (CTs), respectively, convert the voltage and current from one
level to another for applications requiring interfacing low-voltage equipment with the grid.
They provide low-voltage and low-current representations of the grid voltage and current
to protection devices, and actions are taken by these devices based on the information
obtained from the PTs and CTs.
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2.1. Sources of Error in Instrument Transformers

PTs and CTs are not ideal measurement devices. These devices have a number of
conditions that negatively affect their performance. All instrument transformers have a
transformer correction factor (TCF), which is a factor that must be multiplied against the
nominal ratio of the transformer to obtain the true ratio. For PTs [25],

TCF = RCF +
γ

2600
(2)

and for CTs,

TCF = RCF− β

2600
(3)

where γ and β are the phase angles of the PT and CT being measured, respectively, in
minutes and RCF is the ratio correction factor, defined as

RCF = 1− Na

Nn
(4)

where Na and Nn are the actual and rated ratios, respectively. It should be noted that the
above expressions are valid for burdens between a 0.6 and 1.0 power factor, lagging. The
IEEE has defined a series of accuracy classes for CTs, typically denoted as 0.X BY.Z, which
simply means that the CT in question is capable of producing currents within a 0.X% error
at a burden of Y.Z ohms. For example, a CT with an accuracy class of 0.6 B0.5 can possess
errors of up to 0.6% when connected to a burden of 0.5 ohms. For a given accuracy class, a
CT’s transformer correction factor (TCF) may vary given the percent of the applied rated
current. Other sources of error in CTs include saturation and thermal limits [26–28]. CT
saturation is a phenomenon that occurs when the induced magnetic field density in the
transformer core reaches its limit so the amount of produced current in the secondary will
not be proportional to that in the primary. Thermal rating factors are quantities that dictate
how much a CT can exceed its rated current given a change in ambient temperature.

2.2. Frequency Response of PoW Sensors

PoW sensors are electromechanical devices and as such will be subject to irregularities
in terms of allowable frequency content. This means that voltages and current waveforms
possessing high-frequency oscillatory transients may be distorted by the sensor’s intrinsic
frequency response characteristics, in terms of not only amplitude but also phase alignment.

Most systems may be represented as linear and time invariant (LTI). This essentially
means that an output at any given time may be expressed as a linear combination of its
inputs at the same time and that this linear combination relationship does not change with
time. There are instances in which a PoW sensor may behave nonlinearly over large time
intervals due to things such as temperature variations, but for a sufficiently short time
(i.e., in the order of seconds), the PoW sensor frequency response characteristics may be
approximated by an LTI system equivalent. Figure 1 shows the example frequency response
curves for two PoW current sensors tested in the Distributed Energy Communications
and Control Laboratory (DECC) on Oak Ridge National Laboratory’s campus. These
were selected for their capability of accurately representing both fundamental and higher
harmonics with a flat gain profile and relatively small phase errors.
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Figure 1. Frequency response curves for both test sensors, S1 and S2, up to 5 kHz.

Other types of sensors with poorer responses to higher frequencies would limit the
ability of autonomous systems to respond to some fast transients.

2.3. Harmonic Extraction

To capture non-fundamental frequency information, it is necessary to capture the
frequency-domain representation of the received measurement waveform(s). This is typi-
cally accomplished through the computation of the discrete Fourier transform (DFT) via
the fast Fourier transform (FFT) algorithm. For a measured discrete-time signal x[n], its
DFT representation X[k] is computed as

X[k] =
N−1

∑
n=0

x[n]e
−j2πkn

N (5)

where the frequency at bin k may be computed as fk = k Fs
N , Fs is the sampling frequency,

N denotes the length of the FFT vector, and j =
√
−1. Because the frequency vector f̂

is discretized, the estimation of the fundamental frequency is dependent on finding the
nearest frequency bin k̂ to the query frequency, in this case, 60 Hz:

k̂ = arg min
k

[(
f̂− 60

)2
]

(6)

ffun = f̂[k̂], (7)

where k̂ denotes the estimated FFT bin closest to 60 Hz and ffun is the estimated fundamen-
tal frequency obtained from the FFT. This value may be confirmed by finding the maximum
value in |X(k)| because it is reasonable to expect that the fundamental frequency of power
signals will be the dominant feature in the DFT magnitude spectrum. The harmonics of
this fundamental frequency can then be estimated by taking multiples of f f un. To extract the
corresponding harmonic frequency FFT bins, simply replace the query frequency (60 Hz
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in (6)) with h× f f un, where h = 2, . . . , H is the harmonic order and H denotes the maximum
number of harmonics in the signal.

3. Statistical Analysis of Harmonics

Often, error analysis is performed under the assumption of a Gaussian distribution,
that is, the error is typically assumed to take the form of additive white Gaussian noise
(AWGN). In this section, error metrics for harmonic magnitudes and phases are presented.
Two metrics for harmonic amplitudes are first discussed: the percent error and residual
error. P = The phase error is computed using a simple difference. Given a sensor under
test (SUT) and an ideal reference sensor measuring the same quantity side-by-side, the
percent error at a specific harmonic amplitude h may be quantified as [29]

errh
I,% =

∣∣∣Ih
sut − Ih

re f

∣∣∣
Ih
re f

. (8)

This quantity may be multiplied by 100 if it needs to be expressed as a percentage.
Otherwise, 0 ≤ errh

I ≤ 1 is unitless and provides a relative measure of the deviation
of a measured harmonic amplitude Ih

sut from the reference harmonic amplitude Ih
re f . The

residual harmonic amplitude error may be calculated using

errh
I,res = Ih

re f − Ih
sut. (9)

Similarly, the phase may be compared with a simple difference

∆φh
I = φh

I,re f − φh
I,sut (10)

where φh
I,re f and φh

I,sut represent the reference and measured phase angles at harmonic

order h, respectively. It is useful to determine the distributions of errh
I,%, errh

I,res, and ∆φh
I .

Knowing these distributions can allow measurement devices to make corrections if errors
are suspected. These distributions can also give insight into whether a particular sensor
measuring a particular harmonic h possesses systemic errors (loosely equivalent to biases) or
if the errors seem purely random. The natural assumption is to assign Gaussian distribution
to the error quantities but as shown later in this work, this is not necessarily the case at
each harmonic.

3.1. The Anderson-Darling Test

A common problem in statistical inference is determining a distribution, or family
of distributions, that a given sample has come from. It is often not sufficient to simply
visualize a histogram of data, and more rigorous methods are required to fully quantify the
“goodness-of-fit” of a distribution family to a given sample. In [30], T. IT. Anderson and
D. A. Darling proposed a test statistic used to accomplish this. Given an ordered sample
x1 ≤ x2 ≤ · · · ≤ xn with cumulative distribution function F(x), compute

W2
n = −n− 1

n

n

∑
j=1

(2j− 1)G(xj), (11)

for
G(xj) =

[
log
(

F(xj) + log
(
1− F(xn−j+1)

))]
. (12)

Stephens in [31] notated the statistic W2
n for various distributions at various significance

levels. For a test against a normal distribution with unknown parameters at a significance
level of p = 0.05, the “threshold” is 0.787. This means that if the computation of W2

n yields
a number greater than this threshold, the test will reject the hypothesis that sample x came
from a normal distribution. MATLAB provides a simple function, adtest(), which accepts
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a series of numbers as the input and yields a 0 if the input sample likely came from a
normal distribution at a significance level of p = 0.05 or less and a 1 otherwise.

3.2. Kernel Density Estimation

Often a random sample does not appear to come from a known family of distributions.
In this case, non-parametric techniques are usually applied to estimate the distribution
function f (x). One of the more common approaches to this problem is that of kernel density
estimation (KDE). A density function f describing the distribution of a random variable X
may be approximated as f̂h(x) using the kernel density estimator

f̂h(x) =
1

hn

n

∑
i=1

K
(

x− xi
h

)
, (13)

for a kernel function K and bandwidth or smoothing parameter h. In many applications, the
standard normal kernel is assumed:

K(x) =
1√
2π

exp
−(x2)

2
(14)

Kernel density estimation essentially overlays the kernel function K on the data
histogram, computes the kernel function on the values of xi within the kernel, shifts
the kernel function, and sums the results (the summation in (13)), yielding a continuous
function approximating the true density f (x). The bandwidth parameter h controls the
width of the kernel function. Ideally, h would be as small as possible; however, too small an
h will result in overfitting. Similarly, too large an h will result in a curve that is too smooth.
An example is shown in Figure 2.

Figure 2. Example of kernel density estimation (KDE) on data drawn from the standard normal
distribution. The blocks indicate the histogram of the raw data. The solid line indicates the best “fit”.
The dash-dotted line shows a case in which the value of h is too small. The lighter dotted line shows
a case of h being too large.

Goodness of Fit Using Root Mean Square Error

A simple yet effective metric for gauging the goodness of fit (GoF) of a probability den-
sity estimate f̂ is a simple mean-square error calculation between the empirical cumulative
distribution function (ECDF) calculated from the data, F̂(x), and the estimated cumulative
distribution function (CDF) F(x), computed given the estimated density function f̂ (x):

GoF =

√√√√ 1
N

N

∑
i=1

(
F(xi)− F̂(xi)

)2 (15)
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Ideally, the GoF for an estimated distribution function F̂(x) will be as close to zero as
possible, indicating little deviation between F(x) and F̂(x).

4. Experimental Setup

Shown in Figure 3 is a diagram of the setup used in this work. A National Instruments
PXIe 6366 Multifunction data acquisition (DAQ) system utilized comma-separated-value
(CSV) files that contained disturbance records, which were then converted to analog
waveforms by an NI PXIe 5423 waveform generator (WG).

Figure 3. Experimental setup [29].

An AE Techron 7228 power amplifier was then utilized to amplify the output WG
voltage and convert it to a current. This current amplifier was adjusted to provide frequency
response characteristics that were flat to ±1% from 60 Hz to <5 kHz. This is due to the
nature of the amplifier when connected to inductive loads (i.e., the step-up CT shown in
Figure 3) when operating in current control mode. Tests were conducted in the lab to find
the suitable cutoff frequency of this device when operating under these conditions, which
was found to be roughly 5 kHz.

Following this, the current was stepped up using a KOR-11 15 kV 400:5 T200 (man-
ufactured by ABB, North Carolina, USA) CT, whose frequency response was measured
to be flat up to 10kHz. On the high side of this CT, a reference sensor was employed to
measure the “actual” current being fed into the equipment under test (EUT) (the sensors
being evaluated). This is due to a phase delay of 20 µs that was induced between the EUT
signals and WG output signals as a consequence of the intermediate equipment.

A reference sensor with a frequency response as close to ideal as possible was desired.
For this, the Ultrastab 866 Precision Current Transducer (current ratio of 1500:1, manufac-
tured by Danfysik A/S in Jyllinge, Denmark) was chosen due to its flat frequency response
of up to 100 kHz, which was connected to a 10-ohm burden resistor with the capability
of measuring currents of several hundred amps with an accuracy higher than 0.1 %. The
current signals of interest also passed through these EUTs and the obtained measurements
were sent back into the DAQ for a time-synchronized side-by-side comparison with the
Ultrastab 866 reference sensor’s readings.

Two PoW sensors were used independently as the EUTs for conducting the experi-
ments, denoted hereafter as S1 and S2. The reference sensor is denoted as Sre f . Sensor Sre f
was calibrated using a Fluke 6105A calibrator. The frequency response curves for both
S1 and S2 are shown in Figure 1. Each event was “played back” through the sensor suite
100 times, yielding 100 comparisons between a sensor’s produced signal and the reference
sensor signal.
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4.1. Event Descriptions

Three event types were studied: a current inrush event (denoted as E1), a microgrid
close-in event E2, and an event depicting a fault on the terminals of a wind farm connected
to a distribution system E3. Events E1 and E2 were from real-world data, whereas E3 was
simulated in PSCAD, [32]. Events E1 and E2 were sampled at different rates (20 kHz and
30.72 kHz, respectively) due to the nature of their originating measurement sources, and
the sampling rate for the simulated event E3 was chosen to be 200 kHz to obtain as many
harmonics from the wind-fault waveform as possible, as well as ensure that the Nyquist
frequency (i.e., 100 kHz) matched the frequency response limit of the reference sensor.

Additionally, the three event types were selected to examine harmonic information
in events not related to distributed energy resource (DER) (E1), as well as those caused by
DERs (E2 and E3). The events were taken from different measurement sources in order to
account for different sensors which, in most cases, have different hardware capabilities
including different ADCs and sampling rates. Therefore, this needed to be accounted for.
Figure 4a–c depict the single-phase current waveforms produced by Sre f , S1, and S2. It
can be seen that in most cases, S2 produced a significant amount of noise. It can also be
seen by examination alone that, although S1 appeared to follow Sre f more closely at lower
frequencies (Figure 4a), it began to deviate more at higher frequencies, (Figure 4b,c).

(a) Inrush Current Waveform (b) Microgrid Close-in Current Waveform.

(c) Wind-Fault Current Waveform

Figure 4. Event Waveforms. The blue (solid) curves indicate the reference waveforms, whereas the
red (dotted) and black (dashed) curves indicate the responses from sensors S1 and S2, respectively.

4.2. Sensor Descriptions

Two sensors were independently used to serve as the EUT. The Lindsey 9670 35-kV
class line post monitor was first used, with≤1% accuracy in the current gain up to 6 kHz, as
well as an induced phase error of less than 10◦. The second sensor, a G&W CVS-36-O 36 kV
class, possessed a more erratic magnitude response, reaching a maximum 5% magnitude
error and 10◦ phase error up to 6 kHz. The G&W sensor is rated for up to 30 kA (as opposed
to approximately 1 kA for the Lindsey sensor) and thus has a much higher noise floor in
the range of currents being used in this study.
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4.3. Selecting Harmonics

For a given event waveform, it is unlikely that every frequency component between
0 and the Nyquist frequency Fs/2 is present in the examined signal. For this reason,
harmonics were hand-picked from the prominent “peaks” in the waveform frequency
spectra. Table 1 lists the chosen harmonics. For the events shown in Figure 4a,b, a threshold
value of 0.045 was used to select the harmonic frequencies of interest. This value was
obtained empirically by visually inspecting the frequency spectra of these events and
determining which harmonics appeared the most “prominent”. For the event depicted in
Figure 4c, this threshold had to be lowered to capture the clearly prevalent harmonics in
the 10s of kHz range (Figure 4c. Note that the fundamental frequency (60 Hz) was excluded
due to the large existing body of knowledge and design characteristics included to ensure
peak performance at this frequency.

Table 1. Selected harmonics for each event of interest.

Inrush Microgrid Close-in Wind Fault

2 3 7

3 5 14

4 7 149

5 9 195

6 12 232

7 13 270

11 17 389

13 18 427

17 19 464

23 20 501

27 21 600

31 23 659

37 25 697

49 27 734

61 29 854

31 892

33 1086

35 1124

37 1161

39 1281

41 1318

43 1360

47 1393

49 1550

51 1588

1625

5. Results

As mentioned in the previous section, 100 trials for each event play-through were
conducted using both sensors independently. After taking the FFT of each signal’s trial, the
selected harmonic amplitudes and phases were extracted.
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5.1. Anderson-Darling: Testing for Normality

At this point, the distribution of each harmonic was tested using the AD test, as
described in Section 3. The xjs used in (11) represent each of the three computed error
metrics. Tables 2–4 show the AD test results for both sensors. Clearly, frequencies below the
50th harmonic (approximately) produced by S1 exhibited normally distributed behavior
(indicated with a 1 in the tables) with few exceptions (harmonic 7 for both the residual
amplitude and percent error, and 61 for just the percent error). However, it should be noted
that the AD test did not definitively prove that a distribution follows “normal” behavior;
it computed the probability (the p-value) that the assumption of a normal distribution
was true. In other words, if p < 0.05, there was enough evidence to reject the hypothesis
that the given distribution was normal, implying that the result indicating an allowable
rejection of the null hypothesis was statistically significant with α = 100%× (1− p) = 95%
confidence. Both amplitude metrics computed from S2 samples showed non-normal
behavior at harmonics 37 and 49. The phase captured by S2 had an interesting mix of
normal and non-normal distributions, the most notable standout being harmonic 7, which
exhibited non-normal qualities. However, the pattern shifted toward non-normal as the
frequencies increased, as with the wind-fault case. Examples of the non-normal distribution
plots are presented in Section 5.2.

Table 2. AD results for inrush event distribution as seen by S1 and S2.

Harmonic Amplitude (%) Amplitude (res.) Phase

Number S1 S2 S1 S2 S1 S2

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 1 0 1 0 0 1

11 0 0 0 0 0 0

13 0 0 0 0 0 0

17 0 0 0 0 0 0

23 0 0 0 0 0 1

27 0 0 0 0 0 1

31 0 0 0 0 0 1

37 0 1 0 1 0 1

49 0 1 0 1 0 1

61 1 0 0 0 0 1

Table 3. AD results for microgrid close-in event distribution as seen by S1 and S2.

Harmonic Amplitude (%) Amplitude (res.) Phase

Number S1 S2 S1 S2 S1 S2

3 0 0 0 0 0 0

5 0 0 0 0 0 0

7 0 0 0 0 0 0

9 0 0 0 0 0 0

12 0 0 0 0 0 0
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Table 3. Cont.

Harmonic Amplitude (%) Amplitude (res.) Phase

Number S1 S2 S1 S2 S1 S2

13 0 0 0 0 0 0

17 0 0 0 0 0 0

18 0 0 0 0 0 0

19 0 0 0 0 0 0

20 0 0 0 0 0 0

21 0 0 0 0 0 0

23 0 0 0 0 0 0

25 0 0 0 0 0 0

27 0 0 0 0 0 0

29 0 0 0 0 0 0

31 0 0 0 0 0 0

33 1 0 1 0 0 0

35 0 0 0 0 0 1

37 0 0 0 0 0 0

39 0 1 0 1 0 1

41 0 0 0 0 0 0

43 0 0 0 0 0 1

47 0 0 0 0 0 0

49 0 1 0 1 0 0

51 0 0 0 0 0 0

Table 4. AD results for wind-fault event as seen by S1 and S2.

Harmonic Amplitude (%) Amplitude (res.) Phase

Number S1 S2 S1 S2 S1 S2

7 0 0 0 0 1 0

14 0 0 0 0 0 0

149 1 1 0 1 0 1

195 1 1 0 0 0 1

232 1 1 0 0 0 1

270 1 1 1 1 1 0

389 1 1 0 1 1 0

427 1 1 1 1 1 0

464 1 1 0 1 0 1

501 1 1 0 1 1 1

600 0 1 0 1 1 0

659 1 1 1 1 1 0

697 1 1 0 0 1 1

734 1 1 0 0 0 1

854 1 1 0 1 1 1
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Table 4. Cont.

Harmonic Amplitude (%) Amplitude (res.) Phase

Number S1 S2 S1 S2 S1 S2

892 0 1 0 0 1 0

1086 1 1 1 0 1 0

1124 1 1 1 0 1 0

1161 1 1 1 0 1 1

1281 1 1 0 1 1 1

1318 0 1 1 1 1 0

1360 1 1 1 0 1 1

1393 1 1 1 0 1 1

1550 1 1 0 0 1 0

1588 1 1 1 1 1 0

1625 1 1 1 1 1 0

5.2. Distribution Fitting via KDE

As described in Section 3, KDE was used to estimate a continuous distribution from
the data samples obtained at each harmonic for all three error metrics: the percent ampli-
tude error, residual amplitude error, and phase error. Figure 5a,b depict examples of the
predicted normal and non-normal distributions, respectively. To the naked eye, Figure 5a
does not appear to be normally distributed; however, there was not enough sufficient evi-
dence in the data to reject this hypothesis when performing the AD test on this particular
harmonic. Figure 5b shows a case of a harmonic amplitude’s distributions failing the AD
test and the skewness of the distribution clearly reflects this. Also included in this figure
are the root mean square error (RMSE) values for the estimated distributions.

(a) Example Normal Fit: Histogram and
Estimated PDF

(b) Example Non-Normal Fit: Histogram and
Estimated PDF

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Residual (Amps)

0

0.2

0.4

0.6

0.8

1

F
(x

)

Empirical

Estimated

RMSE: 0.020282

(c) Example Normal Fit: Empirical and
Estimated CDFs

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Residual (Amps) 10-3

0

0.2

0.4

0.6

0.8

1

F
(x

) Empirical

Estimated

RMSE: 0.021783

(d) Example Non-Normal Fit: Empirical and
Estimated CDFs

Figure 5. Normally distributed (a,c) estimated residual amplitude error for harmonic # 7 as seen by
S2 for the wind-fault transient event, and non-normally distributed (b,d) example harmonic # 1625.

5.3. Goodness of Fit

Each of the computed distributions was then tested against the empirical data using (15).
The GoF results for both sensors’ harmonic distributions over all three events can be seen
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in Tables 5–7. It can be seen that for both sensors, the RMSE tended to lie at around the
0.02–0.03 mark, meaning that, on average, the probability of the harmonic amplitude or
phase error X being less than or equal to some value x differed by 0.02–0.03 between the
empirical data CDF F(x) and the estimated CDF, F̂(x). Bold items in Tables 5–7 indicate
higher RMSEs between the two sensors’ estimated PDFs for a given metric. For example,
in Table 5, KDE seemed to perform worse in the phase error for S2. However, in Table 6,
S2’s estimated PDFs for the phase error outperformed those of S1. This goes to show that
different sensors will yield different error distributions over different harmonics and that
there is no “one-size-fits-all” solution for learning error characteristics.

Table 5. RMSE for Inrush Harmonic Distributions.

Inrush

Harmonic
% Res. Phase

S1 S2 S1 S2 S1 S2

2 0.020 0.022 0.019 0.022 0.022 0.020

3 0.019 0.023 0.019 0.023 0.024 0.023

4 0.017 0.019 0.017 0.019 0.019 0.022

5 0.017 0.023 0.017 0.023 0.023 0.023

6 0.021 0.020 0.022 0.020 0.018 0.021

7 0.030 0.027 0.030 0.027 0.020 0.028

11 0.023 0.023 0.023 0.022 0.021 0.022

13 0.024 0.026 0.024 0.026 0.019 0.020

17 0.020 0.020 0.020 0.021 0.019 0.019

23 0.026 0.021 0.026 0.022 0.022 0.037

27 0.021 0.023 0.022 0.023 0.026 0.022

31 0.023 0.021 0.023 0.022 0.022 0.062

37 0.022 0.027 0.020 0.026 0.022 0.035

49 0.020 0.026 0.019 0.023 0.022 0.026

61 0.031 0.022 0.028 0.022 0.020 0.039

Table 6. RMSE for Microgrid Close-in Harmonic Distributions.

Microgrid Close-In

Harmonic
% Res. Phase

S1 S2 S1 S2 S1 S2

3 0.024 0.021 0.024 0.021 0.024 0.021

5 0.019 0.019 0.019 0.020 0.022 0.021

7 0.020 0.022 0.020 0.023 0.025 0.022

9 0.019 0.021 0.019 0.021 0.020 0.019

12 0.021 0.025 0.021 0.026 0.017 0.020

13 0.020 0.019 0.020 0.019 0.024 0.021

17 0.019 0.020 0.020 0.019 0.020 0.022

18 0.021 0.025 0.021 0.024 0.022 0.021

19 0.020 0.024 0.020 0.023 0.021 0.020

20 0.019 0.022 0.019 0.020 0.028 0.031

21 0.022 0.023 0.022 0.023 0.019 0.023
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Table 6. Cont.

Microgrid Close-In

Harmonic
% Res. Phase

S1 S2 S1 S2 S1 S2

23 0.018 0.023 0.018 0.022 0.023 0.020

25 0.021 0.026 0.021 0.026 0.020 0.021

27 0.019 0.019 0.019 0.019 0.018 0.025

29 0.024 0.021 0.025 0.019 0.021 0.020

31 0.018 0.019 0.018 0.019 0.025 0.023

33 0.022 0.020 0.023 0.020 0.023 0.018

35 0.025 0.019 0.025 0.019 0.022 0.023

37 0.020 0.019 0.020 0.020 0.021 0.020

39 0.023 0.024 0.023 0.024 0.017 0.031

41 0.022 0.029 0.022 0.029 0.020 0.022

43 0.021 0.021 0.021 0.021 0.025 0.025

47 0.021 0.022 0.021 0.022 0.020 0.019

49 0.022 0.022 0.022 0.022 0.022 0.022

51 0.022 0.027 0.022 0.027 0.019 0.021

Table 7. RMSE for Wind-Fault Harmonic Distributions.

Wind Fault

Harmonic
% Res. Phase

S1 S2 S1 S2 S1 S2

7 0.023 0.020 0.023 0.020 0.028 0.024

14 0.020 0.020 0.020 0.020 0.024 0.022

149 0.027 0.028 0.026 0.026 0.024 0.024

195 0.025 0.034 0.021 0.022 0.025 0.021

232 0.028 0.022 0.020 0.024 0.021 0.029

270 0.023 0.029 0.021 0.023 0.023 0.024

389 0.024 0.028 0.023 0.022 0.026 0.023

427 0.023 0.030 0.026 0.022 0.025 0.022

464 0.026 0.026 0.020 0.025 0.019 0.028

501 0.027 0.020 0.024 0.024 0.023 0.025

600 0.021 0.029 0.024 0.025 0.031 0.022

659 0.029 0.025 0.024 0.019 0.031 0.023

697 0.023 0.021 0.020 0.025 0.023 0.021

734 0.026 0.022 0.018 0.022 0.025 0.029

854 0.027 0.030 0.027 0.025 0.035 0.022

892 0.021 0.028 0.022 0.026 0.029 0.022

1086 0.026 0.025 0.023 0.019 0.039 0.024

1124 0.028 0.027 0.027 0.021 0.039 0.026

1161 0.021 0.020 0.022 0.020 0.035 0.028
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Table 7. Cont.

Wind Fault

Harmonic
% res. Phase

S1 S2 S1 S2 S1 S2

1281 0.026 0.023 0.020 0.022 0.043 0.025

1318 0.025 0.026 0.021 0.022 0.025 0.021

1360 0.031 0.030 0.033 0.020 0.036 0.030

1393 0.030 0.025 0.024 0.026 0.040 0.030

1550 0.020 0.027 0.025 0.019 0.025 0.019

1588 0.025 0.031 0.022 0.021 0.058 0.023

1625 0.030 0.025 0.028 0.022 0.038 0.024

6. Conclusions and Future Work

A fully situationally aware power system is a goal that, although seemingly impossible
to achieve, is something worth pursuing. In this paper, high-frequency transient power
system current disturbances and their distorted representations are analyzed through
both statistical and probabilistic lenses over a wide variety of harmonic frequencies. The
harmonic amplitude error, quantified in terms of percent and residual errors, largely
showed characteristics of normally distributed behavior per the AD test for normality in
the lower (i.e., less than the 50th harmonic) frequencies.

As the harmonic frequency moved beyond this level, the error distributions tended to
drift away from normal behavior, as seen in the wind-fault event results. RMSE was used
as an indicator of the goodness of fit between the estimated distribution functions and the
empirical data, showing the validity of the presented approach. The results presented in
this study go against the assumption that measurement errors can be treated as a normally
distributed quantity; however, more transient events need to be studied to obtain a full
grasp of the “natural” distributions of these errors.

Future Work

The work presented here only covers the responses to three distinct current distur-
bance types. The authors believe that we have just scratched the surface and that the
results here are indicative of a need to dig deeper into the study of higher-order harmonic
measurement errors. These studies, both currently presented and in the future, will be ex-
tremely important in assisting with the design of measurement systems capable of accurate
representations of high-frequency signals present in the power system.
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Abbreviations
AD Anderson–Darling
ADC analog-to-digital converter
AWGN additive white Gaussian noise
CDF cumulative distribution function
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CT current transformer
DAQ data acquisition
DECC Distributed Energy Communications and Control Laboratory
DER distributed energy resource
DFT discrete Fourier transform
ECDF empirical cumulative distribution function
EMTP electromagnetic transients program
EUT equipment under test
FFT fast Fourier transform
FIR finite impulse response
GoF goodness of fit
KDE kernel density estimation
LTI linear time invariant
PDF probability density function
PMU phasor measurement unit
PoW point-on-wave
PT potential transformer
RCF ratio correction factor
RMSE root mean square error
ROCOF rate of change of frequency
SUT sensor under test
TCF transformer correction factor
THD total harmonic distortion
WG waveform generator
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16. Frigo, G.; Derviškadić, A.; Pegoraro, P. A.; Muscas, C.; Paolone, M. Harmonic Phasor Measurements in Real-World PMU-Based
Acquisitions. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC),
Auckland, New Zealand, 20–23 May 2019; pp. 1–6. [CrossRef]

17. Aleixo, R.R.; Lomar, T.S.; Silva, L.R.M.; Monteiro, H.L.M.; Duque, C.A. Real-Time B-Spline Interpolation for Harmonic Phasor
Estimation in Power Systems. IEEE Trans. Instrum. Meas. 2022, 71, 9004009. [CrossRef]

18. Chen, L.; Zhao, W.; Zhao, D.; Huang, S. Frequency-Domain Sampling Theorem-based Harmonic Phasor Estimator. In Proceedings
of the 2020 Conference on Precision Electromagnetic Measurements (CPEM), Denver, Colorado, USA, 24–28 August 2020; pp. 1–2.

19. Chen, L.; Zhao, W.; Wang, F.; Huang, S. Harmonic Phasor Estimator for P-Class Phasor Measurement Units. IEEE Trans. Instrum.
Meas. 2020, 69, 1556–1565. [CrossRef]
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