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Abstract: The rapidly growing power data in smart grids have created difficulties in security man-
agement. The processing of large-scale power data with the use of artificial intelligence methods
has become a hotspot research topic. Considering the early warning detection problem of smart
meters, this paper proposes an abnormal data detection network based on Deep Reinforcement
Learning, which includes a main network and a target network composed of deep learning networks.
This work uses the greedy policy algorithm to find the action of the maximum value of Q based on
the Q-learning method to obtain the optimal calculation policy. It also uses the reward value and
discount factor to optimize the target value. In particular, this study uses the fuzzy c-means method
to predict the future state information value, which improves the computational accuracy of the Deep
Reinforcement Learning model. The experimental results show that compared with the traditional
smart meter data anomaly detection method, the proposed model improves the accuracy of meter
data anomaly detection.

Keywords: deep reinforcement learning; smart meters; Q-learning

1. Introduction

With the development of a new generation of information technologies, the power
industry is undergoing tremendous changes. The smart grid plays an important role in
promoting the sustainable development of the world economy and society. It can optimize
the energy structure, improve the utilization rate of energy, improve the security and
stability of the power grid, and promote technology innovation in related fields as well
as realize a two-way interaction between the power grid and its users. It can be seen that
the comprehensive construction of the smart grid has become the main direction of the
future development of the grid. However, smart metering faults have caused serious losses
to customers and power companies. For example, abnormal readings of smart meter data
have caused financial losses to power companies. In addition, there are other faults that
cause problems for the power company’s work. Considering the problem of abnormal
smart meter data detection, this paper proposes an intelligent method to reduce the amount
of work resulting from smart metering faults.

With the improvement of computing power and the emergence of high-performance
devices, machine learning has developed rapidly, and this has produced many kinds of
algorithms. Among them, a promising machine learning algorithm called Reinforcement
Learning (RL) [1,2] has attracted the attention of researchers. RL is closer to human learning
and actively guides the agent to learn strategies in the process of interacting with the
external environment in order to obtain maximum benefits and achieve target needs. RL
fundamentally breaks the previous traditional thinking of the DL processing data by build-
ing learning models and engaging in model training and testing, and it solves sequence
decision-making problems through value functions, strategies, and other perspectives. It
has been widely used in simulation modeling, robot control, games, and other fields. Since
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RL is more focused on exploring strategies to solve problems, it has been unable to handle
the current, overly complex real-world tasks. In order to solve the above problems, Google’s
DeepMind team proposed one of the most promising architectures, namely Deep Rein-
forcement Learning (DRL) [3–6], which combines the decision-making ability of RL and the
perception ability of DL. It is not only capable of processing high-dimensional continuous
action space data, but it can also directly calculate the original input to output data.

Therefore, this paper proposes an abnormal detection method for smart meter data
based on Deep Reinforcement Learning. The method includes two networks: The first
is the current network, which uses the neural network model to reconstruct the power
characteristics and then performs prediction and classification; the second is the target
network, which inputs the power characteristics of the next stage and uses the unsupervised
learning algorithm, i.e., the fuzzy c-means (FCM), to cluster the power characteristics and
output the cluster labels. In addition, we use the target neural network to calculate the
value of the Q function, which represents the expectation of the total reward that the agent
can obtain in the future after taking action a in state s in the Q-learning algorithm. The
experimental results show that the proposed method achieves better results in the abnormal
detection of smart meter data. The proposed method prevents the unnecessary economic
loss and harm caused by the abnormal power consumption of users, and it greatly improves
the rate of detection of abnormal users by power companies. The main contributions of
this paper are as follows:

(1) In view of the problem of massive, diverse, and complex factors influencing elec-
tricity consumption data from electricity meters, this paper proposes an abnormal
data detection model for smart meters based on Deep Reinforcement Learning.

(2) In this paper, the FCM algorithm is used to realize semi-supervised learning in the
DQN network, to predict the sample state in the next moment through the FCM
algorithm, and then to predict its Q value through the target network.

(3) The method proposed in this paper is analyzed and tested on a real user power
consumption dataset. The proposed method can significantly improve detection
accuracy and speed, and the model shows strong generalization ability and applica-
bility.

2. Related Work
2.1. Smart Grid Security Technologies

In improving the operation efficiency of the power system, increasing the power
supply, enhancing the service quality of the application, and promoting energy savings and
emissions reduction, countries around the world have used the development, improvement,
and reform of the power supply industry as their primary strategy. The popularization
and application of smart energy meters and electricity consumption information collection
systems, along with the combination of hardware and software, have greatly benefited
power supply companies and power users. Power users can understand their power
consumption in real time through this system. The system can monitor the electricity
consumption dynamics of the area at any time, promote a two-way dialogue between
electricity users and power companies, make the distribution of electricity resources more
reasonable, and also provide a solid data foundation and technical support for the smooth
progress of electricity theft prevention work.

Reference [7] proposed an access control method—from identity establishment and
control to identification in the case of protection problems in advanced measurement
systems as well as data acquisition and monitoring in control systems; the method was
mainly used to defend against attacks on the system. Reference [8] carried out a security
analysis and research on the related information security problems of smart grids, mainly
from the generation, transmission, and processing of data. Reference [9] adopted the
research strategy of data aggregation and used a homomorphic encryption algorithm
to prevent data from being leaked during transmission and storage. In reference [10],
aiming at the distributed denial of service attack problem in the advanced measurement
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system, the support vector machine and artificial immune system were combined to identify
malicious data existing in the network and effectively detect the possible attack behavior in
it. Reference [11] used the method combining K-means, particle swarm, and an improved
support vector machine to discriminate the detected abnormal data from the suspected
user, and then to detect the suspected user by focusing on solving the abnormal electricity
consumption in the smart grid.

2.2. Abnormal Detection Method of Smart Meter Data

Considering the data detection problem of smart meters, two main schemes in current
research works can be identified. These include the detection method based on data mining
and the manual sampling method. The manual sampling method is mainly a method of
inspecting electricity theft, which is subjectively conducted by the staff [12]. Hardware facili-
ties and manual participation are two indispensable factors of this detection method. With
regard to the hardware equipment [13–15] such as the special metering cabinet used to detect
electricity stealing behavior, when the characteristic electrical parameters of voltage and
current (recorded by the metering cabinet) are significantly different from the normal data,
the user will be marked as the suspected object of electricity theft. However, equipping
each user with a dedicated metering cabinet will consume a lot of human and financial
resources, and in a large environment, the effect is obviously not good and unrealistic. In
terms of manual participation, the power supply company needs to regularly dispatch a large
number of staff to screen for potential electricity theft areas, but the number of electricity
users is large, the screening efficiency is extremely low, and the timeliness and accuracy
cannot be guaranteed. In addition, this kind of method cannot accurately and efficiently
analyze all kinds of electricity stealing behaviors, and the collected abnormal electricity
consumption information is relatively simple. The characteristics of high delay directly leads
to high misjudgments and missed judgments, resulting in the ineffectiveness of preventing
electricity theft.

The detection methods based on data mining can be divided into unsupervised learn-
ing methods and supervised learning methods. The unsupervised learning method iden-
tifies suspected objects from a large number of users by comparing users horizontally;
this comparison is based on the characteristics of all “power thieves” without additional
prompts. In addition, unsupervised learning can well avoid the influence of objective
conditions on the judgment of different electricity thieves in the same environment. Accord-
ing to the theory of outliers, some studies [16] have explored a distance-based abnormal
detection method for electricity consumption. By analyzing a large amount of data, the
outlier boundary was determined so as to achieve the effect of predicting the suspected
object of electricity theft. Another study [3] established an unsupervised abnormal detec-
tion model based on the local outlier factor algorithm, took electricity as a characteristic
index, introduced grid technology, and detected electricity anomaly objects through the
LOF algorithm. Another supervised learning method required a large amount of training
data, that is, it required a large amount of data from electricity users for training, with
known results, so as to determine whether an unknown user was suspected of stealing
electricity. Some authors used the one-class SVM classification algorithm to determine the
threshold range of normal electricity consumption by analyzing the data of a large number
of normal users [4]. At the same time, in order to reduce the rate of false alarms, filtering
technology was adopted. Another author [5] proposed an electricity stealing behavior
recognition algorithm for users that was based on the semi-supervised learning of the L0
sparse hypergraph, and then constructed an L0 sparse hypergraph model, calculated the
weight matrix, looked for the relationship between the points of the hypergraph, and used
a small amount of learning with labels. The sample was able to predict the suspected object
of electricity theft. The paper by [6] analyzed the suspected factors for user electricity theft
and proposed an evaluation model based on an improved genetic optimization neural
network. Aiming at the defects of the BP neural network, the genetic algorithm was used
to optimize the performance, which effectively prevented a fall into the local optimum.
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2.3. Deep Reinforcement Learning

In this work, we introduce a reinforcement learning method to realize state prediction
with the use of power data. Deep Reinforcement Learning (DRL) is mainly model-free
and model-based. Model-free methods include those based on value function and policy
gradient, while model-based ones include methods based on search and supervised learn-
ing. DRL originated from the Deep Q-learning Network (DQN) algorithm proposed by
Mnih et al. [17] for solving vision-related control problems. Instead of the action-value table
in the traditional Q-learning algorithm, the deep Q-network approximates the action-value
function as a Convolutional Neural Network (CNN) and is called an action-value network.
In addition, the DQN also innovatively uses the experience replay mechanism, utilizing the
experience replay memory to store the rewards and states obtained from each interaction
with the environment, and to update the parameters of the iterative action value network.
An improved version of the DQN [18] employs an isomorphic network to generate an
action value as a target, thereby reducing the correlation between the current and target
action values and improving the stability of the algorithm. At the same time, researchers
can use the same set of training network and algorithm parameters to deal with different
complex visual perception tasks in the experiment, which illustrates the versatility of the
DQN. Practice has shown that DQNs have surpassed the human level in some non-strategic
games [19].

The Deep Reinforcement Learning method based on policy gradient is mainly used
to solve various problems that exist in the algorithm based on action value, such as the
insufficient processing ability of continuous action. The Actor-Critic algorithm is imple-
mented in combination with the value function approach. On this basis, Silver et al. [20]
and Lillicrap et al. [21] proposed the Deep Deterministic Policy Gradient (DDPG) algorithm
using the principle of deterministic policy gradient. Experiments have shown that the
algorithm is not only stable in the continuous action space, but that the solution speed of
the optimization strategy is also faster than the calculation method based on action value.

Deep Reinforcement Learning methods based on search and supervision functions
are widely used in action planning problems in games. The AlphaGo Go algorithm [22]
combines deep neural networks with a classic heuristic search method, the Monte Carlo
Tree Search [23] (MCTS), and facilitates policy search with additional human supervision.
The algorithm approximates a value function using the Monte Carlo Tree Search and utilizes
a Convolutional Neural Network to evaluate the Go layout based on this value function.

3. Method

Considering the problem of abnormal electricity consumption of smart meters, this
paper proposes a smart meter data abnormal detection model based on Deep Reinforcement
Learning, which combines the Q-learning algorithm in Reinforcement Learning and the
neural network in deep learning to resolve the abnormal behavior of the meter data.

3.1. Overview of the Deep Q-Network Model

The Q-learning algorithm [24] is a value-based Reinforcement Learning algorithm. The
method used by the Q-learning algorithm in the iteration is the reward and value function
of the state action. The Q-learning algorithm first initializes the model and all Q values,
and the agent performs the action in the current state to obtain the vector (xt, ut, xt+1, ut+1),
using the greedy algorithm to select the action and then, according to Algorithm 1, to
update the Q value. When the agent reaches the target state, the Q-learning algorithm
is terminated, and the process of this iteration is completed. Then, the algorithm iterates
repeatedly until the Q value finally converges and the Q learning algorithm is over. The
Q-learning algorithm is shown in Algorithm 1.
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Algorithm 1 Q-learning algorithm.

1: repeat
2: each data item for each mini-batch sample
3: using a greedy strategy, choose action ut, get reward rt, and reach a new state xt+1
4: Q(xt, ut)← Q(xt, ut) + α[rt+1 + γ max Q(xt+1, ut+1)−Q(xt, ut)]
5: xt ← xt+1
6: until all Q(x, u) reach a state of convergence

This paper transforms the problem so that the Q-table updating problem becomes a
function fitting problem. The DRN uses the neural network as the approximator of the
Q function and then uses Reinforcement Learning to adjust the parameters of the neural
network of the deep learning model. It subsequently realizes the modeling of the Q table,
and finally enables the agent to obtain an optimal strategy [25].

The goal of the DQN model is to obtain the optimal Q function through the policy
function, which reflects the state s and the action a at each moment. The policy function
depends on the state, which is derived by the Q-function from the following function:

Fpolicy(s) = argmax(Q(s, a)) (1)

This paper uses a simple DNN to ensure a positive Q value. The network model
is trained using the Mean Squared Error (MSE) loss, which is the value of the next state
obtained by multiplying the current reward by Q, multiplied by a discount factor.

3.2. Model Design

DQN has two great advantages—a target neural network and a playback memory
unit—which improve the stability of the neural network. Moreover, during the training
process, DQN directly inputs the original data into the neural network without adding
additional data information. DQN utilizes the off-policy feature of Q-learning. The experi-
ence replay mechanism in DQN is obtained through the experience data m = {s, a, st+1}
stored at each time node. During the training process, DQN reads the sample data through
the mini-batch sampling and then uses the gradient descent algorithm to update the deep
network parameters. This method effectively utilizes the coupling between data and im-
proves the stability of the model. In this paper, the structure of the initial network in DQN
and the target network are set to be the same. The parameter update of the target network
is obtained by the Q network after N iterations, and its loss function is expressed as follows:

Loss =
1
m

m

∑
t=1

(rt + γ max Q(st+1, at+1)−Q(st, at))
2 (2)

Figure 1 shows the training process of the DQN network model, which consists of the
main network (MainNet) for predicting the Q estimation and the target network (TargetNet)
for predicting the Q reality; the main network uses the latest parameters. The target network
uses the previous parameters, and the actual target Q is calculated as follows:

Qtarget = r + Q max(st+1, at+1, θ) (3)

Moreover, its loss function is

Loss(θ) = E[Qtarget −Q max(st, at, θ)]. (4)

After initializing MainNet and TargetNet, the parameters of MainNet are updated
according to the loss function, while those of TargetNet are fixed. After many iterations
(epoch = 100), all the parameters of MainNet are copied into TargetNet. During this time,
the constant target Q value allows the model update to be more stable. Generally, there
are noise samples in the dataset. In order to improve the robustness of the model, this
study adds the fuzzy c-means (FCM) model to predict the action corresponding to each
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state when the target network is updated. In this algorithm, the state st+1 is the input, and
its sampling distance is used as the centroid vector ut+1. Based on the Euclidean distance
between s and u, the prediction samples are divided fuzzily.

st, a, st+1

Experience replay

Policy Network

critic gradient

Critic Network Policy Network Critic Network

Loss function

update

Q(s, a)

Q(st+1, at+1)

st+1st+1s s

a at+1

Q(s, a)

update

Main network Target network

FCM

Figure 1. The training process of the DQN network model.

The FCM algorithm is the minimization of the objective function consisting of the
membership degree of sample data, clustering centers, and sample centers. Suppose
that the sample set is S = {s1, s2, s3, . . . , sn}, and find the central vj(j = 1, 2, . . . , c) of each
category. The objective function is then minimized, as seen below:

Jm(U, v1, v2, . . . , vc) =
n

∑
j=1

c

∑
i=1

um
ij d2

ij

√
b2 − 4ac (5)

where n represents the number of samples in the data set, m denotes the fuzzy weighting
coefficient, c represents the number of clusters, and uij represents the membership degree
of the sample point xi belonging to the jth clustering center. U = {uij} represents the
membership matrix. uij has the following constraints:

c

∑
j=1

uij = 1, ∀i = 1, 2, . . . , n (6)

0 <
n

∑
i=1

uij < n, ∀j = 1, 2, . . . , c. (7)

In Formula (5), dij is the Euclidean distance between the ist cluster center and the
jst sample point. For (6) and (7), Lagrange operators are used to construct the following
objective functions:

J(U, v1, . . . , vc, λ1, . . . , λn) = J(U, v1, . . . , vc) +
n
∑
1

λj(
c
∑

i=1
uij − 1)

=
c
∑

i=1

n
∑
j

um
ij d2

ij +
n
∑
1

λj(
c
∑

i=1
uij − 1)

(8)

where λj is the n constrained Lagrange multiplier of Formula (8). Then, derive the partial
derivatives for all parameters and make their derivatives equal to 0. The updated formula
of the membership matrix is as follows:
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vi =

n
∑

j=1
um

ij xj

n
∑

j=1
um

ij

(9)

uij =
1

c
∑

k=1

( dij
dkj

)2/(m−1)
(10)

where i = 1, 2, . . . , c, j = 1, 2, 3, . . . , n. After calculating the fuzzy classification interval
of the sample, FCM predicts the sample state st+1 and the maximum Qt+1 through the
target network. Finally, DQN performs a training learning calculation to obtain the current
Qt = Q(st, at). Moreover, the target Q∗t+1 = rt + Qt+1 as well as the loss function are
calculated according to the current Q and the target Q.

4. Experiments
4.1. Dataset

This experiment used the real electricity consumption data of users released by the
State Grid Corporation of China (SGCC) as the dataset. Table 1 shows the basic information
of this dataset. We randomly divided the dataset into training samples, test samples, and
validation samples, at a ratio of 6:2:2. The training samples included normal samples and
abnormal samples.

Table 1. Basic information of the dataset.

User Information Value

Time range 1 January 2014–7 February 2017
Total number of samples 149,186

Number of normal samples 140,434
Number of abnormal samples 8752
Number of training samples 89,500

Number of validation samples 29,843
Number of test samples 29,843

The dataset contained faulty values, wrong measurements, missing values, etc. In this
paper, the interpolation method was mainly used to restore a large number of missing values
in the electricity dataset. In order to deal with the influence of data of different dimensions
on the experimental results, it was necessary to normalize the dataset and the final data
between [0, 1]. The data were normalized using the Max-Min scaling method, and the
calculation formula is as follows:

f (xi) =
xi −min(x)

max(x)−min(x)
(11)

Here, min(x) denotes the minimum value in the dataset, and max(x) denotes the
maximum value in the dataset.

4.2. Experimental Environment and Configuration

This experiment was carried out on a server with NVIDIA GeForce GTX 1080 × 2, and
the architecture of the model was implemented based on pytorch. The features of the data
were regarded as states, the data labels were regarded as actions, and the reward value
was represented by a 0/1 function; that is, the reward value was 1 if the classification was
correct, and the reward value was 0 if the classification was wrong. Thus, a simulation of
the abnormal detection scenario was formed, and the model was trained. Batch size was
set to 256, and the learning rate to 0.001. Adam was used to optimize the model.
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4.3. Evaluation Metrics

In this paper, the accuracy (ACC) was used to evaluate the classification results of the
network model. The calculation formula is as follows:

ACC =
TP + TN

TP + TN + FP + FN
(12)

where TP represents the number of true positive samples, TN represents the number of true
negative samples, FP represents the number of false positive samples, and FN represents
the number of false negative samples.

To better evaluate the established abnormal electricity consumption detection model,
the evaluation index of the Area Under the Curve (AUC) was adopted, which is usually
used as the evaluation index of the two-class detection model. It was mainly used to reflect
the specificity and sensitivity of the network model. The AUC value range was generally
between 0.5 and 1; the closer it is to 1, the better the classification effect.

4.4. Experimental Results and Analysis
4.4.1. Comparison with Existing Methods

This work proposes an FCM state prediction RL network model (FRL) for power
abnormal data detection. Table 2 provides the comparison results of the DQN model
and the current work using binary classification experiments on the dataset used in this
paper. Among them, [26] proposed a method for network traffic detection, which utilized
Deep Reinforcement Learning (DRL) to accurately detect intrusion detection system attacks.
Reference [27] proposed a Reinforcement Learning (RL) model to analyze feature selection,
hyperparameter selection, and intrusion detection problems, which later demonstrated
strong experimental validation. Reference [28] proposed a Hierarchically Distributed Fog
Computing (HDFC) architecture for deploying a machine learning-based abnormal detection
model to detect anomalous data from smart meter sensor data collected by households.
Reference [29] proposed a Threshold-based Abnormal Detector (TAD) for energy theft
detection in edge data centers. In order to fully prove the validity of the methods, this
paper not only compared the methods of smart meter data abnormal detection, but also the
network traffic detection methods. By comparing the experimental results, it was found that
the direct application of the network traffic abnormal detection method to the abnormal
detection task of the electric meter data did not achieve the performance equivalent to that
of the electric meter data abnormal detection method; for example, both ACC and AUC
were lower. However, other methods of abnormal detection in meter data can achieve better
results, such as an ACC and an AUC of 91.2% and 91.4%, respectively. The method in this
paper achieved 94.7% performance on ACC and 82.7% performance on AUC, which shows
that the DRN model has better performance against unknown attacks.

Table 2. Comparison of experimental results.

Methods ACC AUC

DRL [26] 0.823 0.690
RL [27] 0.856 0.724

HDFC [28] 0.912 0.728
TAD [29] 0.914 0.746

FRL 0.947 0.827

4.4.2. Parametric Analysis

Figure 2 shows the change curves of the ACC values of the five detection models
with epochs. It can be clearly seen that with an increase in the epochs value, the AUC
value begins to gradually increase, and then gradually decreases after reaching a certain
epoch. By comparing the change curves of the five models, it can be seen that the abnormal
electricity consumption detection model of the method in this paper has a good detection
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effect, and the detection performance is the best when the epoch is set to 60. Therefore,
it is not necessary to set the epochs to be as large as possible. When a certain threshold
is reached, it may lead to the overfitting of the model. Only by selecting the appropriate
epochs can the network model achieve the best detection performance.

Figure 3 shows the detection effect of the method in this paper under different
batch_sizes. The batch_size was set to 32, 64, 128, and 256 for the comparative experi-
ments. As can be seen in the figure, when the batch_size was set to 32, the method in this
paper could achieve the same AUC value as other batch_sizes with fewer epochs. Different
datasets and network models will affect the choice of the batch_size. Therefore, setting an
appropriate batch_size can improve the detection performance of the network model and
speed up the convergence of the model.

Figure 2. Comparison of the results of the five methods under different epochs.

Figure 3. Comparison of experimental results under different batch_sizes.

In addition to this, we also analyzed the embedding dimension, the number of layers,
and the dropout probability. As shown in Figure 4, the optimal value for the embedding
dimension is 128, the optimal value for the dropout probability is 0.5, and the optimal value
for the number of layers is 5. When the embedding dimension increases, the model may
learn some noise due to overfitting, and the performance decreases. When the number of
network layers is increased, the effect of the model continues to improve, which shows that
the deep neural network has a better nonlinear feature extraction ability.
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Figure 4. Parametric analysis.

As for the comparison of the performance of different classifier models on this dataset,
Table 3 shows that the evaluation index results of the proposed method are higher than
those of the traditional LR and SVM [1] methods, which indicates that the method in this
paper has better performance than the traditional method in the classification of abnormal
electricity consumption. The usability of this model in the field of power consumption
detection is also shown. By comparing it with the CNN [30], LSTM [31], and TCN [32]
deep learning models, it can be seen that the method in this paper has higher accuracy and
has advantages in terms of non-technical loss. Compared with general machine learning
methods, the proposed model has better prediction performance.

Table 3. Comparison of experimental results under different classifiers.

Classifier ACC AUC

LR 0.582 0.167
SVM [1] 0.534 0.351

CNN [30] 0.823 0.860
LSTM [31] 0.693 0.824
TCN [32] 0.825 0.836

FRL 0.882 0.879

In addition, the detection time is also an important indicator for measuring its perfor-
mance. Results of the comparison between the proposed method and other methods in
terms of abnormal detection time are shown in Figure 5. As can be seen in the Figure, as
the number of users increases, the detection time increases; however, the proposed method
has the shortest detection time as compared to other methods. Due to the strong feature
aggregation ability of the proposed method, the detection time can be shortened.

Figure 5. Comparison of detection times of different methods.

Based on the experiments above, we find that the proposed method has higher ACC
and AUC performance on the same dataset as compared to existing methods, which
indicates that the proposed method has higher accuracy when dealing with the problem of
power anomaly data detection. In terms of the parameter analysis of the proposed method,
we set different number of iterations and batch_sizes. The results show that our method
had a significant increase in performance as the number of iterations increased, which
indicates the reliability of our method. At the same time, when we analyzed the parameters
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of the deep learning network, the results show that the proposed enhanced deep neural
network had better nonlinear feature extraction ability. When the LR and SVM methods
were compared, our method had a large improvement in data prediction accuracy. When
comparing the CNN, LSTM, and TCN deep neural network methods, the proposed method
had a small improvement in performance, which was due to the better ability of the deep
neural network to learn data features. However, deep neural network methods require a
large amount of training data to obtain more accurate prediction results. Our method is
less dependent on training data as it predicts the state in the next moment. Finally, when
analyzing the algorithm’s efficiency, the proposed method can detect data anomalies fastest
when facing different numbers of users. Therefore, the proposed method has high stability
and reliability in power applications.

5. Conclusions

This paper proposed a smart meter data abnormal detection model based on DRL.
In this method, the meter data feature was regarded as a state st, and the meter data
feature label was regarded as an action at. The method no longer needed to enter the meter
data feature st+1, but rather only the electricity meter at+1 data. Meanwhile, this study
used the fuzzy c-means method to predict the st+1, which improved the computational
accuracy of the Deep Reinforcement Learning model. The experimental results showed
that the proposed method can effectively improve the ACC and AUC performance of
anomaly detection as compared with some recent studies using the same dataset. Further-
more, the results showed that our method requires the least amount of time to identify
unknown attacks.

Author Contributions: Conceptualization, S.S. and C.L.; methodology, C.L.; validation, Y.Z., H.H.
and J.W.; formal analysis, Y.Z.; investigation, S.S.; resources, H.H.; data curation, J.W.; writing—
original draft preparation, S.S.; writing—review and editing, J.W.; visualization, S.X.; supervision,
J.W.; project administration, S.X.; funding acquisition, S.X. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Technology Project of State Grid Tianjin Electric Power
Company (KJ22-1-47).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this paper will be made available on request via
the corresponding author’s email with appropriate justification.

Acknowledgments: The authors acknowledge the anonymous reviewers for their valuable comments
and suggestions to improve the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Suthaharan, S. Machine Learning Models and Algorithms for Big Data Classification; Integrated Series in Information Systems;

Springer: New York, NY, USA, 2016; Volume 36, pp. 1–12.
2. Wiering, M.A.; Van Otterlo, M. Reinforcement learning. Adapt. Learn. Optim. 2012, 12, 729.
3. Mousavi, S.S.; Schukat, M.; Howley, E. Deep reinforcement learning: An overview. In Proceedings of the SAI Intelligent Systems

Conference, London, UK, 21–22 September 2016; pp. 426–440.
4. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal

Process. Mag. 2017, 34, 26–38. [CrossRef]
5. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An introduction to deep reinforcement learning. Found.

Trends® Mach. Learn. 2018, 11, 219–354. [CrossRef]
6. Chen, L. Deep Learning and Practice with MindSpore; Springer Nature: Berlin, Germany, 2021.
7. Tan, S.; De, D.; Song, W.Z.; Yang, J.; Das, S.K. Survey of Security Advances in Smart Grid: A Data Driven Approach. IEEE

Commun. Surv. Tutor. 2017, 19, 397–422.
8. Li, F.; Bo, L.; Peng, L. Secure Information Aggregation for Smart Grids Using Homomorphic Encryption. In Proceedings of the 2010

First IEEE International Conference on Smart Grid Communications (SmartGridComm), Gaithersburg, MD, USA, 4–6 October 2010.

http://doi.org/10.1109/MSP.2017.2743240
http://dx.doi.org/10.1561/2200000071


Sensors 2022, 22, 8543 12 of 12

9. Zhang, Y.; Wang, L.; Sun, W.; Robert, I.I.; Alam, M. Distributed Intrusion Detection System in a Multi-Layer Network Architecture
of Smart Grids. IEEE Trans. Smart Grid 2012, 2, 796–808. [CrossRef]

10. Jokar, P.; Arianpoo, N.; Leung, V.C. Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans. Smart
Grid 2015, 7, 216–226. [CrossRef]

11. Costa, B.C.; Alberto, B.L.; Portela, A.M.; Maduro, W.; Eler, E.O. Fraud detection in electric power distribution networks using an
ann-based knowledge-discovery process. Int. J. Artif. Intell. Appl. 2013, 4, 17. [CrossRef]

12. Jamil, F. On the electricity shortage, price and electricity theft nexus. Energy Policy 2013, 54, 267–272. [CrossRef]
13. León, C.; Biscarri, F.; Monedero, I.; Guerrero, J.I.; Biscarri, J.; Millán, R. Variability and trend-based generalized rule induction

model to NTL detection in power companies. IEEE Trans. Power Syst. 2011, 26, 1798–1807. [CrossRef]
14. Fontugne, R.; Tremblay, N.; Borgnat, P.; Flandrin, P.; Esaki, H. Mining anomalous electricity consumption using ensemble

empirical mode decomposition. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 5238–5242.

15. Nagi, J.; Yap, K.S.; Tiong, S.K.; Ahmed, S.K.; Nagi, F. Improving SVM-based nontechnical loss detection in power utility using the
fuzzy inference system. IEEE Trans. Power Deliv. 2011, 26, 1284–1285.

16. Cheng, C.; Zhang, H.; Jing, Z.; Chen, M.; Jiao, L.; Yang, L. Study on the anti-electricity stealing based on outlier algorithm and the
electricity information acquisition system. Power Syst. Prot. Control 2015, 43, 69–74.

17. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement
learning. arXiv 2013, arXiv:1312.5602.

18. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

19. Liu, Q.; Zhai, J.W.; Zhang, Z.Z.; Zhong, S.; Zhou, Q.; Zhang, P.; Xu, J. A survey on deep reinforcement learning. Chin. J. Comput.
2018, 41, 1–27.

20. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 387–395.

21. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

22. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershel-
vam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489.
[CrossRef]

23. Browne, C.B.; Powley, E.; Whitehouse, D.; Lucas, S.M.; Cowling, P.I.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis, S.;
Colton, S. A survey of monte carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 2012, 4, 1–43. [CrossRef]

24. Clifton, J.; Laber, E. Q-learning: Theory and applications. Ann. Rev. Stat. Appl. 2020, 7, 279–301. [CrossRef]
25. Naseer, S.; Saleem, Y.; Khalid, S.; Bashir, M.K.; Han, J.; Iqbal, M.M.; Han, K. Enhanced network anomaly detection based on deep

neural networks. IEEE Access 2018, 6, 48231–48246. [CrossRef]
26. Sethi, K.; Sai Rupesh, E.; Kumar, R.; Bera, P.; Venu Madhav, Y. A context-aware robust intrusion detection system: A reinforcement

learning-based approach. Int. J. Inf. Secur. 2020, 19, 657–678. [CrossRef]
27. Mahfouz, A.M.; Venugopal, D.; Shiva, S.G. Comparative analysis of ML classifiers for network intrusion detection. In Fourth

International Congress on Information and Communication Technology; Springer: Singapore, 2020; pp. 193–207.
28. Jaiswal, R.; Chakravorty, A.; Rong, C. Distributed fog computing architecture for real-time anomaly detection in smart meter data.

In Proceedings of the 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService),
Oxford, UK, 3–6 August 2020; pp. 1–8.

29. Zhang, Y.; Ai, Q.; Wang, H.; Li, Z.; Zhou, X. Energy theft detection in an edge data center using threshold-based abnormality
detector. Int. J. Electr. Power Energy Syst. 2020, 121, 106162. [CrossRef]

30. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional
neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

31. Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 37–45.

32. Lea, C.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal convolutional networks for action segmentation and detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21– 26 July 2017;
pp. 156–165.

http://dx.doi.org/10.1109/TSG.2011.2159818
http://dx.doi.org/10.1109/TSG.2015.2425222
http://dx.doi.org/10.5121/ijaia.2013.4602
http://dx.doi.org/10.1016/j.enpol.2012.11.034
http://dx.doi.org/10.1109/TPWRS.2011.2121350
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1146/annurev-statistics-031219-041220
http://dx.doi.org/10.1109/ACCESS.2018.2863036
http://dx.doi.org/10.1007/s10207-019-00482-7
http://dx.doi.org/10.1016/j.ijepes.2020.106162
http://dx.doi.org/10.1016/j.patcog.2017.10.013

	Introduction
	Related Work
	Smart Grid Security Technologies
	Abnormal Detection Method of Smart Meter Data
	Deep Reinforcement Learning

	Method
	Overview of the Deep Q-Network Model
	Model Design

	Experiments
	Dataset
	Experimental Environment and Configuration
	Evaluation Metrics
	Experimental Results and Analysis
	Comparison with Existing Methods
	Parametric Analysis


	Conclusions
	References

