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Abstract: Cooking at home is a critical survival skill. We propose a new cooking assistance system
in which a user only needs to wear an all-in-one augmented reality (AR) headset without having to
install any external sensors or devices in the kitchen. Utilizing the built-in camera and cutting-edge
computer vision (CV) technology, the user can direct the AR headset to recognize available food
ingredients by simply looking at them. Based on the types of the recognized food ingredients, suitable
recipes are suggested accordingly. A step-by-step video tutorial providing details of the selected recipe
is then displayed with the AR glasses. The user can conveniently interact with the proposed system
using eight kinds of natural hand gestures without needing to touch any devices throughout the
entire cooking process. Compared with the deep learning models ResNet and ResNeXt, experimental
results show that the YOLOv5 achieves lower accuracy for ingredient recognition, but it can locate
and classify multiple ingredients in one shot and make the scanning process easier for users. Twenty
participants test the prototype system and provide feedback via two questionnaires. Based on the
analysis results, 19 of the 20 participants would recommend others to use the proposed system, and
all participants are overall satisfied with the prototype system.
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1. Introduction

Home cooking can be both a healthy hobby and a sustainable activity. Nevertheless,
the traditional cooking experience tends to be tedious and unenjoyable, especially for those
who are unskilled in the kitchen. Using recipes has been the traditional way to teach
and learn how to cook, but this may lead to several practical issues. The first issue is to
find recipes for ingredients you already have in the house. Locating available ingredients
and matching them with the right recipes is not straightforward, but it is an eco-friendly
practice of reducing food waste. Another issue is to read and follow a recipe in the process
of cooking. Switching back and forth between preparing the food and reading the recipe is
neither convenient nor safe.

Fortunately, augmented reality (AR) technology can superimpose a virtual demo video
on an actual kitchen scene so the user can follow a recipe more easily. In addition, computer
vision (CV) technology can sense the actual kitchen environment so that food ingredients in
a refrigerator or cabinet can be detected and recognized automatically. Best of all, both AR
and CV technologies can be integrated in an all-in-one AR headset with a built-in camera
to significantly enhance the cooking experience.

Numerous apps are available to help with cooking by suggesting recipes or providing
detailed instructions using either a tablet or smartphone in kitchen. However, these modern
gadgets can neither perceive the actual environment nor follow the user around the kitchen.
Alternatively, some novel smart kitchens are designed to save time and energy spent
on cooking. Typically, they demand that users install several Internet-connected sensors,
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cameras, projectors, and displays in the kitchen, which makes their deployment challenging
and expensive.

To improve the cooking experience, we propose an AR cooking assistance system that
simply requires the user to put on an all-in-one AR headset called Magic Leap One [1].
As shown in Figure 1, the user can command the built-in camera on the AR headset to
locate and classify food ingredients automatically by merely glancing at them. Accordingly,
corresponding recipes are suggested based on the types of the recognized food ingredients.
Then a step-by-step video tutorial of the chosen recipe is displayed using the AR glasses,
without blocking the real view of the kitchen. The whole process can be controlled by
hand gestures, meaning that users do not need to hold any remote controller or touch
any physical button. The proposed AR cooking system aims to provide users with an
easy-to-use interactive recipe and an easy-to-understand cooking guide through the use of
an AR headset.
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Figure 1. Proposed AR cooking assistance system. (a) Ingredient recognition by a built-in camera on
AR headset, (b) interactive step-by-step demo video controlled by natural hand gestures.

Cooking at home comes with numerous challenges such as classifying food ingredients,
searching for potential recipes, and following the recipes for cooking. The contribution
of this paper is finding the solutions for these issues, implementing the algorithms, and
integrating them in an all-in-one AR headset. The proposed AR cooking assistance system
has the following advantages:

1. Users do not need to install any external devices in the kitchen. All they need is an
all-in-one AR headset that costs about 550 USD.

2. Without holding a smartphone or tablet to aim at a specific food ingredient, the user
can direct the built-in camera on the AR headset to detect and recognize multiple food
ingredients by simply looking at them.

3. No matter where the user moves in the kitchen, the demonstration video is always in
the field of view (FOV) of the user.

4. The demonstration video is superimposed on the real-world scene without blocking
the line of sight of the actual cooking.

5. Without holding any remote controller or touching any physical button, the user can
control the proposed system through non-touch interaction using natural hand gestures.

The remaining parts of the paper are structured in six sections. Section 2 discusses
the state-of-the-art works related to smart kitchen or AR cooking. Section 3 describes the
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methodology and implementation of the proposed AR cooking system. Section 4 explains
the deep learning models for food ingredient detection and recognition. Section 5 presents
the user study of the prototype system. Section 6 discusses the analysis results of users’
questionnaires. Lastly, the conclusions and future works are reported in Section 7.

2. Related Work

Plenty of research works and projects have been proposed, such as a smart kitchen
based on the Internet of Things (IoT) [2], user centric smart kitchen [3], AREasyCooking [4],
and CounterIntelligence [5]. Projects regarding smart kitchens typically require the use of a
large number of sensors to detect kitchen appliances, ingredients, and other objects that are
necessary for cooking [6]. These sensors include temperature sensors, humidity sensors,
IR flame sensors, and passive infrared sensors. All these sensors are usually connected to
Internet so the smart kitchen can be controlled with a user’s smartphone for easier access.
Similarly, other IoT-based smart kitchens have been proposed to ensure safety through the
detection of liquefied petroleum gas [7,8] or CO2 [9] leaks, as well as fire monitoring [10].
Nevertheless, the requirement of numerous Internet-connected sensors means that the
IoT-based smart kitchen has not become very popular.

The goal of a smart kitchen is to take away the stress of cooking [11]. A user-centric
smart kitchen [3] is a support cooking system that consists of three modules: tracking food,
identifying food materials, and recognizing cooking actions. Three optical cameras are
used to identify the food materials while a thermal camera is used to monitor the stove’s
heating condition. Besides recognizing the environment, these sensors are also used to
recognize cooking actions. Both materials and cooking actions are analyzed to determine
the current cooking status. The end of the cooking task is determined by recognizing the
final cooking action.

Another research direction for cooking assistance is AR. AREasyCooking [4] is an
application that uses AR to help people to cook by utilizing eye and voice controls. The first
process is to recognize an ingredient based on its appearance using a neural network model
or scan the barcode on a canned food. Then, recipes are selected from a database based on
the detected ingredients. The recipes are in a text format and can be supplemented with
images or videos. Voice control and eye control are used to interact with the video aids.
Some keywords are used to trigger certain actions through voice recognition.

In addition, Hasada et al. [12] focus on three types of cookware and compare three AR
display methods: images with text, video, and 3D animation, using Microsoft HoloLens [13].
Zhai et al. [14] identify five major aspects with which cooking novices need assistance: food
preparation, cooking method, ingredient usage, time control, and process understanding.
Five corresponding auxiliary guidance tools are displayed using the HoloLens to assist
unskilled users in cooking. Alternatively, Reisinho et al. [15] present a serious hybrid board
game to enhance children’s cooking skills by simulating the cooking processes through
AR. Ricci et al. [16] design an AR-enabled kitchen machine to guide users in the cooking
activity using the HoloLens 2. Lastly, Styliaras [17] reviews the use of AR in food analysis
and promotion through products and orders. Similarly, Chai et al. [18] review food-related
applications and research works using AR/MR in the food industry.

Smart kitchens and AR cooking are two different ways to make cooking easier and
more effective, but these ideas can also be integrated to build a more complete system.
CounterIntelligence [5] is an AR smart kitchen combining features of an AR cooking
environment with those of a smart kitchen. AR features are applied via the use of projectors,
while the smart kitchen features are implemented through the use of LEDs and infrared
thermometers. Contents inside a refrigerator are projected outside, and an interactive
step-by-step recipe is projected onto kitchen cabinets. LEDs are deployed in order to find
cooking equipment more easily, and the infrared thermometers are used to display the
temperature of running water in a sink. Alternatively, Balaji et al. [19] propose a smart
kitchen wardrobe that can monitor and detect grocery products inside. Samsung focuses on
the design of smart refrigerators, called food AI [20], combining AI and image recognition.
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The smart refrigerator keeps track of the items inside and their expiration dates, thus
helping users to solve the problem of waste food.

Table 1 compares the pros and cons of the proposed system and nine other related
works. Compared to other smart kitchens or AR cooking methods, the proposed system
requires only a pair of all-in-one AR glasses, called Magic Leap One [1], without the need
to install any external sensors or devices in the kitchen. In addition, the user can direct the
built-in camera on the AR headset to locate and classify food ingredients by just looking
at them. Then, suitable recipes are suggested based on the types of the recognized food
ingredients. Subsequently, the AR glasses display a step-by-step video that demonstrates
each cooking step in the chosen recipe. No matter where the user moves in the kitchen, the
demonstration video is always in the field of view of the user without blocking the real
kitchen scene. Best of all, the whole process can be controlled by natural hand gestures so
that users can cook without needing to hold any device or controller in their hands. By
using the proposed non-touch interactive system, users can make sure both hands are clean
during the whole process of cooking.

Table 1. Pros and cons of the proposed research and nine other related works.

Project Type Hardware Pros Cons

User-Centric Smart
Kitchen

[3]
Smart Kitchen Three optical cameras;

one thermal camera Accuracy recognition
Working area is small;
items have to stay in
the camera’s FOV

Smart Kitchen using
IoT
[7]

Smart Kitchen
Lots of sensors for gas, flame,

weight, humidity,
temperatore; IoT

Gas leakage detection
Need to install many
Internet-connected
sensors in kitchen

Real-Time Kitchen
Monitoring

[8]
Smart Kitchen

Many sensors for gas,
humidity, temperature;

smartphone; Arduino; IoT

Control switches, fans,
and lights over Internet

Need to install many
Internet-connected
sensors in kitchen

IoT based Kitchen
[10] Smart Kitchen

Lots of sensors for gas,
temperatore, PIR;
Smartphone; IoT

Fire detection;
person detection

Need to install many
Internet-connected
sensors in kitchen

Smart Kitchen
Wardrobe [19] Smart Kitchen Smartphone;

Arduino; IoT

Monitoring the
groceries in the

cupboard

Need a sensor for each
container

Counter
Intelligence

[5]

AR and
Smart Kitchen

Camera, projector;
infrared thermometer;

LED on handles and faucets

Information projected
on physical surface;

LED embedded items

LED items can be easy
to miss if not in direct
line of sight

AREasyCooking
[4] AR Smartphone;

tablet

Voice control;
eye control;

barcode reader

Lighting affects eye
controls; Noise affects
voice control

Interactive MR
Cooking Assistant

[14]
AR HoloLens

Timeline; timer;
demo video;

seasoning tips;
tick marks

Lack of ingredient
recognition and
corresponding recipe
suggestion

AR Kitchen Machine
[16] AR HoloLens 2;

Tablet
Humanoid avatar
with animations

AR markers required
for tracking

Proposed Research AR
Magic Leap One

(an all-in-one AR headset, no
other device required)

Ingredient recognition;
recipe

recommendation;
step-by-step guide

video; hand gesture
interaction

Headset overheating;
users cannot wear
prescription glasses
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3. Implementation Methods

The Magic Leap One is the target AR headset for the proposed cooking assistance
system. A PC with Windows 10 is used as the development platform of the proposed AR
cooking application. The software engine used to create the proposed application is the
Unity 2020.1.6f1 because of its cross-platform compatibility with the Magic Leap One. The
Lumin SDK [1] is adopted to connect the Unity and the Magic Leap One to create an AR
interface based on hand gesture recognition. From the user’s perspective, the proposed
cooking assistance system requires only a pair of all-in-one AR glasses without the need to
install any external sensors or devices in the kitchen. The total cost of the solution is about
the price of the Magic Leap One, which has been reduced to 550 USD in 2022.

As shown in Figure 2, the methodology of the proposed AR cooking system can be
fundamentally divided into three main phases: food ingredient scanning, recipe recom-
mendation, and a step-by-step cooking video tutorial. In the first phase, a user can simply
glance over food ingredients on the kitchen table or in the refrigerator, and the built-in
camera on the AR headset can detect and recognize them automatically. In the second
phase, a list of best-fit recipes is provided and sorted according to the proportion of essential
food ingredients that are available. Then, the user can choose a recipe from the list. In
the third phase, the AR glasses are utilized to display a step-by-step recipe with a video
tutorial on how to perform each cooking step. To guarantee that the user’s hands are clean
throughout the cooking process, all three phases of the proposed AR cooking system can
be controlled via the user’s natural hand gestures in real-time, without the need to hold a
controller in their hand.
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Figure 2. Three main phases of the proposed AR cooking system: food ingredient scanning, recipe
recommendation, and step-by-step cooking video tutorial. The whole process can be controlled via
hand gestures.

Figure 3 shows the complete flowchart of the proposed AR cooking system. At the
beginning, users can choose between two options on the title screen via hand gestures. The
first option is for users that already have a recipe in mind. In this case, a list of all available
recipes is provided, and the user can directly choose a recipe from the complete recipe list.
Another option is for users who want to cook using food ingredients available in the house.
In this case, the user needs to scan available food ingredients on the kitchen table or in the
fridge using CV technology. The front view of the user is captured by the built-in camera
on the AR headset and analyzed by a deep learning approach to locate and classify food
ingredients automatically. The training and recognition of the deep learning models are
thoroughly explained in Section 4. The scan process can be repeated until sufficient food
ingredients are recognized. In the next phase, the proposed system suggests a list of recipes
according to the types of the recognized food ingredients.
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Figure 3. Flowchart of the proposed AR cooking assistance system.

Once sufficient food ingredients are detected and recognized, the user is provided
with a list of suggested recipes based on the recognized ingredients. The list consists of all
recipes with at least one required main ingredient detected and is sorted according to the
proportion that is computed as the number of the available essential ingredients divided
by the number of the required ingredients:

Proportion =
(Total main ingredients recognized) ∩ (Total main ingredients required)

Total main ingredients required
∗ 100%
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Figure 4 provides an example in the case of only eggs being detected. Minor ingredi-
ents, such as flour, oil, and seasoning, are assumed to be always available. The proportion
of each recipe is computed and shown on the right side of the recipe name. Using the cake
recipe as an example, eggs are the only main ingredients needed, hence representing a
proportion of 100%. On the other hand, the main ingredients for the omelette recipe are
eggs, green onions, and spam—a proportion of 33%. Then, the user can choose a recipe
from the list by hand gestures. The hand gesture is different for each recipe, so an icon of
the corresponding gesture is displayed on the left side of the recipe name.
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that are available.

After selecting a recipe, the user is offered an overall recipe screen with a picture of
the finished product and the detailed instructions, as shown in Figure 5. With the whole
picture in mind, the user can then start practicing the recipe by following the step-by-step
procedures. In each cooking step, a video tutorial is provided to help the user prepare
meals. As shown in Figure 6, a series of steps is displayed on top of the AR headset’s
field of view with a red highlight on the current working step. A corresponding video clip
demonstrates how to carry out the cooking tasks in each step. The video window’s default
location is in the upper middle of the AR headset’s field of view, which always follows the
user’s head movements. The AR headset automatically blends virtual foreground and real
background images together so the video window is semi-transparent on the foreground,
and the user can see a little bit of the real scene beneath. Optionally, the user can choose if
they want to move the video window to any other designated position to prevent the video
window from blocking the real view of the kitchen scene behind it. At all times, the user
can decide when to move on to the next step of the recipe via hand gestures.

Hands are usually busy and must remain clean in the process of cooking. Instead of
using a touch screen or holding a controller in the hand, bare-hand gestures are recognized
to control the cooking tutorial and the video playback in the proposed system. An API
provided by the Magic Leap One, called Lumin SDK [1], is utilized to classify hand gestures
on images captured by the built-in camera on the AR headset. It supports eight discrete
hand gestures from either hand, including “C-Gesture”, “L-Gesture”, “Open Hand-Gesture”,

“Finger Up-Gesture”, “Fist-Gesture”, “OK-Gesture”, “Pinch-Gesture”, and “Thumbs Up-Gesture”.
In addition, it also includes a state where no hand gesture is recognized. As shown in
Table 2, the “Open Hand-Gesture” is used to lock the recipe window on any designated corner
to prevent it from blocking the view of the real environment. The “OK-Gesture” is used to
trigger the scanning of food ingredients. It is also used in case the user wants to move on to
the next step of the recipe. In contrast, the “L-Gesture” is used if the user wants to move back
to the previous step of the recipe. The “Pinch-Gesture” can be used to click on buttons or to
select a recipe from the recipe list. In addition, it can be used to move the step-by-step recipe
until it is locked into the right place. The “Fist-Gesture” stops a video from playing, and
the “Finger Up-Gesture” plays the corresponding video along with the recipe. The “Thumbs
Up-Gesture” can be used to take a picture while in the scanning screen for food ingredient
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recognition and can be used in the title screen to select the button to open the recipe list. It
is also used in the recipe list menu to start a step-by-step recipe. Finally, the “C-Gesture” is
reserved to exit the system after the cooking is finished. By using these hand gestures, the
proposed AR cooking guide is a fully non-touch interactive system.
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Table 2. Eight hand gestures and their functions.

Gesture Function
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4. Deep Learning Model for Food Ingredient Recognition

With the advance of CV technology, many deep learning models based on the CNN
(Convolutional Neural Network) can be utilized to recognize food ingredients in an image.
Usually, the models assume that the target object is the only subject located at the center of
the image. To detect and recognize numerous objects with multiple categories in an image,
it is necessary to apply models to the image at multiple locations and scales. A location
and scale with a high prediction score are considered a detection. This repetitive process
makes them inefficient and inconvenient for food ingredient scanning in our application.

On the other hand, the deep learning model called YOLO (You Only Look Once) [21]
is an object detection algorithm that applies a single CNN to the entire image. It divides
the image into regions and predicts bounding boxes and probabilities for each region. The
YOLO model returns not only prediction scores for each category but also a few bounding
boxes and their confidence scores. The merits of the YOLO model are the real-time speed
and the capability to locate numerous objects and classify multiple categories at the same
time. For this reason, the proposed AR cooking system adopts the latest version of the
YOLO, called YOLOv5 [22].

The YOLO models have been incrementally improved over earlier versions; thus,
the network architecture of YOLOv5 is highly complicated. As shown in Figure 7, it can
be generally divided into three stages: the backbone, the neck, and the head. First, the
backbone of the YOLOv5 incorporates the cross-stage partial network (CSPNet) [23] into
the Darknet for feature extraction. The focus layer is designed to reduce layers, parameters,
and memory, as well as to increase the speed of the forward and backward propagation.
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The spatial pyramid pooling layer is used to remove the fixed size constraint of the network.
Second, the neck of YOLOv5 adopts the path aggregation network (PANet) [24] to boost
information flow for feature fusion. It can increase the location accuracy of the detected
object by utilizing accurate localization signals in lower layers. Third, the head of YOLOv5
generates three different sizes of feature maps to predict classes and bounding boxes in
multiple scales.
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neck for feature fusion, and the head for object prediction.

In the training stage, we rely on a food ingredient dataset, called Q-100 [25], consisting
of 905 images which are divided into 3 parts: training, validation, and testing. The
training part comprises 631 images (70%), the validation part comprises 179 images (20%),
and the testing part comprises 95 images (10%). The dataset comes with an average of
3.8 annotations per image, with a total of 3408 annotations. As shown in Figure 8, there are
11 classes in this dataset including sprout, beef, chicken, egg, pork, garlic, onion, kimchi,
onion, potato, and spam. The training process is performed using Python on Jupyter.

In the recognition stage, the constructed network with pre-trained weights can be used
directly for food ingredient detection and recognition. The DNN module in the OpenCV
supports YOLOv5. However, Unity only supports scripts written in C# and cannot natively
run the OpenCV code in C and C++. A third-party asset, called OpenCV for Unity [26], is
employed to integrate OpenCV with Unity so the recognition of food ingredients can be
carried out based on the pre-trained model.
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Figure 8. Training dataset containing 11 food ingredients.

The YOLOv5 model is trained on the Q-100 food ingredient dataset for 100 epochs,
and it takes 9.5 h to complete. The training time can be shortened significantly if a powerful
GPU is used instead of only a CPU. Figure 9 demonstrates the results of the training and
validation of the YOLOv5 on the Q-100 food ingredient dataset. The upper row shows the
results of training, while the lower row shows the results of validation. The horizontal
axis of each subgraph represents the number of epochs. The vertical axis of each subgraph
represents the box_loss (error of location), obj_loss (error of detection), cls_loss (error of
classification), precision, recall, and mAP (mean average precision), respectively.

precision = True Positives/(True Positives + False Positives)

recall = True Positives/(True Positives + False Negatives)

mAP =
1
n ∑n

k=1 APk , where APk = average precision of class k

F-score = 2*precision*recall/(precision+recall)
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A true positive is a correct detection made by the model, a false positive is a detection
made by the model that turned out to be incorrect, and a false negative is when something is
not detected or is missed. A model is good if it has high precision and high recall. A trade-off
between precision and recall is determined heuristically in the proposed application.
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Figure 10 shows the confusion matrix of the recognition over 11 types of food ingredi-
ents. We can see that eggs can be detected with the highest accuracy of 96%. Most other
food ingredients can be recognized with an accuracy well above 60%, except for chicken,
pork, and beef. These meat ingredients usually come in different shapes and a variety
of packages, thus resulting in lower accuracy. There is a trade-off between precision and
recall. To more precisely evaluate accuracy, an F-score is computed as the harmonic mean of
precision and recall. Overall, the YOLOv5 achieves an F-score of 0.61. To improve the accu-
racy of the recognition, we have tried other deep learning models such as ResNet [27] and
ResNeXt [28]. Table 3 compares the performance, speed, delay, and capability of these deep
learning models. Generally, ResNet and ResNeXt models improve the accuracy with an
F-score of 0.78. However, they can only classify one ingredient at a time, and the ingredient
is expected to be the only subject in the image. It is troublesome and time-consuming for
users to aim at each food ingredient and classify them one after another. On the other hand,
YOLOv5 can detect and recognize multiple food ingredients at the same time. To make
the food scanning process more user-friendly, our AR cooking system adopts YOLOv5 to
locate and classify food ingredients efficiently.
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Table 3. Performance, speed, and capability of three deep learning models.

Method Precision Recall F-Score Delay (ms) Capability

ResNet [27] 0.76 0.81 0.78 32
Can only classify one ingredient at a time

ResNeXt [28] 0.75 0.81 0.78 104

YOLOv5 [22] 0.59 0.64 0.61 125 Can locate and classify multiple ingredients
at the same time

For simplicity, the prototype AR cooking system currently focuses on vegetarian
recipes. Figure 11 shows some results of the detection and recognition of food ingredients
using YOLOv5. It can be seen that YOLOv5 can locate and classify multiple ingredients
most of the time. However, there are still times when some ingredients are not detected,
such as the partially occluded onions, and some ingredients are classified wrongly, such as
the confusion between a potato and an egg.
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5. Case Study

Twenty people participated in the testing of the prototype system and gave feedback
regarding how easy the system was to use via a usability questionnaire (UQ as shown in
Appendix B). Of these 20 participants, 12 were male and 8 were female. Their technical
skills and backgrounds were recorded via another background questionnaire (BQ as shown
in Appendix A). Before real cooking, participants were given a preparation time of 10 min
to become familiar with the Magic Leap One headset, the real kitchen, and the cooking
equipment. They were given a printout (Table 2) of eight hand gestures that can be
recognized, as well as their functions, so they did not need to memorize all the hand
gestures. Afterwards, the participants were asked to wear the AR headset with the proposed
AR cooking system installed and proceeded to use it for cooking assistance to prepare
meals. To ensure fairness, everyone was asked to follow the same recipe for white cake.
Participants were given ingredients to cook, and as an incentive, the finished products
(cakes) were theirs to keep. Due to the limited number of AR devices, one participant at a
time used the proposed AR cooking system, and it took about an hour for the cooking task
to be completed.

Before participants used the proposed system (usually, while they waited for their
turn), they were asked to fill out a background questionnaire (BQ as shown in Appendix A).
This questionnaire was used to gauge how proficient they were in cooking and their
experience with AR. After they completed the cooking task using the proposed system,
they were requested to fill out a usability questionnaire (UQ as shown in Appendix B). This
questionnaire was used to measure the ease of use of the proposed system. All questions in
both questionnaires were designed according to the five-point Likert scale, which contains
five response options (strongly disagree, disagree, neutral, agree, strongly agree). In total,
each participant filled out two questionnaires with optional open feedbacks and suggestions
on how the system can be improved.

After the results from both background questionnaires (BQ) and usability question-
naires (UQ) were collected, we made statistical charts in order to get a more concrete idea of
the participant’s answers. By assigning five rating scores (1~5) to the five response options
(strongly disagree, disagree, neutral, agree, strongly agree) in the five-point Likert scale,
Figure 12 shows the mean and confidence interval (alpha = 0.05) for each question in the
background questionnaire. Half of the participants either agreed or strongly agreed to
having an extensive knowledge of cooking (BQ1), and more than half of the participants
cooked often (BQ2). The majority of the participants were confident in following a simple
recipe, while only one participant disagreed with this (BQ4). We can also see that more than
half of the participants enjoyed homemade meals more than take-out food (BQ5). However,
half of participants bought takeout more than they made homemade food (BQ9).
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Figure 12. Background questionnaire results: mean and confidence interval (alpha = 0.05).

A correlation analysis was conducted over the questions in the background question-
naire. A correlation coefficient (a value between −1 and 1) represents how strongly two
variables are related to each other. As a correlation coefficient approaches 1, it indicates that
there is a positive correlation. This implies that as one variable increases, so does the other.
The opposite holds true as well—as a correlation coefficient approaches −1, it indicates
that there is a negative correlation, which implies that as one variable increases, the other
decreases. The most significant positively correlations (0.98) were for BQ5, “I prefer eating
homemade food over eating takeout”, and BQ6, “I enjoy cooking”. This suggests that when one
enjoys cooking more, one prefers to eat more homemade food than take-out food.

After assigning five rating scores (1~5) to the five response options (strongly disagree,
disagree, neutral, agree, strongly agree) in the five-point Likert scale, Figure 13 shows the
mean and confidence interval (alpha = 0.05) for each question in the usability questionnaire.
Most (19 of the 20) participants agreed or strongly agreed that the proposed system was
easy to use (UQ1), while 18 of the participants agreed or strongly agreed that it was easy
to learn how to use the system (UQ3). In addition, the majority of participants agreed or
strongly agreed that they would use the system again (UQ2). Most of the participants did
not feel any discomfort or awkwardness when using the system (UQ9). All 20 participants
were satisfied with the end product of the white cake (UQ12), and they were also satisfied
with the proposed AR cooking system (UQ13). Meanwhile, 19 participants would definitely
recommend the system to others (UQ11).
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A correlation analysis was conducted with the questions in the usability questionnaire.
This indicated that UQ11, “I would recommend the system to others”, and UQ12, “I am satisfied
with the end product”, had a perfect positive correlation coefficient. This suggests that if a
user was satisfied with what they had cooked, they were more willing to recommend the
system to others. In addition, UQ12, “I am satisfied with the end product”, and UQ13, “Overall,
I am satisfied with the system”, had a perfect positive correlation. This implies that if a user
was satisfied with what they had cooked, they were satisfied with the system as well.

Finally, we also analyzed the correlation between participants’ cooking background
and their experience with using the proposed AR cooking system. The most significant
correlation coefficient (0.97) was for BQ4 “I am confident in following a simple recipe” and
UQ2 “I would use the system again”. This suggests that the more confident the user was
in following a recipe, the higher the chance they would like to use the proposed system
again, mainly because the proposed system is a step-by-step recipe guide. However, if they
did not want to use the proposed system again, that means they might have developed a
negative view of the cooking guide system, and hence their confidence in following a recipe
may be reduced. On the other hand, the most significant negative correlation coefficient
(-0.94) was for BQ6, “I enjoy cooking”, and UQ5, “I needed prior knowledge in order to use
the system”. If no prior knowledge is required to use the system, this means the system is
easy to use, and if the system is easy to use, the user will enjoy cooking more. This matches
the goal of the proposed system to make people enjoy cooking. The opposite is also true: if
one needs prior knowledge in order to use the system, this means the system is hard to use,
and thus the user will not enjoy cooking.

6. Discussion

Instead of dining out or buying ready-to-eat food, cooking your own meal is cheaper
and healthier. Home-cooked meals gives you greater control over the ingredients and calories
in your meals, thus improving weight management, fulfilling personal needs, and reducing
illness risk. According to the feedbacks from the received questionnaires, we confirm that
the proposed AR cooking guide system is feasible and practical for cooking assistance. Most
participants had no trouble learning and using the proposed system. In total, 19 of the
20 participants would recommend the system to others to use (UQ11). All participants were
satisfied with their end products from their baking (UQ12), and all participants were overall
satisfied with the system (UQ13) (either strongly agreeing or agreeing).

Regarding the optional feedbacks, most participants stated that once they were used to
the hand gestures, the system gradually became easier to use as time goes on. In addition,
the demonstration video for each cooking step was helpful because worded steps can be
a bit vague. Several participants believe that making the whole process non-touch is the
best feature because having clean hands is an important part of cooking. A non-touch
interactive system assures users that their hands touch only the food ingredients, and they
can cook while not having to touch anything else. Some participants express that being
able to lock the video window in a designated position is another handy feature. This way,
it does not interfere with the field of view of the real scene behind, and the user can look
back and forth between the virtual video tutorial and their physical working area in order
to cook efficiently. In particular, two participants reported that they prefered to be able to
minimize the video window in certain cooking steps.

Regarding the optional suggestions for improvement, some participants felt that the
hand gesture recognition was too sensitive. Sometimes, the system recognized hand ges-
tures accidentally when the participant was actually doing something else, which resulted
in unnecessary hassles. In addition, since some hand gestures look alike, the recognition
system occasionally misidentified a hand gesture as something else and executed the wrong
function. The gesture recognition needs to be more intuitive and less sensitive. A careful
tuning of the thresholds could be helpful to achieve a better trade-off between precision
and recall. Moreover, instead of recognizing static hand gestures solely based on an im-
age, recognizing dynamic hand actions based on a short-term video has the potential to
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reduce confusion and should be more robust and reliable. Furthermore, two participants
suggested having the system recognize both hands instead of one hand, which can lead to
more combinations of gestures that are essential for cooking action recognition. Besides,
a participant also suggested some recipe steps could be improved to sound less vague,
especially in terms of measurements. A participant also mentioned that “softer colors”
would be a better choice to improve the visualization of the interface.

In addition to the 10 min preparation time, participants took about 50 min to follow all
the steps, mix the ingredients, and bake the cake in the oven, all assisted by the proposed
AR cooking system. It is interesting to note that one hour is normally the time it takes for an
experienced baker to bake a cake. Even if less than half of the participants had experience
of baking a cake (BQ8), the proposed AR cooking system was useful and effective in
helping unskilled people to complete the cooking task within the expected time limit. All
participants were successful in the baking of their cakes. No destructive mistakes occurred
during our experiments. Even if a few participants needed to restart the demo video in
some cooking steps due to misunderstandings of the procedures, all participants were
satisfied with the cake they made.

One problem encountered in our experiment is that users could not wear prescription
glasses with the original Magic Leap One. According to the website of Magic Leap, a
prescription insert is available, but it is custom-made for each user and requires additional
purchase. Another problem is the overheating of the AR headset with prolonged use, which
can be felt by the user wearing the headset and possibly causes dizziness for some people.

7. Conclusions

We propose a new prototype AR system for cooking assistance in which a user only
needs a pair of all-in-one AR glasses without having to install any external devices or
sensors in the kitchen. We try to overcome some common troubles in cooking, implement
the algorithms, and integrate them in an all-in-one AR headset. The user can direct
the AR headset’s built-in camera to detect and recognize food ingredients by simply
glancing over them in the refrigerator or on the kitchen table. Accordingly, the types of the
recognized food ingredients are used to match appropriate recipes. Then, the proposed
system provides and displays interactive demo videos on how to carry out each cooking
step in the chosen recipe. All processes can be controlled via the user’s natural hand
gestures in real-time, without the need to hold a controller in the hand. Compared with
the deep learning models ResNet and ResNeXt, YOLOv5 achieves lower accuracy for
ingredient recognition, but it can locate and classify multiple ingredients at the same time
and thus greatly simplify the scanning process for users. Twenty people participated in
the testing of the prototype system, provided feedback via questionnaires, and suggested
improvements. All participants were overall satisfied with the prototype system, and 19 of
the 20 participants would recommend others to use it; hence, the usability of the proposed
AR cooking assistance system is confirmed.

The prototype could be extended in the future by including more interactive recipes.
The list of suggested recipes could also provide more information such as nutrition facts
and calorie counts. In addition, implementing a scalable database to manage the addition
of recipes for better tracking and storing should make the system more complete. Moreover,
the more accurate recognition of a wider variety of food ingredients is another potential
area for future research. Finally, the system could be enhanced by recognizing dynamic
hand gestures, monitoring cooking actions, detecting procedural mistakes, and guiding
users to prevent or recover from potential failure.
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Appendix A

Table A1. Participant Background Questionnaire.

Strongly
Disagree Disagree

Neither
Agree nor
Disagree

Agree Strongly
Agree

1. I have extensive knowledge of cooking

2. I cook often

3. I have familiarity with AR devices

4. I am confident in following a simple recipe

5. I prefer eating homemade food over
eating takeout

6. I enjoy cooking

7. When I cook, it’s usually with the aid
of a recipe

8. I have experience baking a cake

9. I buy takeout more than I make
homemade food

(Optional) Gender: _________________.

Appendix B

Table A2. Participant Usability Questionnaire.

Strongly
Disagree Disagree

Neither
Agree nor
Disagree

Agree Strongly
Agree

1. The system was easy to use

2. I would use the system again

3. It was easy to learn how to use the system

4. I was able to use the system without
any difficulties

5. I needed prior knowledge in order to use
the system

6. I was able to carry out system functions
without difficulties or errors

7. It was easy for me to remember the
hand commands

8. I found the system awkward to use

9. I experienced discomfort
(nausea/headaches/etc.) when using
the system

10. I like the user interface

11. I would recommend the system to others

12. I am satisfied with the end product

13. Overall, I am satisfied with the system
(Optional) Any suggestions to improve the system: ____________________________________.
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