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Abstract: Wearable technologies and digital phenotyping foster unique opportunities for designing
novel intelligent electronic services that can address various well-being issues in patients with
mental disorders (i.e., schizophrenia and bipolar disorder), thus having the potential to revolutionize
psychiatry and its clinical practice. In this paper, we present e-Prevention, an innovative integrated
system for medical support that facilitates effective monitoring and relapse prevention in patients with
mental disorders. The technologies offered through e-Prevention include: (i) long-term continuous
recording of biometric and behavioral indices through a smartwatch; (ii) video recordings of patients
while being interviewed by a clinician, using a tablet; (iii) automatic and systematic storage of these
data in a dedicated Cloud server and; (iv) the ability of relapse detection and prediction. This paper
focuses on the description of the e-Prevention system and the methodologies developed for the
identification of feature representations that correlate with and can predict psychopathology and
relapses in patients with mental disorders. Specifically, we tackle the problem of relapse detection
and prediction using Machine and Deep Learning techniques on all collected data. The results are
promising, indicating that such predictions could be made and leading eventually to the prediction
of psychopathology and the prevention of relapses.

Keywords: anomaly detection; autoencoder architectures; biometric indexes; deep learning;
digital phenotyping; facial expressions; psychotic disorders; relapse detection; spontaneous speech;
wearable technologies

1. Introduction

Digital phenotyping [1] is a nascent exciting interdisciplinary field motivated by
the broad adoption of wearable products (i.e., smartwatches and fitness trackers) in our
daily lives. The term encompasses the quantification of human behavior and traits (the
“phenotype”) in situ by utilizing the sensors included in these devices. Such wearables
collect multimodal data, usually using accelerometers, gyroscopes and heart rate monitors
among others, to measure the user’s physical activity and kinetic activity, such as micro-
movements and autonomic function [2–4].

Sensors 2022, 22, 7544. https://doi.org/10.3390/s22197544 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1922-9310
https://orcid.org/0000-0002-2042-245X
https://orcid.org/0000-0002-1714-3943
https://orcid.org/0000-0002-3911-561X
https://orcid.org/0000-0003-0534-2707
https://orcid.org/0000-0002-4510-5522
https://orcid.org/0000-0003-2860-399X
https://orcid.org/0000-0002-8503-5784
https://orcid.org/0000-0002-9967-2979
https://doi.org/10.3390/s22197544
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197544?type=check_update&version=2


Sensors 2022, 22, 7544 2 of 38

This abundance of sensory data has kickstarted the development of several applications
focused on general user and health monitoring, as well as other predictive analytic tasks,
e.g., emotional well-being [5–8], sleep tracking [9,10], eating [11], agitation [12] and physical
activity detection [13,14]. Many works have also focused on identifying behavioral and bio-
metric markers, which can be extracted from such data and provide insights into disciplines
such as general medicine [15] or sports [16], examining various well-being problems [17–19].
The success of these applications has also increased the interest in psychological health
for human wellness. Increasing evidence shows that such markers could be introduced
into clinical psychiatry [20] by employing them to examine depression [21–23], bipolar
disorder [24], or schizophrenia [25]. Especially for people with mental disorders, sensing
biometric markers of interest unobtrusively through passive, continuous and long-term
monitoring could prove effective in improving wellness and the course of the disorder.

Psychosis is a spectrum of conditions triggered by various etiopathogenic mechanisms
that affect the Central Nervous System (CNS), resulting in common symptoms [26]. Over
the last 60 years, various studies of such psychiatric conditions have been conducted in
neurobiology and neurophysiology; however, their causes still remain unknown. The
consequence of this is that no effective biomarkers for either diagnosis or prediction
of the course of psychotic symptomatology have yet been discovered; thus, now the
utilization of such markers for timely diagnosis and prevention of psychotic relapses
constitutes one of the most prominent study areas in psychiatry [27–29]. Actually, early
identification of worsening symptoms in the early stages of the psychotic process, and early
prevention of relapses have been found to contribute significantly to better outcomes of
the disorder [30–32] and in preventing the catastrophic effects that relapses often have on
patients’ lives [33]. Given that psychosis is evolving continuously and relapse is a biological
process that develops over time [34–36], it would be reasonable to anticipate variations
in the behavior of such biomarkers that are related to and probably precede the onset
and/or worsening of such mental disorders. Some of the typical early warning symptoms
of psychiatric conditions include rigidity, tremor, abrupt arm movements, atypical motions
or postures, and withdrawal from outdoor activities, among others [37,38]. So, on the
above basis, it would be possible to create an intelligent system that could continuously
and passively measure human behavior to detect these changes and prevent psychotic
relapses before symptoms are fully expressed.

Computational signal processing is actually the keystone that supports the mapping
from raw sensor data to representations of behaviors and mental states (for a review
see [39]). The pipeline begins with raw signals from physiological or wearable sensors;
afterwards, the signals have to be modeled appropriately to extract meaningful information,
whereas, in the final stage, machine or deep learning has to be used to make inferences
on mental states to support human or autonomous decision making, which is indeed
one of the main contributions of the e-Prevention project that is described in this work.
Apart from that, usually an integrated and intelligent system has to be built from scratch so
as to render it as accessible and practical as it can be for non-tech-savvy users (i.e., patients
and clinicians); this constitutes the other main contribution of this work.

Contributions and Overview

The work described in this paper concerns the e-Prevention (More info can be found in:
http://eprevention.gr (accessed on 20 August 2022)) project—a long-term, more than three-
year study—aiming to develop innovative and advanced electronic services for medical
monitoring and support that will facilitate effective monitoring and relapse prevention
in patients with mental disorders (i.e., bipolar disorder and schizophrenia). The project
has developed an innovative integrated system, which offers the following technologies:
(1) long-term continuous monitoring and recording of biometric and behavioral indices
through a non-intrusive and simple wearable sensor, namely a smartwatch; (2) a portable
mobile device (tablet) installed in the patient’s house, in order to record short audio-visual
videos of the patient while being interviewed by the clinician, with the aim to collect social
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features, including speech and facial expressions and; (3) automatic and systematic storing
of these data in a Cloud server. Through these, the ultimate goal of the e-Prevention project
is the identification of markers and feature representations that correlate with and can
predict the mood and psychopathology of patients, serving as measures of prediction and
thus eventually preventing possible relapses.

In order to accomplish this, we performed a thorough statistical exploration of the
differences presented in biomarkers between healthy controls and patients with mental
disorders (i.e., schizophrenia and bipolar disorder), identifying significant differences
between the groups. This statistical analysis—using well-established and reliable statistical
tests, such as the Kruskal–Wallis H test and Dunn’s tests with the respective corrections—is
based on an innovative and extensive multisensory and multiscale data analysis of long-
term continuous behavioral (i.e., accelerometer and gyroscopic data) and physiological
markers (i.e., heart rate and heart rate variability) that were collected passively for a
long-term period, which lasted almost one year (∼110,000 h across all users). For this
analysis, classical and more advanced linear and nonlinear signal processing techniques
are compared with the goal to extract the most appropriate behavioral and physiological
descriptors, showing significant statistical differences between the groups.

Based on these representations that showed to be more significant, we continued by
examining various Deep Learning techniques so as to detect relapses in patients using
physiological data acquired from the smartwatch. Additionally, we explored the usefulness
of spontaneous speech data obtained during weekly or bi-weekly interviews conducted
between patients and clinicians having the same goal of detecting and predicting relapses.
Both tasks were tackled in an anomaly detection framework, and our models were imple-
mented using both personalized and global schemes. Finally, we explored the potential of
automatically recognizing alterations in psychopathology, determined through the Positive
and Negative Syndrome Scale (PANSS) [40], using facial cues and classical supervised
machine learning algorithms. The results that we obtained are promising in all tasks that
we handled, i.e., relapse detection and prediction using physiological data, audio data, the
fusion of audio with physiological data, and finally, video data for the evaluation of facial
cues in patients with mental disorders.

The remainder of this paper is organized as follows: In Section 2, the related work is
presented, whereas in Section 3, we describe the overall architecture of the e-Prevention
system and the various subsystems that were developed in order to collect and store all
involved data. In Section 4, the recruitment protocol of the volunteers, thus controls and
patients, is described. In Section 5, we go into more detail regarding the methodologies used
in order to carry out the statistical analysis conducted for the identification of differences
in physical activity and autonomic function patterns between psychotic patients and
controls using wearable data (Section 5.1); additionally, we present our research results on
detection and prediction of relapses and general psychopathology using physiological data
(Section 5.2) or audio-visual cues obtained from the interviews conducted between patients
and clinicians (Sections 5.3 and 5.4). Finally, in Section 6, we conclude our work.

2. Related Work

Physical activity is an everyday routine for all of us, i.e., when walking to work
or to the market; however, for people with mental disorders, such activities are usually
disrupted during or even before a relapse. Nowadays, there is growing scientific evidence
that such activity could constitute the most consistent indicator in order to classify various
episode types in such patients [37], something that is usually performed using more
traditional monitoring with specialized questionnaires appropriately designed to this
end [41]; however, such methods are heavily biased by the “current” state of the patient.
Several works [41,42] have also suggested employing today’s technological advancements
and digital phenotyping for accurate and continuous patient monitoring to reduce the
impact of mental illness offering clinically relevant information for understanding how
daily routines affect symptomatology [43], aiming to increase the effectiveness of treatments.
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So, the current advances in popular and affordable technologies—such as accelerometers
among others in wearables and smartphones— open the possibility for the non-intrusive
acquisition of activity and physiological data, which could actually both transform hospital-
centered healthcare practice into proactive, individualized care and improve the patient’s
course of life.

There are works that have tried to tackle this problem offering promising evidence for
using such sensorial data. In [37], accelerometer and audio information from smartphones
were used to classify the state of five patients with bipolar disorder by collecting information
about their real-life activities over a 12-week time period, showing that the course of mood
episodes or relapses can be predicted with high confidence. In [44], statistical methods
were employed to characterize accelerometer-derived activity patterns (collected over a
week) from 99 adults with heterogeneous mental illnesses, claiming that activity patterns
varied between different disorders, whereas the rich nature of human movement captured
by accelerometry during wake and sleep could be quantified. In [45], simple features were
extracted from linear accelerations and angular velocities from patients with Parkinsonian
tremors (a usual symptom of patients with psychiatric disorders), concluding that both
linear acceleration and rotational motion of the wrist improve the prediction accuracy
for detecting tremors. Finally, in [46], changes in mobility and social behavior, measured
through smartphones, could identify statistically significant anomalies in patient behavior
during the days prior to a relapse.

Previous works have mostly used smartphones [47] and focused mainly on social
features such as text messages, call duration, and sleep duration among others [46,48,49]
lasting from some hours to a few weeks [46,50,51], with some exceptions [48]. Compared
to smartphones, wearable sensors are unobtrusive, lightweight and can be used for the
monitoring of daily activities [52]. It has also been shown that people with mental disorders
are comfortable and willing to integrate them into their daily life, something that supports
the fact that by using smartwatches we could go beyond feasibility and underscore the
novel physiological and activity data that can be easily collected with low cost [53].

Supervised learning approaches to correlating the appearance of relapses with physio-
logical data have mostly focused on either statistical significance testing [54] or classification
of hand-crafted features using traditional machine learning algorithms [51]. Consequently,
a variety of feature representations have been proposed in such medical settings using data
from wearables; many of those are related to Heart Rate Variability (HRV), which describes
the variation in heartbeat intervals and is considered a reliable quantitative measure of
Autonomic Nervous System (ANS) activity, and have been reported in a wide variety of
psychiatric disorders [54,55]. Some of the most frequently used linear methods for HRV
analysis are based on the mean Heart Rate (HR) [54], the mean HRV [56], the standard
deviation (SD), the root mean square of successive differences (RMSSD) [56], and the pro-
portion of consecutive RR intervals that differ by more than 50 ms (pNN50) [57], as well
as various spectral features, specifically, the LF and HF, and thus, the power in a low- or
high-frequency band, along with the ratio of LF-to-HF [56,57]. However, over the past
decade, there has been an increasing emphasis on applying nonlinear methods to charac-
terize cardiac function; fluctuations in heart rate have been reported to present irregular
variability that suggests nonlinear behavior [58]. Such methods include detrended fluctua-
tion analysis [59], sample entropy [60], Poincare plots [61], and fractal dimension [62–64]
among others. There is evidence that nonlinear metrics are superior predictors of cardiac
and autonomic dysfunction [65–67] when compared to more traditional time and frequency
domain analyses; however, they have not yet been extensively examined in research areas
that include people with mental disorders. In [56,68], a review of linear and nonlinear
methods can be found, indicating the most significant; whereas commonly used HRV
measures and their diagnostic uses can be found in [57].

Apart from signals collected from wearables, a plethora of other modalities, such
as speech, facial cues and social activity data have been shown to contain information
related to such biomarkers that could correlate with the appearance of relapses. Specifically,
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speech has been shown to be indicative of both the emotional state of a person [69] and
relapsing mental conditions [70]. For instance, bipolar disorder can be characterized by
longer pauses in between utterances of the patients and increased pitch and formant
frequencies, whereas relapsing schizophrenic patients show decreased pitch and formant
frequencies, coupled with a lower speech rate and longer pauses in between utterances [70].
Supervised approaches towards the detection of relapsing mental conditions have utilized
both hand-crafted features [71–73] and deep learning [74,75]. In the first case, features are
extracted either from short-time frames of speech signals [71] or whole interviews [72,73],
whereas deep learning algorithms have been applied in low-level descriptors of raw speech
signals [74] or spectrograms [75].

A promising area that has lately drawn interest from both the computer vision and
machine learning communities is the automatic recognition of depression using facial cues
and facial expressions. For example, in [76], the viability of automatic depression detection
was demonstrated by comparing medical assessments with automatically measured facial
actions using the Active Appearance Model (AAM), which was also used in [77], in order
to extract eye movement features from videos to classify subjects as depressed or not.
Deep learning algorithms that train discriminant feature representations have also been
utilized in aided clinical diagnosis [78], obtaining state-of-the-art results, even though the
use of hand-crafted features has been common practice for years in the specific task. In
the case of deep learning operating on videos, it is usual to exploit spatial and temporal
information independently (e.g., by cascading a 2D CNN and then a recurrent NN), while
deteriorating, however, the modeling of spatio-temporal relationships [79,80]. A deep two-
stream architecture has also been used to exploit facial appearance and optical flow [81],
while during recent years, 3D CNNs, such as the C3D network [82,83], have also been
proposed to utilize spatio-temporal correlations increasing the detection accuracy.

Apart from methods based on supervised learning, another approach that could be
used for relapse detection is sensor-based anomaly detection, the importance of which has
been highlighted during recent years and the pandemic, through the clinical mass adoption
of telehealth [84]. Anomaly detection, motivated by the rarity of appearance of abnormal
(anomalous) events, as well as the potential lack of strong labels, concerns the development
of either weakly-supervised or unsupervised anomaly detection algorithms [85]. This is
especially significant in mental health monitoring, where the availability of data corre-
sponding to relapsing states is scarce. Such unsupervised anomaly detection algorithms,
such as, for instance, autoencoder neural networks, have been developed and applied
on audio signals [86,87] and medical images [88], as well as data collected from various
passive sensors [48,89–91].

3. The E-Prevention System
3.1. Overview

The innovative methodology of the e-Prevention approach introduces several opera-
tional challenges for the overall system and for the specific processes, which are realized
by the different system components. These challenges are related mainly to the ultimate
objective of the project, namely to create an online framework for the effective communica-
tion of different user entities and the automated collection, management and analysis of
multimodal data (biomarkers) related to psychotic disorders. This complex environment
requires the design and implementation of a robust and modular platform and user-friendly
applications able to address the project objectives, provide the necessary levels of usability
and automation for the non-tech-savvy users that access it (e.g., patients and clinicians),
and at the same time incorporate state-of-the-art technologies for data analysis, signal pro-
cessing and machine/deep learning to support the scientific requirements of the researchers
and analysts involved.

Figure 1 presents the architecture of the integrated e-Prevention system showing the
users’ interactions with its various subsystems. There are four main subsystems:
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1. Data collection: which is responsible for collecting the data required by the e-Prevention
project consisting of the following elements: (i) The smartwatch and its application,
which is responsible for collecting biomarkers, such as kinetic data through the ac-
celerometer and gyroscope sensors and heart rate variability (HR with the correspond-
ing RR-intervals) using a PPG-based (Photoplethysmography) non-invasive heart rate
monitor on a daily basis (24/7) from patients. (ii) The tablet and its application, which
is responsible for recording the weekly or biweekly interviews between clinicians and
patients. Both dedicated applications were developed for the purposes of the project;

2. Cloud storage: which is responsible for obtaining and maintaining the data collected
in the data collection subsystem. The information entered by the clinicians in the web
portal, described next, is also stored in the cloud storage;

3. Data analysis: where the data are processed and all results and conclusions are extracted;
4. Web Portal: consisting of the dashboard allowing the clinicians to access and process

the patients’ personal information. It also provides the ability to present visualizations
and statistics as they emerge after data analysis. Finally, it also incorporates the video
interview mechanism, which constitutes the interface for the interviews conducted
between clinicians and patients.

Data
Analysis

 
Cloud

Storage Upload Web
Portal

Medical
Intervention

Data Collection

Figure 1. The e-Prevention system’s paradigm.

3.2. Cloud Architecture

The overall system architecture includes a cloud-based platform with several active
components and client applications for the different users involved in the project (Figure 2).
The cloud platform coordinates the various operations of the system and focuses on the
efficiency of the user and data management processes. Additionally, all data produced
are hosted on this cloud platform, which is on the premises of the National Research
Network and Technology (GRNET—https://grnet.gr (accessed on 20 August 2022)). GR-
NET provides cloud computing services in the form of Infrastructure as a Service, called
“∼okeanos”, through which any user of the academic and research community can create
multilevel virtual infrastructures, having the possibility to either use them as virtual disks
or virtual storage in the cloud.

The user management component maintains the anonymized list of all participants
(controls and patients) in the project and is responsible for the clinicians’ and the involved
researchers’ authentication and authorization. This component realizes role-based access
control, allowing only specific user entities to interact with data and system services.
Furthermore, this component includes device management capabilities associating sensors
and devices to specific users and simplifying the processes for user onboarding, sign in
and monitoring.

Data management is also at the core of the e-Prevention cloud platform with the aggre-
gation of multimodal data from different sources and their persistence in the databases and
object storage of the platform. More specifically, this component provides the public end-
points for the synchronization of data with the client applications and for their processing
and analysis from the respective tools of the platform. In addition, the platform provides
real-time video communication functionality between patients and clinicians, and also noti-
fications for important events related to the management of the devices (i.e., smartwatch
and tablet) or the health and mental condition of patients following the analysis of the
ingested data.

https://grnet.gr


Sensors 2022, 22, 7544 7 of 38

Figure 2. The overall architecture of the proposed system.

Finally, the platform also includes several tools for analysis of the data that exploit
the various cloud resources, which are available and provide results in both online (as the
data are ingested into the system) and offline modes by exploiting state-of-the-art signal
processing and machine learning frameworks and methodologies. These tools are used by
both clinicians and data scientists of the project creating visualizations and periodic reports
for the patients that are monitored through the platform.

3.3. Smartwatch Application

In order to select the appropriate smartwatch device that best accommodated the
requirements of the e-Prevention project (i.e., collection and transmission of large amounts
of raw biosignals) we experimented with a number of different commercially available
devices. After careful consideration, we selected the Samsung Gear S3 Frontier smartwatch,
which has the ability to store and transmit data from its accelerometer, gyroscope and PPG
(photoplethysmography) sensors. Note that the PPG sensor provides not only the heart
rate but also the heartbeat interval period value (R-R interval). The storage capacity of the
device is 4 GB and its WiFi interface allows for wireless connection and transmission of
data, thus removing the need for a smartphone for connectivity.

In order to use the capabilities of the smartwatch, we built an in-house application
using the Tizen Studio environment [92]. The application includes several components for
offline operation, local data management, and parallel preprocessing of data, for efficient
synchronization without data loss. For more information see also [93]. More specifically,
the developed application includes the following modules: (a) the data collection module,
which is capable of collecting a wide range of the user’s biosignals (see Table 1) by exploiting
the device’s sensors providing at the same time the required levels of automation and
usability; (b) the data transmission module that compresses and transmits the data to the
cloud server taking into account the internet connection status of the watch. Due to the large
volume of data produced, various lossless compression techniques were considered taking
into account the limited computational and energy resources of the smartwatch; and (c) the
user interface module that provides the user with basic information about the operation of
the application. Analytics were also incorporated to gather critical smartwatch operating
parameters such as power levels, free storage and network availability. An important
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aspect of the smartwatch application operation is the optimization of the computational and
energy resources usage, in order to ensure adequate battery life for the project experiments.
Figure 3 presents the various smartwatch application functionalities.

Table 1. Data collected from the smartwatch sensors.

Sensor Data Measurement
Unit

Frequency
Sampling

Accelerometer Linear Acceleration
(3-axis) m/s2 20 Hz

Gyroscope Angular Acceleration
(3-axis) degrees/s2 20 Hz

Heart Rate Heart Rate Variability
RR-Intervals

beats/min
seconds 5 Hz

Step Counter Steps and
Total distance steps/min Total number

per minute

Sleep Sleeping schedule min

Figure 3. Smartwatch and tablet application functionalities.

3.4. Web Portal and Data Management

Another important factor for the integrated e-Prevention platform is the web appli-
cation that has been developed, allowing clinicians to access and process the patients’
personal data. Login to the dashboard is only available to the e-Prevention medical team
and the involved researchers and is performed through a digitally signed authentication cer-
tificate. Each certified user has been provided with credentials granted by the e-Prevention
platform. Free registration is not permitted due to security reasons since the information
that is stored regarding the patients’ mental health status is sensitive and personal. More-
over, all stored information is anonymized, and the patients’ names and surnames are
not registered, with the identification being performed through a unique, unchangeable
identification number (ID) (thus, only the clinicians have the correspondence of patient
names and IDs).

Specifically, the dashboard allows the clinicians to process the patients’ personal data,
which include (see also Section 4):

(a) Demographics (e.g., age, gender, marital status, birthplace, occupation and family
psychiatric history among others), recorded when a patient enters the study;

(b) Information related to the patient’s mental health diagnosis and the years experienc-
ing it;

(c) Information regarding the patients’ medication and possible changes that occur during
the course of the study;

(d) Information about various psychopathological scales, which are estimated and recorded
during monthly in-person clinical assessments;

(e) Information about the relapses that each patient experienced, including their dura-
tion, severity level (low, mid or severe) and type (psychotic or not), as annotated by
the clinicians.
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All information described above can be updated and extracted for all or specific
patients in excel and PDF file format and is handled with the help of an object-oriented
relational database, which provides online backups (stored at the web portal) and ensures
maximum security and data availability. The web portal is hosted on the cloud platform
(Section 3.2).

Additionally, there is a statistical data presentation functionality for each patient,
including: (a) the number of hours the user was wearing the watch per day, (b) the number
of hours recorded by each sensor per day, (c) a histogram of the total recorded hours per
day and sensor during the user’s participation, (d) the number of hours when a user was
asleep or awake per day, and (e) the number of steps in walking and running periods. The
above statistics aid the clinicians to quickly access an overview of the patients’ compliance
with the smartwatch usage and assist them if they do not wear it properly, e.g., wearing
the watch loosely, which may lead to data loss. Figure 4 shows the visualization of the
sleeping diary, while Figure 5 shows the visualization of two psychopathological scales
(WHO Disability Assessment Schedule II, WHODAS II [94] and PANSS), the values of
which are showing how the scales vary across each consecutive month; in both figures, a
moderate relapse is displayed in the orange opaque box.

Figure 4. Visualization of the sleeping diary, thus the intervals during which a user was asleep or
awake, along with one moderate relapse shown in the orange opaque box.

Figure 5. Visualization of two psychopathological scales (WHODAS II and PANSS), along with one
moderate relapse shown in the orange opaque box. D1-D6 and Total refers to WHODAS II, whereas
General, Positive, Negative and Overall to PANSS.
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Ensuring the security and anonymity of all data is a key priority of the integrated
e-Prevention system. For this purpose, specific security policies were adopted that concern
the individual components but also the e-Prevention platform as a whole. International se-
curity standards for mobile applications, databases, data storage and software applications
have been adopted for system security purposes.

3.5. Video Interview Mechanism

The e-Prevention web portal also integrates the video interview mechanism, aiding
clinicians to conduct interviews with the patients from a distance, which are recorded
anonymously through a dedicated tablet application. Specifically, the video interview
mechanism includes the tablet application, a backend application installed on a cloud
provider (Heroku), a Traversal Using Relays around NAT server and a file server. The
application installed on the patient’s tablet, a Samsung Galaxy Tab A6, is used exclusively
for these remote interviews, see Figure 3 for the tablet application functionalities.

The need for developing a targeted application instead of using a more commonly
used calling app emerged so as to render it as easy and accessible as possible for all patients.
Thus, with this application, the only thing that the patients need to do in order to start a
call is to enter a specific name dictated by the clinician, which will be the same as the one
that the clinician will enter through the web portal’s dashboard. The specific application
was developed with Android Studio, Google’s integrated programming environment for
developing applications on Android platforms, and the patients could easily download it
from Google Play. A file (storage) server is used for the storage of the interview video files,
which is hosted on the “∼okeanos” cloud server, allowing access to both clinicians and the
project’s researchers to download and further process the video content.

4. Recruitment Protocol

Participants of the e-Prevention project, both controls and patients, were recruited at
the University Mental Health, Neurosciences and Precision Medicine Research Institute
“Costas Stefanis” (UMHRI) in Athens, Greece. Written consent and permission for use of
anonymized data were given in accordance with the provisions of the General Regulation
(EU) 2016/679. The protocol of the e-Prevention project was approved by the Ethics
Committee of the Institution.

In the initial phase of the project, 23 participants were recruited for three months, to
constitute the control group. In the second ongoing phase of the project, a total of 39 patients
have been recruited up to the time of writing this paper (July 2022). Thirteen (13) patients
have completed the initially agreed two-year assessment period and eleven (11) patients
are still being assessed. Fifteen (15) patients have dropped out at some point during
the course of their assessment, most of them for reasons unrelated to the study. Table 2
shows information about the demographics of both controls and patients up to April 2022,
where we also present the amount of recorded smartwatch data for each group during
wakefulness and sleep.

Before recruitment, clinicians met with the participants to conduct an assessment of
symptoms and general functioning. Specifically, each volunteer underwent an initial indi-
vidual assessment, lasting approximately 180 min, during which demographic data (age,
sex, years of education, occupation, marital status, place of birth and residence), physical
and mental health history, perinatal complications or disorders and substance abuse were
examined. During the intake interview, all participants also received a neuropsychological
evaluation by a trained neuropsychologist to ensure that there were not any neurological
disorders. Moreover, for the control group, it was ensured that there was no history of
mental disorders or substance abuse. The majority of tests administered to the patients were
selected based on MATRICS (Measurement and Treatment Research to Improve Cognition
in Schizophrenia) Consensus Cognitive Battery [95], which is specifically designed to assess
the neurocognitive functioning of patients with schizophrenia across the following do-
mains: speed of processing, attention/vigilance, working memory, verbal learning, visual
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learning, problem solving and social cognition. Verbal intelligence and verbal fluency were
also assessed. Additionally, in the case of patients, a family history of mental illness was
sought, along with the time (in years) from the onset of the first symptoms of mental illness,
the degree of compliance with the treatment in the last 6 months and a detailed record
of the medication they receive. At recruitment, the patients were in active treatment and
stable. Participants were excluded if they had any of the following: (1) hearing, vision,
or motor impairment; (2) a below sixth-grade reading level; or (3) inability to provide
informed consent.

Table 2. Demographics information of controls and patients at the time of recruitment, illness
information and amount of recorded data for each group during wakefulness and sleep (up to
April 2022).

Controls Patients

Demographics
Male/Female 12/11 26/12
Age (years) 27.8 ± 3.9 30.55 ± 7.28
Education (years) 16.9 ± 1.8 13.36 ± 2.18
Illness dur. (years) - 7.34 ± 6.41

Recorded Data
# Months Recorded 2.81 ± 1.03 16.39 ± 7.36
# 5 min mov (awake) 15,746 ± 4837 37,778 ± 23,429
# 5 min HRV (awake) 12,909 ± 3589 34,548 ± 22,873
# 5 min mov (sleep) 7670 ± 2606 27,377 ± 16,722
# 5 h HRV (sleep) 6924 ± 2331 26,224 ± 16,293

A number of weekly unstructured interviews of patients and controls of an aver-
age duration of 5–10 min took place through the dedicated web application developed
for the e-Prevention project or through the phone in order to assess the physical activ-
ity of the participants by using the Greek version of the International Physical Activity
Questionnaire—short form (IPAQ-Gr) [96]. These web interviews were recorded anony-
mously and stored in a secure cloud server.

Furthermore, the clinical team conducted follow-up assessments with patients once
every month during which the following were assessed: psychopathology (Positive and
Negative Syndrome Scale, PANSS); disability (WHO Disability Assessment Schedule 2.0,
WHODAS 2.0); antipsychotic side-effects (Glasgow Antipsychotic Side-effect Scale, GASS);
involuntary movement (Abnormal Involuntary Movement Scale, AIMS); extrapyramidal
symptoms (Simpson-Angus Scale, SAS); and Body Mass Index (BMI) [40,94,97–99]. Patients
also performed a computerized version of the go/no-go task that was initially administered
in the neuropsychological evaluation.

In order to evaluate the emergence and severity (on a 3-point scale: low, mid, or
severe) of relapses, the clinicians used the following information sources: (1) monthly
assessments, which were useful for identifying the duration of the relapse, as well as its
severity; (2) frequent administration of psychopathological scales; and (3) communication
with the attending physician, his/her family/carer, and the hospital (in case of hospitaliza-
tion). We also note whether each relapse was also classified as being a psychotic one or not.
Afterwards, the clinicians inserted the information about relapses into the web portal.

5. Material, Methods and Research Results

In the next sections, we are going to present the most important research results
that emerged during the course of the e-Prevention project. Specifically, (1) we present
an extensive statistical analysis that was conducted for the identification of differences
in physical activity and autonomic function patterns between controls and patients with
mental disorders using both classical and novel nonlinear representations extracted from
the smartwatch data (Section 5.1). (2) We continue with the implementation of autoencoder
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architectures for the detection and prediction of relapses using (a) physiological signals,
based on the results of the previous analysis and the representations that showed statistical
significance (Section 5.2); and (b) speech from interview sessions between patients and
clinicians as well as a fusion between speech and physiological signals (Section 5.3). (3) Last
but not least, we try to assess the patients’ symptom severity by automatically recognizing
the PANSS scale, using as key indicators the patients’ facial expressions (Section 5.4). Note
that due to the continuous increase in the collected data and our concurrent research, the
following results are presented in different subsets of the e-Prevention collected data; thus,
the reader can find the description of the used subset in each of the following subsections.

5.1. Statistical Analysis for the Identification of Differences in Feature Representations Extracted
from Smartwatch Data

The nature of the long-term study conducted in the e-Prevention project required a
different data processing approach than previous studies. For this reason, we conducted a
rigorous statistical analysis in order to identify the most suitable representations in conjunc-
tion with our large dataset. Thus, inspired by traditional signal processing techniques, we
extracted common and more complex features using short-time analysis and we studied
them through their descriptive statistics in order to obtain a rough estimate of how they
differentiate between healthy controls and patients with psychotic disorders.

The statistical analysis presented next has offered a high degree of certainty that some
of both the more common and the novel nonlinear features differ extensively between the
two groups, and are thus of major importance to clinical practitioners, as well as for the
next steps of our experimental evaluations. Therefore, we could claim that it constitutes a
vital step towards developing a method that can leverage informative and interpretable
physiological and behavioral data from sensors that could act as diagnostic tools with the
aim of timely prediction of relapses.

Data Collection: For this statistical analysis, we used data from twenty-three (23)
healthy control volunteers and 24 patients with a disorder in the psychotic spectrum
(12 with Schizophrenia, 8 with Bipolar Disorder I, 2 with Schizoaffective disorder, 1 with
Brief Psychotic Episode, and 1 with Schizophreniform Disorder). Due to limitations on the
number of available devices, each subject was recruited at a different date—controls were
recruited between June 2019 and October 2019, whereas patients have been continuously
recruited from November 2019 up to March 2021, when this first statistical analysis was
conducted. Controls were continuously monitored for at least 90 days and then they
returned the watches, whereas the monitoring of patients has been an ongoing process. In
the analysis presented here, we use data up to September 2020 to ensure that the analyzed
data for each group are approximately balanced. Furthermore, to mitigate the effect of
the COVID-19 Pandemic quarantine in Greece (15 March 2020–10 May 2020), since only
patients were monitored at the time, we exclude data collected during this period.

Table 3 contains information on the demographics of the two groups, as well as the
collected data at the time of conducting the analysis. We also include the BMI and the
PANSS scale rating at the time of recruitment for the two groups (note that PANSS is only
applicable to patients).

Data Preprocessing: Short-time analysis of signals using windowing is a traditional
signal processing method. In short-time analysis, we assume the process under which the
data are generated to be stationary. Drawing power from these techniques, but largely
increasing the time scale, we proceeded to perform “short-time” analysis in windows of
5 min for both movement and HRV data. Five (5) min intervals have been found to hold
important information for distinguishing short-term patterns in a previous study [100].
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Preprocessing of Heart-Rate Variability: The heart rate variability (HRV) sequence
from the 5 Hz signal was obtained by dropping identical consecutive values. We also
removed RR intervals larger than 2000 ms and smaller than 300 ms, considered artifacts,
and replaced possible non-detected pulses with linear interpolation. After preprocessing,
we extract features from the first 4.5 min (90%) of the RR intervals sequence, dropping
subsequent values so that each interval has the same length.

Table 3. Demographics information of controls and patients at the time of recruitment, illness
information, and amount of recorded data for each group during wakefulness and sleep. There were
no significant differences between the amounts of recorded data (tested with the Student’s t-test and
Shapiro–Wilk for normality).

Controls Patients

Demographics
Male/Female 12/11 16/8
Age (years) 27.8 ± 3.9 30.8 ± 6.56
Education (years) 16.9 ± 1.8 13.88 ± 2.27
Illness dur. (years) - 7.42 ± 5.63
BMI 22.9 ± 3.2 28.25 ± 5.13
PANSS (overall) - 57.08 ± 14.10

Recorded Data
# Days Recorded 84.3 ± 30.9 68.5 ± 41.7
# 5 min mov (awake) 15,746 ± 4837 13,210 ± 6908
# 5 min HRV (awake) 12,909 ± 3589 12,221 ± 6656
# 5 min mov (sleep) 7670 ± 2606 8865 ± 4767
# 5 h HRV (sleep) 6924 ± 2331 8578 ± 4741

Preprocessing of Accelerometer and Gyroscope Data: In data collected from the
accelerometer and gyroscope, we first dropped all intervals with more than 50 missing
values. Then, existing missing values were filled via nearest-neighbor interpolation and
features were extracted from the first 5940 (99%) samples of the interval. Note also that we
applied high-frequency wavelet denoising [101] in order to smooth out the intrinsic noise
from the sensors. The mean and standard deviation of the number of 5-min intervals for
each user is reported in Table 3.

Feature Extraction: We consider the following features, examples are shown in
Figure 6 (during one day of monitoring a subject):

Energy: The short-time energy (STE) of the euclidean norm of the accelerometer (acc)
and gyroscope (gyr) signals is extracted (since they are measured triaxially). We use these
features as an objective measure of physical activity and general movement behavior.

Spectral features: Power Spectral Density (PSD) is a common and powerful frequency-
domain method for analysis of HRV describing the relative energy of the signal’s cyclic
fluctuations, managing to decompose the HRV signal to the sum of its sine and cosine com-
ponents; allowing this way superimposed periodicities to be unraveled. Medical studies
split the HRV spectrum into four frequency bands: ultra-low-frequency (ULF ≤ 0.003 Hz),
very-low-frequency (VLF 0.0033–0.04 Hz), low-frequency (LF 0.04–0.15 Hz), and high-
frequency (HF 0.15–0.40 Hz) [102]. Since HRV is, by definition, a non-uniformly sampled
signal, we perform spectral analysis using the Lomb–Scargle (LS) periodogram [103].



Sensors 2022, 22, 7544 14 of 38

(a) (b)

(c) (d)

(e)

Figure 6. Examples of features considered in this work during one subject’s full day: (a) Energy (STE)
of the euclidean norm of acc and gyr; (b) Sample entropy and Higuchi fractal dimension of HRV;
(c) Normalized LF and HF power of HRV; (d) MFD fractal dimension, mean MFD and max MFD of
HRV; (e) Poincare SD1 and SD2 of HRV.

The Lomb–Scargle periodogram is a method of power spectrum estimation that can
be directly applied to non-uniformly sampled signals, and as a result, it is appropriate for
HRV measurements. The periodogram is defined as:

PLS(Ω) =
1
2


[
∑N−1

n=0 x[n] cos(Ω(tn − τ))
]2

∑N−1
n=0 cos2(Ω(tn − τ))

+

[
∑N−1

n=0 x[n] sin(Ω(tn − τ))
]2

∑N−1
n=0 sin2(Ω(tn − τ))

, (1)

where τ is given by:

τ =
1

2Ω
tan−1

(
∑N−1

n=0 sin(2Ωtn)

∑N−1
n=0 cos(2Ωtn)

)
, (2)

and Ω is the angular frequency (rad/s), tn the time (s) at which the signal was sampled,
and x[n] the value of the signal at time tn. Using the LS periodogram, we extract for each
interval the normalized power in two bands: LF and HF, as well as the ratio LF-to-HF.

Sample Entropy: Nonlinear methods treat the extracted time series as the output of a
nonlinear system. A typical characteristic of a nonlinear system is its complexity. The first
measure of complexity we consider is the sample entropy (SampEn). Sample entropy is a
measure of the rate of information generated by the system and it has been considered to
be an improved version of the approximate entropy [104], due to its unbiased nature.

Higuchi Fractal Dimension: Multiple algorithms have been proposed for measuring
the fractal dimension of time series. Here, we use the Higuchi fractal dimension [105], which
has been used extensively in neurophysiology due to its simplicity and computational
speed [106–108].

Multiscale Fractal Dimension: Multiscale Fractal Dimension (MFD) is an efficient
algorithm [109] that measures the short-time fractal dimension based on the Minkowski–
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Bouligand dimension [63]. In more detail, the algorithm measures the short-time fractal
dimension using nonlinear multiscale morphological filters that can create geometrical
covers around the graph of a signal, whose fractal dimension D can be found by:

D = lim
s→0

log[Area of dilated graph by disks of radius s/s2]

log(1/s)
. (3)

As is known, D is between 1 and 2 for one-dimensional signals, and the larger the D
is the larger the degree of geometrical fragmentation of the signal. In practice, real-world
signals do not have the same structure over different scales; hence, D is computed by
fitting a line to the log–log data of Equation (3) over a small scale window that can move
along the s axis creating a profile of local multiscale fractal dimensions (MFDs) D(s, t) at
each time location t of the signal frame; thus, we are able to examine the complexity and
fragmentation of the signals at multiple scales. In general, the short-time fractal dimension
at the smallest discrete scale (s = 1) has been found to provide some discrimination among
various events. At higher scales, the MFD profile can also offer additional information
that could help further the discrimination; more details about the algorithm can be found
in [109]. For this reason, we summarized the short-time measured MFD profiles by taking
the following statistics: fd[1] (the fractal dimension), min, max, mean, and std for each
5-min HRV interval.

Poincare Plot Measures: The Poincare plot [61] is a recurrence plot, where each sample
of a time series is plotted against the previous, and then an ellipse is fitted on the scatter
plot. The width of the ellipse (SD1) is a measure of short-term HRV, whereas the length
(SD2) is a measure of long-term HRV.

Feature Aggregation: Using the information from the sleep schedule of each subject,
we split the intervals into two groups; one corresponding to intervals during sleep and one
during wakefulness. We then calculated the mean and standard deviation (std) over all
individual intervals, resulting in two values for each subject and feature type and a total of
28 features. Significance tests using the Student’s t-test showed no significant differences
between the recorded movement and HRV intervals for each group and state (i.e., sleeping
and awake). Normality was tested with the Shapiro–Wilk test [110].

Sleep/Wake Ratio and Steps: In addition to the above features, we also extracted for
each subject the mean and standard deviation of his/her sleep/wake ratio and the mean
number of steps per day. Since the number of recorded hours each day fluctuates, for
these features, we use only days with at least 20 recorded hours (no significant difference
found between the number of days for controls and patients using Mann–Whitney U
testing [111], since the normality assumption was violated). Figure 7 shows the steps per
day and sleep/wake cycle during one month of monitoring.

Figure 7. Steps per day (left) and hours spent sleeping and awake (right) during one month of a
subject’s recordings.

Experimental Results: Figure 8 shows boxplots of the features extracted from the
accelerometer and gyroscope data during wakefulness and sleeping, whereas in Figure 9,
boxplots of the HRV features are presented for the two states, respectively. Due to the
differences observed perceptually between the distributions in most features, we tested
for significant differences between distributions (the null hypothesis being that the two
distributions are the same) using two-tailed non-parametric Mann–Whitney U tests [111].



Sensors 2022, 22, 7544 16 of 38

We adjusted for p-values using the Benjamini–Hochberg (BH) procedure [112]. Due to
the nature of our study, BH was preferred over the more strict Family-Wise Error Rate
methods [113]. Table 4 shows the results of Mann–Whitney U tests for all features.

Figure 8. Boxplots for accelerometer and gyroscope features of controls (in blue) and patients (in
light brown) while (top) awake and (bottom) asleep. The bold line represents the median, the boxes
extend between the 1st and 3rd quartile, whiskers extend to the lowest and highest datum within
1.5 times the inter-quantile range (IQR) of the 1st and 3rd quartile, respectively, and outliers are
shown as diamonds.

Wakefulness Comparison: During wakefulness, the features that pertain to move-
ments appear to present more variability in the patient group compared to the controls,
as shown in Figure 8 (top row). The same appears to also be valid for some nonlinear
HRV features, for instance, SampEn mean, Higuchi mean and std, SD1 and SD2, various
statistics extracted from the MFD profile, and some of the frequency domain features, as
can be seen in Figure 9 (three top rows). Additionally, the significance testing presented
in Table 4 showed significant distribution differences in the std of acc and gyr short-time
energy, the mean and std of SampEn, the std of SD1 and SD2, the std of LF, HF and LF-to-HF
ratio as well as the MFD statistics related to std as well as to mean, max and min std. The
other features failed to reject the null hypothesis.

Sleep Comparison: Similarly, Figure 8 (bottom row) presents the accelerometer and
gyroscope feature distributions for each group during sleeping, whereas Figure 9 (three top
rows) shows the distributions of HRV features. It is evident that especially the movement-
related features present a significant difference, which is also verified in the Mann–Whitney
U test results shown in Table 4. The mean of the sample entropy among others also appears
to be different (large variations); however, the null hypothesis could not be rejected, possibly
due to p-value adjustments for multiple testing. From the rest of the features, the std of LF,
HF, and their ratio were found to differ significantly.
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(a)

(b)

Figure 9. Boxplots for heart rate variability features of controls and patients while awake (top rows)
and asleep (bottom rows). The bold line represents the median, the boxes extend between the 1st
and 3rd quartile, whiskers extend to the lowest and highest datum within 1.5 times the inter-quantile
range (IQR) of the 1st and 3rd quartile, respectively, and outliers are shown as diamonds. (a) Awake;
(b) Sleeping.
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Table 4. Statistical difference analysis using Mann-Whitney U-tests with BH correction in each state
(wakefulness, sleeping. Bold values denote significance at the 95% confidence levels. For each group
the median and the IQR (in parenthesis) are shown for each feature.

Wakefulness Sleeping

Feature Controls Patients p Value Controls Patients p Value

ac
c STE mean 6.517 (1.058) 5.832 (2.902) 0.15 0.708 (0.228) 0.406 (0.129) <0.001

STE std 8.065 (2.174) 6.694 (2.147) 0.02 2.199 (1.375) 1.057 (0.393) <0.001

gy
r STE mean 4045 (1080) 3431 (2313) 0.14 372 (177.542) 185.166 (97.117) <0.001

STE std 5572 (2125) 4110 (2728) 0.05 1324 (1032) 578 (235.108) <0.001

hr
v

sampen mean 1.446 (0.217) 1.260 (0.281) 0.03 1.435 (0.180) 1.505 (0.169) 0.14
sampen std 0.407 (0.052) 0.452 (0.059) 0.03 0.370 (0.063) 0.376 (0.117) 0.61
higuchi mean 1.974 (0.010) 1.966 (0.017) 0.07 1.875 (0.067) 1.915 (0.086) 0.18
higuchi std 0.040 (0.007) 0.043 (0.016) 0.17 0.089 (0.020) 0.079 (0.024) 0.41
sd1 mean 214.040 (20.128) 194.322 (33.829) 0.08 78.814 (29.462) 72.437 (16.211) 0.61
sd1 std 56.058 (7.166) 63.894 (9.414) 0.02 60.625 (21.202) 55.604 (14.806) 0.45
sd2 mean 237.053 (23.944) 219.853 (41.005) 0.14 112.232 (26.737) 104.269 (29.907) 0.32
sd2 std 58.511 (6.954) 67.642 (13.689) 0.01 63.169 (13.386) 61.827 (8.968) 0.94
lf/hf mean 0.449 (0.001) 0.449 (0.001) 0.48 0.445 (0.002) 0.445 (0.005) 0.93
lf/hf std 0.066 (0.001) 0.067 (0.001) 0.02 0.066 (0.001) 0.067 (0.001) <0.001
lf mean 30.857 (0.062) 30.858 (0.067) 0.43 30.652 (0.107) 30.644 (0.236) 0.84
lf std 3.109 (0.018) 3.130 (0.031) 0.02 3.134 (0.047) 3.192 (0.043) <0.001
hf mean 69.143 (0.062) 69.142 (0.067) 0.43 69.348 (0.107) 69.356 (0.236) 0.84
hf std 3.109 (0.018) 3.130 (0.031) 0.02 3.134 (0.047) 3.192 (0.043) <0.001
mfd mean mean 1.696 (0.035) 1.655 (0.055) 0.05 1.529 (0.046) 1.516 (0.069) 0.26
mfd mean std 0.093 (0.014) 0.108 (0.021) 0.01 0.085 (0.023) 0.086 (0.013) 0.93
mfd std mean 0.035 (0.002) 0.034 (0.004) 0.08 0.027 (0.004) 0.027 (0.004) 0.97
mfd std std 0.014 (0.002) 0.015 (0.001) 0.34 0.015 (0.003) 0.015 (0.002) 0.93
mfd mean 1.614 (0.036) 1.590 (0.047) 0.08 1.506 (0.060) 1.502 (0.065) 0.94
mfd std 0.071 (0.010) 0.078 (0.010) 0.03 0.070 (0.014) 0.067 (0.011) 0.93
mfd max mean 1.734 (0.032) 1.692 (0.053) 0.06 1.565 (0.047) 1.557 (0.066) 0.36
mfd max std 0.094 (0.016) 0.110 (0.020) 0.02 0.090 (0.022) 0.088 (0.012) 0.80
mfd min mean 1.612 (0.035) 1.582 (0.051) 0.05 1.481 (0.040) 1.465 (0.066) 0.41
mfd min std 0.076 (0.010) 0.089 (0.020) 0.01 0.075 (0.014) 0.077 (0.013) 0.97

w
al

k steps mean 7054 (2358) 3960 (2928) 0.01 - - -
steps std 3513 (1505) 2755 (756) 0.05 - - -

sl
ee

p ratio mean - - - 0.579 (0.107) 0.886 (0.471) <0.001
ratio std - - - 0.240 (0.149) 0.389 (0.304) 0.01

Sleep-wake Ratio and Total Steps: Finally, Figure 10 shows the boxplots of the statis-
tics of steps per day and sleep/wake ratio for the two groups. We observe a large signifi-
cant difference between both the distributions of the mean and std of the sleep/wake ratio
(p < 0.001 and p = 0.01, respectively), as well as the mean and std of total steps per day
(p = 0.01 and p = 0.05, respectively).

Figure 10. Boxplots of sleep/wake ratio and steps per day (mean-std).
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Discussion: Our goal with the statistical analysis is to exploit various traditional but
also less-known and, at the same time, more novel signal processing techniques to identify
common markers/features that differ drastically when a person has a psychotic disorder.
These markers could prove useful in predicting potential relapses in these patients.

Our findings have shown that patients tend to behave with greater variability and
present large outliers—some behave close to controls, whereas others might show extreme
values. During wakefulness, even though the mean energy did not differ when compared
to controls, the standard deviation showed a significant difference, indicating that patients
tend to depict large variations in their movement behavior. On the contrary, during sleeping,
the patients presented a small mean and standard deviation of the energy in each of their
sleeping intervals compared to the controls. We should note, however, that the observed
differences in sleep between the two groups could be attributed to medication administered
to patients, which possibly causes variability in sleep duration.

Some of the nonlinear features that were measured for the HRV data showed signifi-
cant differences in the distributions between controls and patients, i.e., during wakefulness;
as seen in Table 4, such features are the mean and standard deviation of the sample entropy,
as well as various statistics derived from the MFD analysis. Furthermore, the standard
deviation of the normalized low- and high-frequency bands of the HRV, as well as their
ratio, were found to differ significantly both during wakefulness and sleeping. During
sleeping, we did not find any other measurements of HRV to differ significantly. Finally,
the sleep ratio of the two groups, as well as the mean and std of the number of steps per
day, presented significant variation between the two groups.

The main merits of this statistical analysis are two-fold: First, compared to previous
similar studies, which have mostly lasted for a few weeks, our study, at the point that was
conducted, had already been going on for more than a year. To do this, we employed a
commercial off-the-shelf smartwatch that had been acknowledged by our volunteers to be
comfortable, and patients are willing to insert it into their daily lives routine. Second, we
show how traditional short-time analysis combined with common but also more complex
and novel features, such as the MFD features that depicted significant differences in
wakefulness data, can be employed to identify biomarkers and present large inter-group
variabilities between healthy controls and patients, paving the way towards both acquiring
clinical insights on psychotic disorders, but also exploring the capabilities of these markers
to predict relapses. In the next Section 5.2, we present our work on relapse detection, using
some of the features found statistically significant in this analysis.

5.2. Relapse Detection Using Smartwatch Data and Autoencoder Architectures

In order to detect relapses in patients with psychotic disorders using the physiological
signals collected by the smartwatch, we followed an anomaly detection approach [89,114].
In particular, we examined four different autoencoder architectures based on Transformers,
Fully connected Neural Networks (FNN), Convolution Neural Networks (CNN) and Gated
Recurrent Units (GRU) [115,116], with our models implemented using both a personalized
and a global scheme. For this task, we used time-scaled data of 1569 days, segmented into
five-minute intervals, from ten patients, obtaining encouraging results. We also conducted
an analysis using the best-performing models to examine the ability to estimate the severity
level of a relapse among patients who relapsed multiple times with different severity levels,
providing important evidence as well [91].

Data Collection: At the time that this study was performed 24 patients with a disorder
in the psychotic spectrum had already been recruited; however, after the preprocessing of
the raw data (and taking under consideration missing data that could not be recovered), we
were able to process only data from 10 patients, of which 2 with Schizoaffective Disorder, 4
with Bipolar I Disorder, 1 with Brief Psychotic Episode, 1 with Schizophreniform Disorder
and 2 with Schizophrenia; see Table 5 for demographics. Specifically, the data were collected
from November 2019 to September 2021, with the exact period varying for each patient
due to the differences in time of recruitment; after preprocessing, the data amounted to a
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total of 1569 days. Depending on the clinician annotations, as described in Section 4, we
split the data into three categories: normal data, where the patient was stable; relapse data
corresponding to time periods when a relapse had occurred; and near-relapse data, thus
data recorded up to 21 days prior to the appearance of each relapse. For this study, we
discard near-relapse data and keep data corresponding to stable and relapsing periods.

Table 5. Demographics information.

Male/Female 6/4
Age (years) 30.60± 7.31
Education (years) 13.8± 1.99
Illness dur. (years) 7.3± 7.06

Feature Extraction and Data Preprocessing: As the first step in our analysis, and
based on the statistically significant representations as described in Section 5.1, we per-
formed feature extraction, including in our experiments the following features: the mean
energy of the accelerometer and gyroscope norm, the mean heart rate and R-R interval, the
normalized energy in the LF and HF bands of the heart rate (0.04–0.15 Hz and 0.15–0.40 Hz,
respectively), and the value of the width of the ellipse in the Poincare recurrence plot.
Moreover, three additional features were included to model the chronological order of the
time-series and how well the patient was wearing the watch, specifically, the sine and cosine
representations of the corresponding seconds (over a daily period) and the percentage of
correctly identified pulses in the given interval.

Afterwards, the features were aggregated into a dense representation of 5-min in-
tervals, since as shown in [100] such intervals are able to capture micro-scale patterns,
something that also allowed us to have an adequate amount of data for the deep learning
architectures that we implemented. These intervals were then stacked temporally into
tensors, each covering 24 h of physiological activity. In cases of missing data up to 10 con-
secutive hours (e.g., when the patient was charging or did not wear the watch), we filled
the data with the median values of the missing feature over a temporal window; when
more than 10 consecutive hours of data were missing, we completely disregarded the
specific interval.

Methodology: We implemented four different architectures based on autoencoders
that learn to reconstruct an input time series; specifically, Transformers, Fully connected
Neural Networks (FNN), Convolutional Neural Networks (CNN) and Gated Recurrent
Unit (GRU), see also [91].

In the Transformer model, the input sequence is first imported into a positional
encoding layer followed by four stacked transformer encoder layers, which are made up of
two sub-layers. Both sub-layers are followed by a normalization layer. The input sequence
after the encoding is reversed and piped into the decoder, which consists of four decoder
layers, with similar architecture to the encoder. At the end, a linear layer is applied.

For the Gated Recurrent Unit (GRU) sequence-to-sequence model with attention, a
subsequence of data is fed into the encoding layer of the GRU with a specified hidden
unit of size 100. Afterwards, we pass the weighted average of all encoded outputs (atten-
tion vectors) from all time-steps as inputs into the GRU decoder layer that reconstructs
the subsequence.

The Fully connected Neural Network autoencoder (FNN) encompasses 2 fully con-
nected encoder and decoder layers that compress an input subsequence to a lower dimen-
sion in order to reconstruct the initial subsequence. A ReLU nonlinearity follows after
each fully connected layer and the last layer also contains a dropout layer in order to
avoid over-fitting.
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The CNN-based autoencoder follows an encoder-decoder scheme, with the encoder
mapping the input to a low-dimensional latent representation, and then the decoder trying
to reconstruct the original input. We build the decoder using 4 downsampling blocks which
consist of an 1D Convolutional layer, batch normalization, and a LeakyReLU activation.
In a similar manner, we build the decoder using 4 successive upsampling convolutional
blocks, mirroring the blocks of the encoder. Finally, we apply a linear layer at the top.

Training and Evaluation of Anomalies: Models were trained using both a personal-
ized and a global scheme. In the personalized scheme the evaluation is performed for each
patient separately, which is a common and proposed procedure for such tasks [46]. How-
ever, we wanted to explore the generalization capabilities of our methods, so we evaluated
them using a global scheme, as well; thus, we train our models on data corresponding to
all patients. For each case, we separated the respective normal data into three sets, i.e., the
train (60%), validation (20%) and test (20%) set, following a 5-fold cross-validation scheme;
the validation set was internally split into two equal subsets. All data were normalized in
the [0, 1] range, apart from the sine and cosine time representations, which were already in
[−1, 1]. The train and validation sets, as usually performed in such anomaly detection tasks,
contained only data with no anomalies (i.e., “normal” data), whereas the test set contained
data both without and with anomalies (thus, relapses). Consequently, the performance of
all models was evaluated to “unseen” normal and relapse data.

For the architecture’s implementation, we used Pytorch and the Mean Square Error
(MSE) between the reconstructed and input time-series as a loss function for training (batch
size of 64). For the Transformer and the FNN AE, the Adam optimizer [117] was used,
whereas the RMSprop optimizer was used for CNN AE and GRU AE. All models had
a learning rate equal to 0.0001, with the exception of the Transformer having 0.001. The
training took place for 50 epochs, and early stopping was applied to monitor the model’s
performance, using the validation loss of the first validation subset.

The mean absolute error (MAE) between the predictions x̂(i) and the given data x(i)

was calculated in order to obtain the reconstruction error vector with size l × d of each
point i. The error vectors e(i) in the second validation subset are used to compute the
mean (µ) and covariance (Σ) of a multivariate normal distribution that is the expected
error distribution. Afterwards, the “anomaly score” was computed as the Mahalanobis
distance between the predicted points in the test set and the Gaussian distribution that was
calculated in the respective validation subset as in [118]:

a(i) =
√
(e(i) − µ)TΣ−1(e(i) − µ). (4)

The per-point anomaly scores are day-averaged similarly to [48]. The performance
of each architecture was evaluated by the Receiver Operating Characteristic Area Under
Curve (ROC AUC) and Precision-Recall Area Under Curve (PR AUC) metrics. Since we
utilize 5-fold cross-validation, the median metric over all folds is reported as the final score.
Concerning the evaluation of global models, we evaluated them either globally (global
scheme, tested to all patients) or individually (global scheme evaluated individually, thus
per patient).

Experimental Results and Discussion: In order to obtain baseline results, we im-
plemented a random classifier (referred to as Random in Tables 6–8), where we classified
the data without training the models. Specifically, we directly calculated the mean and
the covariance of the features in the validation set and then the anomaly scores in the test
set. Tables 6 and 7 show the results of our experiments for the personalized scheme for all
patients and models. The best results for each patient are shown in bold. We observe that
the best overall performance is obtained by the CNN AE model, with a PR-AUC equal to
0.76, whereas all personalized models’ results surpass the baseline.
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Table 6. Results for PR-AUC (personalized scheme). 1

Patients FNN CNN Transformer GRU Random

#1 0.94 0.95 0.97 0.91 0.91

#2 0.05 0.04 0.02 0.03 0.03

#3 0.54 0.46 0.43 0.44 0.53

#4 0.26 0.34 0.18 0.19 0.18

#5 0.63 0.57 0.60 0.61 0.63

#6 0.70 0.72 0.63 0.67 0.68

#7 0.82 0.86 0.87 0.85 0.86

#8 0.83 0.87 0.65 0.81 0.85

#9 0.79 0.80 0.45 0.75 0.68

#10 0.97 0.95 0.94 0.97 0.97

Median 0.75 0.76 0.61 0.71 0.68
1 The best results for each patient are shown in bold.

Table 7. Results for ROC-AUC (personalized scheme). 1

Patients FNN CNN Transformer GRU Random

#1 0.94 0.96 0.97 0.93 0.91

#2 0.49 0.40 0.22 0.36 0.28

#3 0.57 0.53 0.49 0.49 0.52

#4 0.39 0.39 0.35 0.29 0.22

#5 0.44 0.28 0.45 0.40 0.42

#6 0.49 0.49 0.39 0.42 0.48

#7 0.56 0.69 0.69 0.64 0.62

#8 0.72 0.78 0.64 0.60 0.72

#9 0.78 0.75 0.28 0.58 0.42

#10 0.91 0.88 0.81 0.94 0.91

Median 0.57 0.61 0.47 0.54 0.50
1 The best results for each patient are shown in bold.

Table 8. Results for PR and ROC AUC (Global Scheme (Global) and Global scheme evaluated
individually (Median)). 1

FNN CNN Transformer GRU Random

PR AUC

Median 0.77 0.71 0.76 0.73 0.68

Global 0.48 0.49 0.47 0.52 0.50

ROC AUC

Median 0.62 0.58 0.52 0.57 0.50

Global 0.47 0.51 0.45 0.53 0.50
1 The best results for each architecture are shown in bold.

Figure 11, shows the anomaly score of the test set for patient #1, who suffered a
moderate relapse of about 11 days. The anomaly score to the right of the dividing line
regards the relapse days and to the left the normal days. We easily notice that the anomaly
score during relapse days is higher than on normal days. Note that the days on the x-axis
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are not continuous. For this patient, we obtained the best PR and ROC AUC scores at 0.97
with the Transformer model. We have to emphasize at this point, that for some patients the
performance is low. This is due to the fact that there was only a low amount of available
relapse data (in some cases only a few days or hours after preprocessing); nonetheless,
they were not excluded (as possible outliers), in order to maintain an adequate amount of
data for the experiments. However, the conducted t-tests showed statistically significant
improvement for six out of ten patients over the random baseline, with a p-value lower
than 0.05, whereas patients with more relapse days and data, i.e., patients #6 and #7 had
better results related to the tests.

Figure 11. Anomaly score of Patient #1. Note that the Days on the x-axis are not continuous.

A number of ablations were performed on the best-performing architecture, namely
the CNN AE, concerning the type of features utilized as well as the temporal dimension of
the input tensors. Particularly, in Table 9, we present the median per-patient ROC-AUC
and PR-AUC scores obtained by discarding either the features from the accelerometer and
the gyroscope or those related to the heart rate. We observe that both types of features
are necessary to achieve a good performance; using only the heart-rate-based features, we
obtain a similar ROC-AUC score but a lower PR-AUC, whereas the drop in the PR-AUC is
more noticeable when using only features from the accelerometer and the gyroscope.

Table 9. Ablation study on the feature modalities (heart rate, accelerometer and gyroscope, or both)
used, for the CNN-AE architecture.

Acc./Gyr. Heart Rate PR-AUC ROC-AUC

3 3 0.76 0.61

7 3 0.71 0.62

3 7 0.73 0.52

The results of altering the length (in hours) of the network input, while keeping the
temporal resolution stable (and equal to 5-min intervals), are displayed in Figure 12. We
examine averaging the results at the temporal window of each input tensor (Input Aggr.,
ranging from 4 to 24 h), as well as on a daily basis irrespective of the input length (24 h
Aggr.). From these results, we deduce that the larger the length of the network input, and
thus the temporal window of analysis, the better the overall predicting ability of our model.
We also note that per-day aggregation of the anomaly scores yields better results than using
the temporal dimension of the input as a scale.

Table 8 presents the results for the global scheme and the global scheme evaluated
individually. In this case, the FNN AE model, which was evaluated individually (denoted
as Median), had the best performance with PR and ROC AUC of 0.77 and 0.62, respectively,
whereas the global scheme (denoted as Global) in general presents lower performance
than the models that were evaluated individually, possibly due to the fact that several of
the relapses had “low” severity, thus making their detection harder. Another important
observation that we draw is that patients with moderate and severe relapses yielded better
PR and ROC AUC results than the others.
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Figure 12. Ablation study on the effect of the length (duration covered in hours) of the input tensors
and the aggregation period, for the CNN AE architecture.

Finally, using the best-performing models we experimentally evaluated the impor-
tance of relapse severity, using data from three patients that relapsed multiple times with
different severity levels (Low and Moderate), while also examining the differences pre-
sented between low, moderate and severe relapses across all patients and severity level. For
the former, we observed that for patients with adequate data the reconstruction error for
moderate relapses was higher than the one recorded for the low-severity relapses, whereas
for the latter, as intuitively expected, we noted that there was a gradual increase in the
reconstruction error in relation to the severity of the relapse.

5.3. Relapse Detection and Prediction from Spontaneous Speech

Apart from physiological data, we investigated the extent excerpts from the sponta-
neous speech of the patients can be used to either detect relapses or predict their appear-
ance. We opted for an unsupervised learning approach since it provides the advantage
that models can be trained without necessarily having access to data from relapsing pe-
riods. Experiments conducted in a database with a total of 16 patients, containing over
38,000 s of total speech, yielded encouraging results for both classical Convolutional
Autoencoders (CAEs) and Convolutional Variational Autoencoders (CVAEs) in a person-
alized setting, in agreement to our previous results derived from smaller subsets of this
database [86,119]. Moreover, CVAEs can reach the performance of personalized models in
a global (patient-independent) setup, especially when per-person normalization is applied
to the input features [119]. Finally, we experimented with a decision-level fusion between
audio and physiological data, with the results indicating that physiological signals can act
as a complementary modality to audio.

Data Collection and Preprocessing: For the purposes of this set of experiments, we
utilized the short interviews between the patients and the clinicians, recorded through the
e-Prevention app. Since not all patients recorded interviews, for the subsequent experi-
ments we used interview data from 16 patients (1 with Schizoaffective disorder, 1 with
Schizophreniform disorder, 1 with Bipolar II disorder, 8 with Schizophrenia and 5 with
Bipolar I disorder), collected between May 2020 and December 2021. Patient demographics
used in this work are presented in Table 10. Eight (8) out of the sixteen patients had
experienced a relapse during the duration of this study, whereas the rest were selected
according to the total duration of their interviews. Each interview was annotated, according
to the condition of the patient at the time it was conducted. In particular, interviews were
split into clean data (C), where no relapse had been detected by the clinicians, relapse
data (R), including interviews where the patient’s condition was denoted as relapsing,
and pre-relapse data (P), which correspond to time periods up to 30 days prior to the
appearance of a relapse. For the purposes of this work, both relapsing and pre-relapsing
data were considered anomalous. Note that in contrary to the work described in Section 5.2,
using only smartwatch data, the period for pre-relapse data is different by 9 days; however,
both duration of pre-relapse days that were selected are valid and were dictated by the
clinicians of the e-Prevention project.
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Table 10. Demographics information at the time of recruitment, illness information, and amount of
recorded and analyzed data utterances. 1

Demographics
Male/Female 10/6
Age (years) 28.7 ± 7.6
Education (years) 13.0 ± 1.7
Illness dur. (years) 7.8 ± 6.8

Recorded Data
Num. of Interviews (total) 474
Num. of Interviews (mean ± std) 29.6 ± 8.1
Diarized speech duration (in s) 38,066
Diarized speech duration (in s, mean ± std) 2379 ± 1444
Num. of Utterances (total) 14,562
Num. of Utterances (mean ± std) 910 ± 485
Num. of Utterances (clean, mean ± std) 766 ± 394
Num. of Utterances (pre-relapse, mean ± std) 119 ± 126
Num. of Utterances (relapse, mean ± std) 169 ± 162

1 Utterance statistics for pre-relapsing, or relapsing periods calculated only for those patients who have experi-
enced relapses.

These interview videos were then preprocessed, in order to facilitate the feature extrac-
tion. In particular, the audio excerpts were extracted from the interviews and downsampled
to 16 kHz. In order to isolate the utterances corresponding to patients from the complete
audio excerpts, the x-vector [120] diarization recipe from kaldi [121] was used. This process
resulted in a total of 14,562 utterances (38,066 s), about which we present detailed statistics
in Table 10. For each utterance, the log mel-spectrogram was computed, using a frame
length of 512 samples (approx. 30 ms), an overlap of 256 samples (approx. 15 ms), and
128 mel bands. Finally, these spectrograms were cut off along the time axis in slices of
64 frames (approx. 1 s), thus yielding a 128× 64 representation for each second of speech.

For the experiments examining the effect of fusion between audio and physiological
information in detecting and predicting relapses, it was necessary to produce day-aligned
pairs of interviews and physiological data. To ensure the availability of an adequate amount
of paired data for each patient, these experiments were conducted with a reduced set of
12 patients (1 with Schizoaffective disorder, 1 with Schizophreniform disorder, 7 with
Schizophrenia, 2 with Bipolar I disorder and 1 with Bipolar II disorder), out of whom
6 had experienced a relapse during the course of this study. Thus, taking into account the
coupling of modalities, 164 interview sessions, containing 5623 utterances with an overall
duration of 14,534 s, and 2233 h of physiological data were used. In order to deal with
the reduced amount of physiological data, compared to Section 5.2, the respective features
(in this case, the mean heart rate and R-R interval, the peaks of the high frequency (HF,
0.15–0.4 Hz) and low frequency (LF, 0.04–0.15 Hz) bands of the Welch periodogram, and the
ellipse width of the Poincare recurrence plot) were averaged over 2-min intervals, and then
stacked temporally into a 5× 30 representation, covering one hour of physiological activity.

Architectural Details: In the case of the CAE model, the encoder contains 4 convolu-
tional blocks, which progressively reduce the dimensionality of the input mel-spectrograms
to produce a low-dimensional embedding. Each block consists of a 2D-Convolution layer
with an increasing number of filters at each block, a ReLU activation function, and a 2D
Max Pooling layer. In turn, the decoder restores the latent embedding into its original
dimensionality by applying a series of 4 upsampling convolutional blocks upon it. These
blocks alternate upsampling layers with 2D-Convolution layers, followed by ReLU activa-
tions with the exception of the last layer. The reconstruction objective was enforced through
an MSE loss (LMSE) between the true and estimated spectrograms.

The CVAE is built upon the CAE architecture presented above, but instead of com-
pressing its input into an intermediate latent representation, the encoder of the CVAE
learns a (µ, σ2) Gaussian distribution, from which embeddings are sampled and decoded
through the decoder. To this end, the last convolutional block of the encoder is replaced
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by a pair of parallel convolutional blocks, which estimate the parameters of the latent
Gaussian distribution. This distribution is encouraged to align with the spherical isotropic
Gaussian, N ∼ (0, I), through the imposition of a Kullback–Liebler divergence loss (LKL)
in the bottleneck of the network. For more details about the developed architectures, we
refer the reader to [86,119].

Experimental Protocol: Concerning relapse detection and prediction from audio data,
we trained models for both the personalized and the global case. In the personalized
case, a separate model is trained for each patient who had experienced a relapse during
the course of the study, using their respective speech segments. On the other hand, in
the global case, a single model is trained for all patients, regardless of whether they had
undergone any relapses, using the whole set of interview data. In both cases, we followed
a 5-fold cross-validation training protocol, where the networks were trained only using
clean data, and evaluated on a mixture of clean and anomalous data. In particular, for
each fold, the clean data were split into training (60%), validation (20%) and testing (20%)
data. The clean testing data were then merged with the anomalous (corresponding to
pre-relapsing or relapsing states) data, in order to form the evaluation set. We further note
that to avoid session-wise overfitting, data were split so that spectrograms corresponding
to the same interview belong in the same fold. All networks were trained for a maximum of
200 epochs, with early stopping being applied with a patience of 10 epochs. The networks
were optimized using Adam [117] with a learning rate equal to 3e− 4 and a batch size equal
to 8, and the loss weights for the case of the CVAE were set as WMSE = 1 and WKL = 0.01,
respectively. We also note that to ensure the robustness of the results, each experiment was
repeated five times, and we report on the average of the results over all repetitions.

The performance of both architectures is evaluated on a per-session basis. Each
spectrogram provides an anomaly score; in the case of the CAE, it is derived by the
reconstruction error, whereas in the case of the CVAE, we investigate the suitability of
both the reconstruction error of the spectrogram and the KL divergence of its projected
representation. A single value of the anomaly score for each session is then computed by
temporal aggregation of the per-spectrogram scores. We utilize as our evaluation metrics
the median anomaly score over all sessions, according to the state of the patient and the
mean ROC-AUC score over all folds, applied to the per-session anomaly scores. We also
perform an ablation study on the temporal pooling functions used to aggregate the per-
spectrogram anomaly scores into a single anomaly score for each session. Finally, we
investigate the effect of per-patient normalization of the features in the global case, as
opposed to global feature normalization.

Experiments concerning the fusion of audio and physiological signals were only
conducted for the global case. In this case, a pair of unimodal neural networks were trained
independently and then evaluated individually in coupled speech from interview sessions
and physiological signals from the day the interview was conducted. The unimodal
anomaly scores were temporally aggregated, similar to above, on a per-session basis and a
daily basis, respectively, and then combined using decision-level fusion. To this end, we
experimented with two fusion mechanisms, namely additive (Add.) and multiplicative
(Mult.) fusion.

Personalized Experiments: In Table 11, we present the medians of the per-session
anomaly scores for each patient, depending on the state of the patient during the interview
session (clean, pre-relapsing or relapsing) and the network configuration used for deriving
the anomaly score. We observe that for the majority of patients, interviews corresponding
to either pre-relapsing or relapsing states record higher anomaly scores compared to those
conducted when the patient’s condition was annotated as stable. Interestingly, this trend
appears to be more profound for interviews conducted in pre-relapse periods, than during
relapses. We finally note that when the KL divergence was used as an anomaly measure,
the anomaly scores exhibit lower variability among different patients compared to the
reconstruction error, implying its potential scalability to a subject-independent setting.
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Table 11. Per-patient median anomaly scores for the discrimination between sessions that cor-
respond to stable (C), pre-relapsing (P) or relapsing (R) condition, for both CVAE and CAE
personalized models. 1

Pat. CAE CVAE (MSE) CVAE (KL)

ID C P R C P R C P R

#1 0.292 ± 0.035 0.321 ± 0.067 0.313 ± 0.065 0.520 ± 0.040 0.544 ± 0.073 0.535 ± 0.088 18.60 ± 2.26 21.67 ± 3.81 16.77 ± 3.89

#2 0.452 ± 0.065 0.577 ± 0.000 0.464 ± 0.064 0.703 ± 0.074 0.880 ± 0.000 0.662 ± 0.063 12.44 ± 3.23 18.17 ± 0.00 10.10 ± 1.58

#3 0.417 ± 0.068 0.456 ± 0.065 0.504 ± 0.061 0.689 ± 0.101 0.769 ± 0.068 0.879 ± 0.043 18.49 ± 3.62 22.30 ± 3.20 26.45 ± 8.26

#4 0.273 ± 0.034 0.359 ± 0.070 0.295 ± 0.027 0.606 ± 0.065 0.729 ± 0.102 0.622 ± 0.046 14.38 ± 1.51 24.53 ± 12.60 21.46 ± 2.10

#5 0.308 ± 0.029 0.389 ± 0.010 0.286 ± 0.000 0.595 ± 0.044 0.706 ± 0.019 0.569 ± 0.000 15.03 ± 1.65 27.98 ± 2.92 13.71 ± 0.00

#6 0.649 ± 0.104 0.646 ± 0.130 0.599 ± 0.146 0.887 ± 0.091 0.896 ± 0.190 0.835 ± 0.181 12.43 ± 3.03 16.23 ± 7.57 17.48 ± 4.35

#7 0.320 ± 0.018 0.386 ± 0.048 0.380 ± 0.000 0.573 ± 0.033 0.669 ± 0.035 0.632 ± 0.000 14.03 ± 1.95 20.17 ± 5.85 14.45 ± 0.00

#8 0.520 ± 0.051 0.573 ± 0.000 0.665 ± 0.000 0.776 ± 0.079 0.815 ± 0.000 0.981 ± 0.000 13.32 ± 2.28 16.12 ± 0.00 20.79 ± 0.00

1 Anomaly scores, corresponding to either pre-relapsing or relapsing states, that follow the desired trend (higher
number than stable condition) are shown in bold.

In Table 12, we report on the macro-average of the ROC-AUC score for each network
configuration, according to the pooling function used to aggregate the per-spectrogram
anomaly scores into a single measure, and considering both pre-relapsing and relapsing
states as anomalous. With regard to the temporal pooling function, we compare average
pooling (AP), max pooling (MP) and norm pooling (NP) [122] using the fixed value p = 10.
No statistically significant deviations between the evaluated models were found at the
p = 0.05 level, after using the Bonferroni-corrected Mann–Whitney U-Test. We observe
that when using the reconstruction error as the anomaly score, average pooling performs
best, whereas comparatively better results are acquired when using the norm pooling for
temporal aggregation of the KL divergence scores of the CVAE. Finally, the per-patient
ROC-AUC scores when using the best performing pooling function for each model are
presented in Table 13, where we observe that for five out of the eight patients, a ROC-AUC
score higher than 0.7 is achieved.

Table 12. Average of the per-patient ROC AUC scores for the discrimination between sessions that
correspond to stable, or anomalous (pre-relapsing or relapsing) condition, for both CVAE and CAE
personalized models.

Pooling
CAE

CVAE
Function MSE KL

AP 0.681 ± 0.051 0.669 ± 0.048 0.644 ± 0.052

MP 0.624 ± 0.056 0.595 ± 0.053 0.631 ± 0.054

NP 0.644 ± 0.056 0.640 ± 0.049 0.659 ± 0.053

Global Experiments: In Table 14, we present the medians of the per-session anomaly
scores for all patients, depending on their state during the interview and the network
configuration used, as well as the application of global or per-patient normalization. We
observe that when using global feature normalization, pre-relapsing sessions record only
slightly higher anomaly scores than sessions conducted under stable patient conditions,
whereas lower scores are acquired from sessions corresponding to relapsing states. On
the other hand, per-patient normalization leads to better discriminability between clean
sessions and sessions corresponding to both anomalous states in the case of the CVAE. The
trend observed in the personalized case, regarding the higher anomaly scores yielded by
pre-relapsing sessions compared to ones recorded during relapsing periods, is noticeable in
this case as well.
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Table 13. Per-patient ROC AUC scores for the discrimination between sessions that correspond to
stable, or anomalous, condition, for both CVAE and CAE personalized models.

Patient
CAE

CVAE
ID MSE KL

#1 0.549 ± 0.140 0.537 ± 0.111 0.549 ± 0.115

#2 0.465 ± 0.133 0.433 ± 0.127 0.405 ± 0.127

#3 0.718 ± 0.171 0.720 ± 0.162 0.662 ± 0.179

#4 0.665 ± 0.064 0.650 ± 0.092 0.742 ± 0.087

#5 0.780 ± 0.063 0.800 ± 0.063 0.786 ± 0.068

#6 0.489 ± 0.148 0.512 ± 0.115 0.656 ± 0.142

#7 0.883 ± 0.082 0.929 ± 0.090 0.701 ± 0.149

#8 0.790 ± 0.245 0.770 ± 0.237 0.770 ± 0.256

Average 0.681 ± 0.051 0.669 ± 0.048 0.659 ± 0.053

Table 14. Median anomaly scores for the discrimination between sessions that correspond to stable
(C), pre-relapsing (P) or relapsing (R) condition, for both CVAE and CAE global models.

Pers. Pool. CAE CVAE (MSE) CVAE (KL)

Norm Func. C P R C P R C P R

7 AP 0.166 ± 0.026 0.165 ± 0.038 0.152 ± 0.030 0.483 ± 0.058 0.472 ± 0.086 0.462 ± 0.071 13.07 ± 1.41 13.47 ± 1.44 12.33 ± 1.28

7 MP 0.280 ± 0.055 0.292 ± 0.082 0.255 ± 0.064 0.774 ± 0.120 0.804 ± 0.176 0.722 ± 0.139 21.58 ± 3.68 24.79 ± 4.94 21.78 ± 4.22

7 NP 0.213 ± 0.036 0.223 ± 0.053 0.196 ± 0.047 0.591 ± 0.076 0.610 ± 0.121 0.556 ± 0.103 15.98 ± 2.27 17.74 ± 2.71 15.65 ± 2.37

3 AP 0.189 ± 0.030 0.201 ± 0.046 0.189 ± 0.039 0.520 ± 0.065 0.581 ± 0.086 0.537 ± 0.107 12.66 ± 1.03 14.21 ± 0.99 12.84 ± 1.52

3 MP 0.341 ± 0.074 0.388 ± 0.142 0.339 ± 0.094 0.905 ± 0.176 1.197 ± 0.420 1.139 ± 0.411 22.31 ± 4.27 31.64 ± 9.21 28.50 ± 7.43

3 NP 0.252 ± 0.047 0.283 ± 0.089 0.249 ± 0.066 0.672 ± 0.107 0.848 ± 0.238 0.772 ± 0.221 15.86 ± 2.24 21.65 ± 2.71 18.85 ± 4.16

The ROC-AUC scores depending on (i) whether features were normalized globally or
per-patient, and (ii) the temporal pooling function used to aggregate the per-spectrogram
anomaly scores are presented in Table 15. These results support the qualitative claims
deduced from the median anomaly scores presented above. Namely, when the input
spectrograms are normalized per patient, and the KL divergence is used as the anomaly
score, the global CVAE-based model reaches comparable performance to the personalized
models, outperforming the original CAE. On the other hand, the application of global
normalization to the spectrograms does not lead to performance improvements over
random chance, irrespective of the model used. The necessity of per-patient normalization
as a means to reach the performance of a personalized model is also consistent with [72].

Table 15. ROC AUC scores for the discrimination between sessions that correspond to stable, or
anomalous, condition, for both CVAE and CAE global models, depending on the normalization
protocol and pooling function used.

Pers. Pool.
CAE

CVAE
Norm Func. MSE KL

7 AP 0.480 ± 0.016 0.474 ± 0.017 0.507 ± 0.019

7 MP 0.525 ± 0.024 0.519 ± 0.021 0.576 ± 0.026

7 NP 0.507 ± 0.022 0.501 ± 0.018 0.558 ± 0.023

3 AP 0.525 ± 0.025 0.583 ± 0.034 0.645 ± 0.029

3 MP 0.531 ± 0.021 0.633 ± 0.036 0.694 ± 0.032

3 NP 0.525 ± 0.021 0.625 ± 0.036 0.698 ± 0.030

Concerning the suitability of the temporal aggregators evaluated, in contrast to the
personalized case, average pooling yields the worst performance, whereas a global ROC-
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AUC score of approximately 0.7 is reached when using norm pooling as the aggregator, in
conjunction with the KL divergence of the CVAE as a scoring function. Indeed, applica-
tion of the Mann–Whitney U-Test to the ROC-AUC scores (over all folds and experiment
repetitions, N = 25) indicates the superior performance of the KL-CVAE over the other
two configurations at a p = 0.05 statistical significance level post-Bonferroni correction,
irrespective of the temporal pooling function and the normalization protocol used. The su-
perior performance shown by the CVAE, compared to the CAE, in the global setup is in
agreement with [123], where VAE-based models were used to successfully extract speaker-
invariant features from speech signals, indicating decreased dependency on person-specific
speech properties.

In Figure 13, we present the per-spectrogram KL loss for two interview sessions
corresponding to the same patient. We observe that the spectrograms that correspond to
stable (dashed blue) patient conditions do not exhibit consistently higher anomaly scores
compared to those comprising the interview recorded during a relapse (orange). However,
a number of peaks appear in the anomaly scores of the relapsing session, denoted with red
circles. Upon examination of the speech excerpts, whose spectrograms are also displayed in
Figure 13, we observe that they correspond to segments with abrupt pauses in the patient’s
flow of speech.

Figure 13. Per-spectrogram visualization of the KL divergence scores for two interview sessions of
the same patient, one corresponding to stable (dashed blue) and one to relapsing (orange) condition.

Multimodal Fusion: Before presenting the results on the fusion between audio and
physiological data, we evaluate a number of modifications to the CNN-AE architecture
presented in Section 5.2 operating on the physiological data to make it suitable for a global
(patient-independent) setup. Since the results presented above indicate that, in conjunction
with a per-patient feature normalization scheme, CVAEs can scale in a global relapse
detection and prediction setting from audio better than CAEs, we examine the effect of
those adjustments to the CNN-AE using physiological signals. In particular, we adapt the
CNN-AE architecture into a 1D-CVAE following a similar procedure to the one used for the
speech-based architecture, while also examining the effect of per-patient normalization on
the input physiological tensors. Concerning the per-instance anomaly score, we investigate
as potential probe points either the Mahanalobis distance between the predicted error
distribution and the error distribution of the validation set [118], denoted as EMD, or the
KL-divergence of the input embeddings.

The results are provided in Table 16, leading to similar conclusions to those acquired
from the speech segments. Namely, the per-patient normalization appears to positively
affect the performance of the network, irrespective of the architecture used, whereas using
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the 1D-CVAE with the KL divergence as an anomaly score of the HRV tensors leads to
improved performance compared to the original CNN-AE. Thus, based on these results in
conjunction with those of the previous sections, networks for both modalities are realized
as appropriately designed CVAEs, with the input features of the respective modality being
normalized per subject and the anomaly scores, for both modalities, being derived from
the KL divergence of the respective embeddings.

Table 16. Average ROC-AUC scores for the discrimination between stable and anomalous (pre-
relapsing or relapsing) patients’ condition for the HRV autoencoder, depending on the architecture,
normalization scheme and anomaly score.

Architecture Pers. Norm EMD KL

CNN-AE 7 0.506 ± 0.051 -

CNN-AE 3 0.589 ± 0.086 -

1D-CVAE 7 0.492 ± 0.051 0.471 ± 0.042

1D-CVAE 3 0.438 ± 0.128 0.666 ± 0.073

The results acquired from combining audio and physiological data using this configu-
ration are presented in Table 17; apart from the two fusion mechanisms we examine, we
present the results acquired by only using a single modality. We observe that using both
modalities with either fusion mechanism yields higher results than using only a single
modality, indicating that physiological signals can be utilized as auxiliary information in
speech-based relapse detection and prediction. Concerning the fusion mechanisms, addi-
tive (Add.) fusion appears to provide slightly improved results compared to multiplicative
(Mult.) fusion.

Table 17. Average ROC-AUC scores for the discrimination between stable and anomalous (pre-
relapsing or relapsing) patients’ condition, depending on the modalities and fusion.

Audio HRV Fusion ROC-AUC

3 7 - 0.764 ± 0.045

7 3 - 0.666 ± 0.073

3 3 Mult. 0.773 ± 0.041

3 3 Add. 0.779 ± 0.038

We also examine the effect of the temporal pooling mechanism used to aggregate
the anomaly scores for each modality; we report on the results in Table 18. Similar to
the unimodal audio dataset, norm pooling provides the best results concerning the per-
session aggregation of the anomaly scores for each spectrogram. However, regarding the
physiological data, we found that daily averaging of the per-hour scores resulted in the
best performance. In fact, usage of the other two potential temporal aggregation functions
negated the benefits of the multimodal relapse detection scheme, resulting in performance
lower than the one of the unimodal audio CVAE.

Table 18. Average ROC-AUC scores for the discrimination between stable and anomalous (pre-
relapsing or relapsing) patients’ condition, depending on the temporal pooling per modality.

Audio HRV Pooling

Pooling AP MP NP

AP 0.729 ± 0.038 0.602 ± 0.064 0.629 ± 0.057

MP 0.764 ± 0.036 0.707 ± 0.036 0.723 ± 0.037

NP 0.779 ± 0.038 0.696 ± 0.040 0.718 ± 0.038
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5.4. Evaluating Mental Conditions Utilizing Facial Cues from Videos

Finally, in this section, we describe our work in trying to predict PANSS indicators
related to facial cues, using both handcrafted and learned features, extracted from the
videos of the unstructured interviews conducted between patients and clinicians. Indeed,
facial expressions of patients could be a key indicator towards the quantification of cogni-
tive impairments [124], and recent advancements in computer vision, machine and deep
learning allow the evaluation and recognition of such temporal emotional status, through
facial expressions. For that reason, we try to assess the degree of symptoms severity in
patients with mental disorders based on their social behavior and cognitive functioning,
while they are conducting the weekly interviews with the clinicians. Specifically, we aim to
automatically recognize the alterations in psychopathology, which are determined through
the Positive and Negative Syndrome Scale (PANSS) [40], using features extracted from the
patients’ facial expressions [125].

Data Collection: PANSS is one of the most well-established procedures to assess symp-
toms’ severity. Through the monthly in-person assessments with the patients (Section 4),
the clinicians are evaluating three types of symptoms, the positive ones that refer to the
excessive occurrence of normal functions, and the negative ones which correspond to the
limited occurrence of normal functions, as well as general psychopathology symptoms.
Overall, 30 symptoms are rated on a scale from 1–7, resulting in a maximum score of
210 points. Due to their association with facial expressions, 10 PANSS elements were
chosen to constitute the ground truth for our model, namely: excitement, hostility (posi-
tive items) anxiety, poor impulse, motor retardation, depression, tension (general items),
blunted effect, poor rapport, lack of spontaneity, and flow of conversation (negative items).

To ensure the correlation between the recorded interview videos and the PANSS
values, annotated by the clinicians, we only used videos that were recorded up to two
weeks or closer to the assessments that the patients undergo each month. Thus, at the time
that this work was conducted, the number of such videos was 167, collected up to early
October 2020, (with a duration of up to 1141 seconds) corresponding to 22 patients (2 with
Schizoaffective disorder, 1 with Schizophreniform disorder, 1 with Bipolar II disorder, 12 with
Schizophrenia and 6 with Bipolar I disorder). Patient demographics are presented in Table 19.

Table 19. Demographics information.

Male/Female 16/6
Age (years) 30.36± 7.51
Education (years) 12.95± 2.03
Illness dur. (years) 8.32± 6.98

Methodology and Data Preprocessing: In order to predict PANSS values from facial
cues detected in the interview videos, we followed a pipeline consisting of the follow-
ing steps: (i) detection of the facial area from the video sessions, (ii) frame-wise feature
extraction, (iii) aggregation of the frame-wise features into a single feature vector for each
session and finally (iv) prediction of the value of the PANSS from the extracted session-wise
feature representations.

In more detail, we first subsample the RGB videos, using a sampling rate of one frame
per second. Afterwards, in order to extract the face region for each frame, we utilize a
pre-trained Multiple Task Cascaded Neural Network (MTCNN) model [126] to detect the
facial area, and then crop each frame accordingly.

For the representation of each frame, we compared two methodologies for feature
extraction. In the first case, we utilized the widely used Bag of Visual Words (BOVW)
method. In particular, n keypoints are detected in each frame using the Speeded Up
Robust Features (SURF) algorithm [127]; for each detected keypoint, a feature vector with
64 elements is computed. Afterwards, by using the k-means algorithm, the collection of
feature vectors calculated over all videos and all frames is segmented into k clusters, with
each cluster centroid corresponding to a visual word. The final descriptor computed for
each frame is a histogram of k values, denoting the number of occurrences for each visual
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word in the frame. On the other hand, the second approach we evaluated is based on
transfer learning. In more detail, we utilize the convolutional front-end of an EfficientNet-
B0 [128], that has been pre-trained on ImageNet [129]; the frame-wise representation we
obtain at the output of the front-end as a feature vector contains a total of k = 1280 elements.

By this point, we have acquired an m× n feature representation for each interview
session, where m corresponds to the number of extracted frames per session video and n
to the feature dimensionality (n = k for the BOVW-based feature extraction and n = 1280
for the EfficientNet-based methodology). In order to aggregate them into a single feature
vector, we repeat the BOVW procedure on the whole set of n-dimensional frame descriptors,
acquiring thus k′ centroids and assigning a centroid to each frame via k-means. Afterwards,
we again form a histogram of k′ values for each session video, which contains the relative
appearance frequency of each visual word in the interview. Finally, the extracted represen-
tations for each interview are classified into the respective PANSS class. To this end, we
experiment with three widely-used machine learning models: XGBoost (XGB), Random
Forests (RF) and Support Vector Machines (SVM) with a radial basis function (RBF) kernel.

Experimental Protocol and Results: Based on the pipeline presented above, for each
video, we first extract the facial region from the sampled frames, then obtain a low-level
feature representation corresponding to each video frame, and finally fuse the frame-level
representations into a high-level feature representation for each video. Thus, the following
configurations were evaluated: (i) BOVW2 (Bag of Visual Words (BOVW) for both low-
level and high-level representations) and (ii) EfficientNet to BOVW (EfficientNet features
for the low-level representation and BOVW for the high-level representation). The data
were divided into two subsets, with 70% of the videos used for training and the rest for
testing, whereas the optimal number of clusters for each PANSS item was determined by
grid search. The results are presented in Table 20, using the balanced accuracy and the
top-2 accuracy as metrics; next to each PANSS element, we also denote the number of
values (classes) the respective element takes in the dataset. In terms of balanced accuracy
and the BOVW2 configuration, the best results concern predictions of tension, hostility
and poor impulse control recording values up to 0.72, while anxiety and poor rapport
cannot be successfully estimated by either configuration. Additionally, some PANSS items
such as poor impulse control, poor rapport, tension and excitement exceed in terms of the
top-2 accuracy barrier of 80%, deviating significantly from the balanced accuracy scores,
potentially because of the subjectivity of PANSS questionnaire scoring. Finally, we note
that contrary to our assumptions, the features extracted from the pretrained EfficientNet
(used in the EfficientNet to BOVW configuration) perform worse than those computed by
the SURF algorithm (utilized in the BOVW2 configuration).

Table 20. Classification results for BOVW2 (left) and EfficientNet to BOVW (right) configurations
based on balanced accuracy (left) and top-2 accuracy (right) metrics. The number of respective classes
is shown next to PANSS items. 1

PANSS Items BOVW2 EfficientNet to BOVW
RF XGB SVM RF XGB SVM

Depression (6c) 0.49 0.82 0.6 0.85 0.30 0.68 0.47 0.64 0.53 0.64 0.30 0.75

Anxiety (5c) 0.44 0.65 0.37 0.69 0.33 0.84 0.26 0.77 0.36 0.77 0.29 0.85

Tension (4c) 0.70 0.89 0.68 0.85 0.56 0.62 0.54 0.77 0.61 0.85 0.46 0.81

Poor Rapport (4c) 0.44 0.86 0.49 0.90 0.34 0.68 0.41 0.86 0.55 0.82 0.34 0.57

Poor Impulse Control (3c) 0.72 1 0.71 0.79 0.39 1 0.43 0.96 0.66 0.82 0.37 0.96

Motor Retardation (4c) 0.40 0.75 0.60 0.82 0.36 0.75 0.41 0.82 0.40 0.79 0.32 0.79

Excitement (4c) 0.58 0.78 0.61 0.82 0.42 0.78 0.49 0.85 0.47 0.85 0.41 0.67

Hostility (3c) 0.72 0.96 0.68 0.93 0.42 0.78 0.42 1 0.60 0.89 0.49 0.79

Blunted Affect (5c) 0.58 0.68 0.55 0.64 0.34 0.64 0.34 0.64 0.47 0.68 0.30 0.64

Lack of Spontaneity(5c) 0.49 0.64 0.65 0.79 0.40 0.75 0.49 0.64 0.26 0.68 0.43 0.75

1 Best results, regarding the balanced accuracy metric, are shown in bold for each configuration and classifica-
tion method.
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6. Conclusions

This paper presents the e-Prevention system, an innovative integrated system for med-
ical monitoring and support that facilitates effective monitoring and relapse prevention in
patients with mental disorders. To achieve this target, advanced modules were developed
concerning (a) the long-term continuous recording of biosignals through an unobtrusive
smartwatch device, (b) the recording of audio-visual data obtained from the weekly inter-
views that were conducted between patients and clinicians, and (c) the deployment of the
cloud server that supports the automatic uploading and storage of all recorded data along
with all peripheral modules concerning the dedicated applications that were implemented.
We experimentally validated the feasibility of detecting and predicting psychopathology
and relapses from both physiological signals acquired from the smartwatch and audiovisual
data obtained through the recorded interviews between the patients and the clinicians.

In detail, both traditional and nonlinear features derived from the physiological signals
were shown to statistically significantly differ between a group of patients and controls.
Based on the above features, we developed and experimentally evaluated a number of
state-of-the-art autoencoders for the task of detecting relapses from physiological signals,
achieving promising results in personalized experiments. Regarding the audiovisual
interviews, convolutional autoencoder architectures using the spontaneous speech of the
patients were utilized to detect and predict relapses in both personalized and global settings,
with CVAEs in particular successfully scaling in a patient-independent setup. Furthermore,
facial cues of the patients, extracted from the interview videos, were found to correlate with
psychopathological scales indicative of the patients’ state. Finally, in the case of speech
signals, experiments indicate that fusion between speech and biosignals can further bolster
the results. Overall, the above results constitute a significant step towards the goal of
successful prediction of possible relapses, eventually leading to the improvement of the life
quality of mental patients through their prevention.
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