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Abstract: A casting image classification method based on multi-agent reinforcement learning is
proposed in this paper to solve the problem of casting defects detection. To reduce the detection time,
each agent observes only a small part of the image and can move freely on the image to judge the
result together. In the proposed method, the convolutional neural network is used to extract the local
observation features, and the hidden state of the gated recurrent unit is used for message transmission
between different agents. Each agent acts in a decentralized manner based on its own observations.
All agents work together to determine the image type and update the parameters of the models by
the stochastic gradient descent method. The new method maintains high accuracy. Meanwhile, the
computational time can be significantly reduced to only one fifth of that of the GhostNet.

Keywords: multi-agent reinforcement learning; casting image classification; casting defects detection

1. Introduction

Casting defects detection is an essential problem in the machinery industry. High
quality castings are very important for automobiles, engineering equipments and other
products. It is necessary to find and deal with these defective castings in time. Otherwise,
it will harm the quality of downstream industrial products [1]. With the development of
computer vision technology, defects detection methods based on casting image processing
have been proposed and applied in the recent years [2–5]. These progresses are made upon
various excellent network structures, such as AlexNet [6], VGG [7], and ResNet [8]. In the
past decade, in order to improve the classification accuracy, the models are designed to be
more and more complex, which leads to an increasingly large number of parameters and an
exponential increase in the computational burdens, especially for large images [9,10]. The
image size of the castings is also large, but usually the defects are only located in a small
number of the pixels, which means large numbers of the pixels in the image are useless for
the defects detection task, but they still consume equivalent computational resources. So,
the reinforcement learning method with multiple agents are used in this paper to find the
most informative sub-images.

Image classification based on reinforcement learning has been a research hot spot in
recent years. In the work of Ref. [11], the policy gradient method [12], which is a very basic
reinforcement learning algorithm, is used to optimize the convolutional neural network
model for image classification. In the work of Ref. [13], the Faster R-CNN model [14] is
used to implement anomaly detection while the Deep Q-learning algorithm [15] is used to
classify anomalies in the images. In the above works, the reinforcement learning algorithms
are used as the optimizer on all the pixels of an image or a sub-image derived by some
other methods, so single agent algorithms are natural choices in such a situation. On the
contrary, reinforcement learning algorithms can also be used as an effective tool to find
the key region in the image. In Ref. [16], Deep Q-learning algorithm is used to select a
vital area of the image in a vehicle classification task. In Ref. [17], a multi-agent algorithm
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PixelRL, which is based on the A3C [18] algorithm, is proposed. In PixelRL, each pixel has
been assigned an agent so the number of agents is equivalent to the number of pixels, and
it achieves excellent results compared to traditional methods [19,20]. At the same time,
another multi-agent algorithm is proposed in Ref. [11], where each agent controls a sliding
square window. This method is more robust and has better generalization based on the
results of the experiments on the CIFAR-10 dataset and the MNIST dataset [21].

The idea of this work is to use multiple isomorphic agents with sliding square window
to find the defect regions. Meanwhile, GRU (Gated Recurrent Unit) [22] models are used
to aggregate beliefs on the trajectories of the agents. Compared with the original image,
the size of the observation image of each agent has been significantly reduced, and the
image category can be judged more quickly. In the following part of this paper, the multi-
agent problem is constructed in Section 2. The proposed method and the corresponding
models are described in Section 3. In Section 4, experiments are performed on the casting
image dataset and compared with several mainstream convolutional neural network based
models. The conclusions are given in the last section.

2. Multi-Agent Reinforcement Learning

For the problem of casting image classification, a decentralized partially observable
Markov decision process model can be used [23–27], which can be expressed as an eight-
tuple 〈N, S, A, T, R, O, Z, γ〉, where N represents the number of agents, usually greater
than or equal to 2 in the case of multi-agent reinforcement learning. S represents the state
space. A = A1 × A2 × · · · × AN represents the joint action space of all agents, where Ai
represents the action space of the i-th agent. T : S× A× S → [0, 1] is the state transition
function, which is used to represent the probability of the agent transitioning to state s′ ∈ S
after performing a joint action a ∈ A in state s ∈ S. R : S × A × S → R is the reward
function, which represents the reward obtained by the agent after the state transition
occurs. Under fully cooperative tasks, the reward value of all agents can be the same.
O = O1 ×O2 × · · · ×On represents the joint local observation space of all agents, where Oi
represents the local observation space of the i-th agent. Z : S× A→ O is the observation
function. The i-th agent can only obtain local observations Oi under the condition of s ∈ S.
γ ∈ [0, 1] is the discount factor.

According to the different training schemes, multi-agent reinforcement learning meth-
ods can be divided into three categories, namely CTCE (Centralized Training Centralized
Execution), DTDE (Distributed Training Decentralized Execution), and CTDE (Centralized
Training Decentralized Execution) [28–30]. In the CTCE scheme, there is a centralized
controller. All agents submit their observations and rewards to the centralized controller,
and then the centralized controller decides the action for each agent. In the DTDE scheme,
each agent interacts with the environment independently and determines actions by itself.
In the CTDE scheme, the centralized controller knows each agent’s observations, actions,
and rewards during the training phase. After training, the centralized controller is not
needed [31,32]. This paper adopts the DTDE scheme, does not require a centralized con-
troller, and adds a communication mechanism, and each agent can obtain information from
other agents, as shown in Figure 1.

environment

Agent 1 Agent 2 Agent N

2a2o1a1o

( )1 1 1;a o  ( )2 2 2;a o  ... ( );N N Na o 

No
Na

Figure 1. Schematic diagram of distributed training decentralized execution.
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According to the different types of tasks, multi-agent reinforcement learning methods
are divided into three categories, namely the fully competitive, fully cooperative, and
mixed task [33–35]. In the fully competitive task, assuming there are two agents, the reward
value R1 of the first agent and the reward value R2 of the second agent have the relationship
R1 = −R2. The competitive task emphasizes the performance of the single agent. However
in this paper, agents are fully cooperative. In the fully cooperative tasks, the rewards can
be jointly maximized since all of the agents’ goals are the same. The joint performance,
instead of the performances of the single agents, is emphasized, which makes for a shorter
computational time. The common goal of the agents in this paper is to reduce the prediction
errors, which will be described in the next section.

3. Network Structure and Training Method

The overall network includes five modules, namely the feature extraction module, position
encoding module, prediction module, resolution module, and communication module. Taking
two agents as an example, the overall network structure is shown in Figure 2. The specific
structure of each module will be introduced in the following few sections.

observation

original image

feature 
extraction

communication

position 
encoding

prediction GRUdecision GRU

classifierpolicy

classaction

observation

feature 
extraction

communication

position 
encoding

prediction GRUdecision GRU

classifierpolicy

classaction

Figure 2. The overall network structure.

3.1. Feature Extraction Module

First, local observations are generated from the original image and the coordinates of
the i-th agent, which can be expressed as follows:

oi(t) = O(I, pi(t), w) (1)

where I is the original image, pi(t) is the position coordinate of the i-th agent at time t, and
w is the window size. The initial position coordinate of the i-th agent pi(0) is randomly
generated with uniform probability. By default, the window is set to 20× 20 pixels because
many experiments have shown that a window of 20× 20 pixels can already achieve good
results. Taking two agents as an example, the schematic diagram of local observation is
shown in Figure 3. As can be seen from Figure 3, the i-th agent move one step to the right
and the i + 1-th agent move one step down from time t to t + 1. The step length here is
equivalent to the window size.

( )io t

1( )io t+

(a)

( 1)io t +

1( 1)io t+ +

(b)

Figure 3. Schematic diagram of local observations. (a) The local observations of the i-th agent and the
i + 1-th agent at time t; (b) The local observations of the i-th agent and the i + 1-th agent at time t + 1.
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After the local observation is generated, the feature of the local observation is extracted
by the convolutional neural network. Taking the local observation of 20× 20 pixels as
an example, the structure of the convolutional neural network is shown in Figure 4. It
includes three convolutional layers and two max-pooling layers and finally passes through
the flatten layer. Using θ1 to represent the parameters in the convolutional neural network,
the feature extraction process can be expressed as follows:

bi(t) = f1(oi(t); θ1) (2)

20×20
3@20×20

3@10×10
6@10×10 6@5×5

12@5×5

300

Convolution Max-Pool Convolution Max-Pool Convolution Flatten

Figure 4. The structure of the convolutional neural network.

3.2. Position Encoding Module

The position encoding module is the encoding of the agent’s position, which consists
of a fully connected layer, and the CeLU (Continuously Differentiable Exponential Linear
Units) [36] function is used as the activation function, as shown in Figure 5. The CeLU func-
tion is differentiable at all points, and gradient vanishing or gradient exploding problems
can be avoided by using CeLU as the activation function. The positions of the agents are
quite critical in this method, since it directly determines the performance of the prediction.
If the agent is right at the location of the defect, the accuracy of the output can be much
higher. The position encoding process can be expressed as follows:

λi(t) = f2(pi(t); θ2) (3)

where θ2 represents the parameters of the position encoding module. The CeLU function is
shown as follows:

CeLU(x) = max(0, x) + min(0, exp(x)− 1) (4)

( )pi t

( )λi t

Figure 5. The position encoding module.

3.3. Prediction Module

The prediction module consists of the prediction GRU and the classifier. Each agent
is assigned a prediction GRU to enable the agent to learn long-term dependencies. The
function of this GRU is to aggregate the posterior information throughout the task. The
structure of the GRU is shown in Figure 6. The update method of GRU is given by the
following four formulas:

z(t) = σ(Wz · [h(t), x(t)]) (5)

r(t) = σ(Wr · [h(t), x(t)]) (6)
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h̃(t) = tanh(W · [r(t) ∗ h(t), x(t)]) (7)

h(t + 1) = (1− z(t)) ∗ h(t) + z(t) ∗ h̃(t) (8)

where σ represents the Sigmoid function, Wz, Wr, and W are all parameters that need to be
trained.

tanh

1-



 



+



( )h t ( 1)h t +

( )z t
( )r t ( )h t

( )x t

Figure 6. The structure of GRU.

Let hi(t) denote the hidden state of the i-th agent at time t. The update method of
prediction GRU is shown as follows:

hi(t + 1) = f3(hi(t), xi(t); θ3) (9)

where θ3 represents the parameters in the prediction GRU, and xi(t) consists of three
parts: the features of local observations of the i-th agent, the average message from other
agents and the position encoding of the i-th agent. The classifier is composed of two fully
connected layers, and CeLU is used as the activation function, which can be expressed as
follows:

qi = f4(hi(T); θ4) (10)

where T represents the time step of each episode, hi(T) represents the hidden state of the
prediction GRU at time T, θ4 represents the parameters of the classifier and qi represents
the prediction category. The final image prediction is made jointly by all agents, which can
be expressed as follows:

qc = argmax

(
Softmax

1
N

N

∑
i=1

qi

)
(11)

3.4. Resolution Module

The resolution module consists of the decision GRU and the policy network. Note
that the decisions of the agents not only depend on the current observations, but also on
their past observations and states, so the GRU model is suitable for making decisions based
on the current and the past information. Each agent is assigned a decision GRU whose
structure is the same as the prediction GRU, but with slightly different inputs, which is
updated as follows:

ĥi(t + 1) = f5

(
ĥi(t), xi(t); θ5

)
(12)

where ĥi(t) is the hidden state of the decision GRU of the i-th agent at time t, θ5 is the
parameter in the decision GRU, and then we input ĥi(t + 1) into the policy network to
obtain the action at time t + 1. The process can be expressed as follows:

ai(t + 1) = f6

(
ĥi(t + 1); θ6

)
(13)
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where θ6 represents the parameters of the policy network, which is constructed by two fully
connected layers, using CeLU as the activation function, and finally passing through the
softmax layer, then the position pi(t + 1) at time t + 1 is generated from the action ai(t + 1)
of the i-th agent at time t + 1 and the position pi(t) at time t, which can be expressed as
follows:

pi(t + 1) = g(pi(t), ai(t + 1)) (14)

3.5. Communication Module

Each agent can obtain messages from other agents. The communication module is
constructed using CeLU as the activation function by two fully connected layers. The
communication process can be expressed as follows:

mi(t) = f7

(
hi(t), ĥi(t); θ7

)
(15)

where hi(t) and ĥi(t) come from the prediction GRU and decision GRU, respectively, and
θ7 represents the parameters of the communication module. So far, xi(t) can be expanded
as follows:

xi(t) = (bi(t), mi(t), λi(t)) (16)

where mi(t) is the average message obtained by other agents, which can be given by the
following equation:

mi(t) =
1

N − 1 ∑
j 6=i

mj(t) (17)

where mj(t) represents the message of other agents except the i-th agent.

3.6. Prediction Process and Training Method

The overall prediction process is shown in Algorithm 1.
In this paper, the stochastic gradient descent method is used to update the network pa-

rameters, and Θ = [θ1, θ2, θ3, θ4, θ5, θ6, θ7] represents the parameters defined by Algorithm 1.
Let T denote all possible trajectories, and let τ indicate the trajectory sampled from T .
Taking the negative of the error between the actual label and the predicted label as the
reward value of this trajectory, it can be expressed as follows:

rτ = −L(qc − q̂) (18)

where q̂ represents the actual label, and the mean squared error loss function is used to
replace L. The goal is to maximize the expected reward value J, which can be expressed as
follows:

J = E(rτ) = ∑
τ∈T

pτrτ (19)

where pτ represents the probability of the occurrence of this trajectory, which is expanded
as follows:

pτ =
T

∏
t=0

π
(
at | st) = T

∏
t=0

N

∏
i=1

πi
(
at

i | ot
i
)

(20)

To simplify the formula, denote ai(t) as at
i , and denote oi(t) as ot

i . Then we need to
calculate the gradient of J, which is expanded as follows:

∇Θ J = ∑
τ∈T

rτ∇Θ pτ + pτ∇Θrτ

= ∑
τ∈T

pτ∇Θ(ln pτ)rτ + pτ∇Θrτ

= E(∇Θ(ln pτ)rτ +∇Θrτ)

(21)
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where rτ is related to the parameter Θ, so the gradient must be calculated for rτ . Because
it is not possible to traverse all trajectories, a Monte Carlo method is used to estimate J
by sampling multiple times. Suppose C trajectories are sampled to estimate J, then the
gradient of the estimated value can be expressed as follows:

∇Θ Ĵ =
1
C

C

∑
k=1
∇Θ(ln pk)rk +∇Θrk (22)

where ∇Θ Ĵ is an unbiased estimate of ∇Θ J, which is as follows:

E
(
∇Θ Ĵ

)
= ∇Θ J (23)

Algorithm 1: Multi-agent prediction of image classes

Input: original image I ∈ Rn×n

Output: image class qc
1 Initialize the position of each agent;

2 for t← 0 to T do
3 for i← 0 to N do
4 oi(t) = O(I, pi(t), w);
5 bi(t) = f1(oi(t); θ1);
6 mi(t) = 1

N−1 ∑j 6=i mj(t);
7 λi(t) = f2(pi(t); θ2);
8 xi(t) = (bi(t), mi(t), λi(t));
9 hi(t + 1) = f3(hi(t), xi(t); θ3);

10 ĥi(t + 1) = f5

(
ĥi(t), xi(t); θ5

)
;

11 mi(t + 1) = f7

(
hi(t + 1), ĥi(t + 1); θ7

)
;

12 ai(t + 1) = f6

(
ĥi(t + 1); θ6

)
;

13 pi(t + 1) = g(pi(t), ai(t + 1));
14 end
15 end
16 for i← 0 to N do
17 qi = f4(hi(T); θ4);
18 end

19 qc = argmax
(

Softmax 1
N ∑N

i=1 qi

)
;

Therefore, the gradient∇Θ Ĵ obtained according to Algorithm 1 converges to the actual
gradient ∇Θ J by probability, so the convergence of the Algorithm 1 is guaranteed.

4. Experiment Results and Discussion
4.1. Dataset and Setups

In terms of hardware, the machine memory is 16GB, the graphics card is NVIDIA
TITAN Xp, the video memory is 12 GB, the CPU is Intel Xeon E5-2680 v4, and the clock
speed is 2.4 GHz. In terms of software, the Pytorch 1.8.1 framework is used, the pro-
gramming language is Python3.8 and the CUDA version is 11.1. The size of each image
is 300× 300 pixels. The training dataset contains 2875 non-defective casting images and
3758 defective casting images; the test dataset includes 262 non-defective casting images
and 453 defective casting images.

In this data set, the casting defects can be mainly divided into two categories: open
holes and casting fins. The defects of open holes can be caused by trapped air when the
metal is poured into the mold. The defects of the casting fins show up when some extra
materials are attached to the edges of the casting. Examples of both type of the defects are
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shown in Figure 7. However, this paper only studies the surface defects of the castings,
which can be detected by visual signals.

open hole casting fin

Figure 7. The examples of the open hole defect and the casting fin defect. The red circles are manually
marked.

There are four choices for each agent’s action, which are up, down, left, and right, each
time moving a window size. The position of each agent is represented by two numbers,
which represent the coordinates of the agent in the original image. If the agent’s action is
unavailable, the position will not change. For example, if the agent’s local observation is
already at the far right of the original image at time t, but the action at time t + 1 is to move
to the right, the agent’s position remains unchanged. By default, 10 agents are constructed,
the time step of each episode is 5, the local observation of each agent is 20× 20 pixels,
the number of trajectory sampling is three times and the learning rate is 0.002. The same
preprocessing was performed on the dataset for each experiment. Compare our method
with GhostNet [37], MobileNetV3 [38], Res2Net [39], and ShuffleNetV2 [40]. This paper
uses the F1-score as the performance indicator. The F1-score is the harmonic mean of
precision and recall, which can be described as follows:

F1 = 2
precison ∗ recall
precison + recall

(24)

4.2. Performance Analysis under Different Parameters

Under the default settings, the algorithm is run for 200 epochs, as shown in Figure 8.
As can be seen from Table 1, the top-1 F1-score in the test dataset can reach 0.95551, and the
prediction time of each epoch is only 1.84 s. To better evaluate the proposed algorithm, a
comparative experiment is designed for four parameters: the time step T of each episode,
the number of agents N, the number of trajectory sampling times C and the window size w.
Changes are made each time based on the default settings.

To better show the moving process of agents, taking T = 3 as an example, the moving
process of 10 agents is shown in Figure 9. It can be seen that the two agents on the far left
did not move in the second step because, at this time, the agent’s action was to move to the
left, but it was unable to move to the left.

First, we verify the impact of the time step T of each episode on the performance of
the algorithm, and modify the T value based on the default setting, as shown in Figure 10.
It can be seen that as the T value increases, the algorithm converges faster. As can be seen
from Table 1, with the T value increases, the top-1 F1-score also increases. When T = 9,
the average training time per epoch increases by 147% compared to when T = 3, but the
average test time per epoch only rises by 58%. The change in T value is more of an impact
on the training time.
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Figure 8. The performance of default settings. (a) F1-score of default settings; (b) accuracy of the
default settings.

(a) (b) (c) (d)

Figure 9. The moving process of agents. (a) original image; (b) step = 1; (c) step = 2; (d) step = 3.
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Figure 10. Performance comparison with different time steps. (a) T = 3; (b) T = 7; (c) T = 9.

By modifying the number N of agents based on the default settings, the change in the
F1-score is shown in Figure 11. It can be seen that when the number of agents is increased
to 15, the curve of the F1-score changes significantly and can converge faster. As can be
seen from Table 1, for each additional five agents, the average training time per epoch will
increase by about 15%, and the average test time per epoch will increase by about 10%.
When the number of agents is 20, the top-1 F1-score in the test dataset can reach 0.98677.
Compared with the case of N = 5, the number of agents has become four times the original,
but the average training time per epoch only increases by 47.7%, and the average test time
per epoch increased by 33%.
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Figure 11. Performance comparison with different numbers of agents. (a) N = 5; (b) N = 15;
(c) N = 20.

Modifying the number of trajectory samples C based on the default settings, the
change in the F1-score is shown in Figure 12. As can be seen from the figure, when C = 9,
the F1-score of the training dataset is relatively stable in the later stage. It can be seen from
Table 1 that the change of the C value mainly affects the training time, and has little effect
on the test time.

Modifying the window size w based on the default settings, the change in the F1-score
is shown in Figure 13. As can be seen from Figure 13, when w = 10, the F1-score of the
training dataset is lower, and the convergence speed is also accelerated as the window size
increases. It can be seen from Table 1 that the change of window size has less impact on the
training and test time, but when the window size becomes too small, the F1-score of the
test dataset drops a lot.
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Figure 12. Performance comparison with different trajectory sampling times. (a) C = 5; (b) C = 7;
(c) C = 9.
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Figure 13. Performance comparison with different window sizes. (a) w = 10; (b) w = 30; (c) w = 40.
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In Figure 14, the result of a non-defective case and two defective cases are given. In
the left sub-figure, no agent has detected any defects. In the middle sub-figure of Figure 14,
a casting fin defect is detected by the agent, whose observation window is marked in green.
In the right sub-figure of Figure 14, a open hole defect is also detected by the agent, whose
observation window is marked in green. All the observation windows of the normal agents
are marked in red.

(a) non-defective 

(98.3%)

(b) defective 

(99.7%)

(c) defective 

(99.9%)

Figure 14. The prediction results of a defective casting and two non-defective castings. (a) A non-
defective case, whose probability of being non-defective is 98.3%; (b) A defective casting case (with
fins), whose probability of being defective is 99.7%; (c) A defective casting case (with open holes),
whose probability of being defective is 99.9%. The observation windows of the normal agents are
marked in red, and the observation windows of the defects detected agents are marked in green.

Table 1. Performance comparison with different parameters.

Parameters Top-1 Training
F1-Score Top-1 Test F1-Score Average Training

Time Per Epoch (s)
Average Test Time

Per Epoch (s)

N = 5, T = 5, w = 20, C = 3 0.96077 0.89051 39.58 1.68
N = 10, T = 3, w = 20, C = 3 0.97834 0.93985 30.62 1.67
N = 10, T = 5, w = 10, C = 3 0.95514 0.89051 44.80 1.84
N = 10, T = 5, w = 20, C = 3 0.98789 0.95551 44.85 1.84
N = 10, T = 5, w = 20, C = 5 0.99515 0.97164 67.28 1.85
N = 10, T = 5, w = 20, C = 7 0.99653 0.97692 94.18 1.83
N = 10, T = 5, w = 20, C = 9 0.99688 0.98099 117.51 1.86
N = 10, T = 5, w = 30, C = 3 0.99463 0.98667 44.89 1.85
N = 10, T = 5, w = 40, C = 3 0.99446 0.98305 46.25 1.88
N = 10, T = 7, w = 20, C = 3 0.99084 0.96629 59.79 2.41
N = 10, T = 9, w = 20, C = 3 0.99084 0.98299 75.76 2.64
N = 15, T = 5, w = 20, C = 3 0.99153 0.98292 52.58 2.05
N = 20, T = 5, w = 20, C = 3 0.99498 0.98677 58.46 2.24

4.3. Comparative Experiments

The GhostNet, MobileNetV3, Res2Net, and ShuffleNetV2 models are selected for
comparative experiments. All four networks use the cross-entropy loss function, the
learning rate is set to 0.0003, the batch size is set to 32, and each model is trained for
50 epochs. The F1-scores of each network are shown in Figure 15.

The top-1 F1-score of each network and the average time of per epoch are shown
in Table 2. It can be seen from the table that the average test time of each epoch of the
comparison model is at least 10.90 s, while the algorithm proposed in this paper only needs
1.84 s under the default setting. When the number of agents is 20, the top-1 F1-score of this
algorithm in the test dataset reaches 0.98677, which is only 0.00754 lower than GhostNet,
but the average test running time per epoch is only 20.55% of GhostNet.
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Figure 15. The F1-score of different models. (a) GhostNet 1.0×; (b) MobileNetV3 Small; (c) Res2Net-
50; (d) ShuffleNetV2 1.0×.

Table 2. Performance comparison of the different models.

Models Top-1 Training
F1-Score Top-1 Test F1-Score Average Training

Time Per Epoch (s)
Average Test Time Per

Epoch (s)

GhostNet 1.0× 1 0.99431 110.93 10.90
MobileNetV3 Small 1 0.99809 129.54 13.59

Res2Net-50 0.99965 0.99809 185.67 12.81
ShuffleNetV2 1.0× 0.99983 0.99809 126.63 13.64

5. Conclusions and Future Works

This paper uses multiple agents to jointly predict the image category, significantly
reducing the prediction time and the total calculation amount. This method can be applied
to devices with weak computing power, since the input of each device is only a tiny part of
the original image. The joint operation of multiple agents not only ensures accuracy but
also reduces the computational burden of each device. With the increasing size of images
today, a 2 K or even 4 K image requires considerable computing resources on traditional
convolutional neural networks for classification, so the method in this paper has great
potential for large-size image classification. For the casting dataset, compared with the
traditional convolutional neural network GhostNet, the prediction time of the method in
this paper is only one-fifth of the original, which has made significant progress in saving
computing resources and reducing the defects detection time.

The proposed method in this work can be extended in several aspects in future works.
First, the way of communication between the agents can be further investigated, by which
the observation of each single agent can be better utilized. Second, instead of being a
fixed value, the step size can be determined in an adaptive manner in the future methods.
Third, the sizes or even the shapes of the observation windows can also be changed in
the process with respect to the agents’ states. All these possible future works can make
further improvements on the prediction accuracy of the casting defects detection or the
corresponding computational burdens.
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