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Abstract: Barrier coverage is a fundamental issue in wireless sensor networks (WSNs). Most existing
works have developed centralized algorithms and applied the Boolean Sensing Model (BSM). How-
ever, the critical characteristics of sensors and environmental conditions have been neglected, which
leads to the problem that the developed mechanisms are not practical, and their performance shows a
large difference in real applications. On the other hand, the centralized algorithms also lack scalability
and flexibility when the topologies of WSNs are dynamically changed. Based on the Elfes Sensing
Model (ESM), this paper proposes a distributed Joint Surveillance Quality and Energy Conservation
mechanism (JSQE), which aims to satisfy the requirements of the desired surveillance quality and
minimize the number of working sensors. The proposed JSQE first evaluates the sensing probability
of each sensor and identifies the location of the weakest surveillance quality. Then, the JSQE further
schedules the sensor with the maximum contribution to the bottleneck location to improve the overall
surveillance quality. Extensive experiment results show that our proposed JSQE outperforms the
existing studies in terms of surveillance quality, the number of working sensors, and the efficiency
and fairness of surveillance quality. In particular, the JSQE improves the surveillance quality by 15%
and reduces the number of awake sensors by 22% compared with the relevant TOBA.

Keywords: wireless sensor networks; barrier coverage; ESM; surveillance quality

1. Introduction

Wireless sensor networks (WSNs) consist of many sensor nodes, which are capable
of sensing and processing data in a monitoring region. Sensor nodes can communicate
with one another through data exchange in a wireless manner. WSNs have been widely
applied in many applications, such as health monitoring, agriculture, and environmental
monitoring [1–4].

Network coverage is known as one of the most important issues in wireless sensor
networks. It can be divided into three categories [5–9]: target coverage, area coverage, and
barrier coverage. Target coverage aims to detect some interesting targets using working
sensors, while the area coverage concerns the monitoring coverage over a predefined region.
In contrast to the target and area coverages, barrier coverage investigates intruder detections
when crossing boundaries or interesting curves. The main purpose of barrier coverage is to
form a defense barrier by organizing some working sensors to detect intruders crossing
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international boundaries, or detect the spread of forest fires around forests. It also has been
widely applied to protect critical areas and important resources, including military bases
and the alarm boundaries for visitors in certain zones.

In recent years, the surveillance quality for barrier coverage issues in WSNs has re-
ceived a large amount of attention. Many studies have presented algorithms to form a
defense barrier with k-barrier coverage [10] or strong barrier [11] capabilities, which guar-
antees monitoring quality so that every intrusion can be detected by sensors participating
in the barrier. The sensing models applied in these studies can be mainly divided into two
categories, namely the Boolean Sensing Model (BSM) [12–16] and the Elfes Sensing Model
(ESM) [17–22]. Studies applying the BSM assume that each sensor can detect the object
falling in its sensing range. The probability of sensing can be expressed as a Boolean vari-
able with a value of either true (one) or false (zero), depending on whether or not the event
location is in the sensor’s sensing range. The BSM model is simple, but it is not practical as
it does not consider interference and other environmental conditions. However, the sensing
range in the real application is not a perfect disc due to the physical characteristic of sensing
hardware and the interferences. In general, the actual sensing range of a sensor is smaller
than the considered perfect disc and hence introduces a coverage hole when a coverage
algorithm applies the BSM as its sensing model. On the contrary, the ESM is different from
the BSM. It assumes that the detection of a target within the sensing range is a probabilistic
value, which depends on the distance between the sensor and the target. The ESM can
estimate the sensing capability of each sensor with a higher accuracy. Hence, it can obtain
higher surveillance quality. This paper applies the ESM to construct a defense barrier.

Some other studies have applied the ESM to cope with the coverage problem.
Dong et al. [17] proposed a centralized mechanism, which applied solar-powered sen-
sors with adjustable sensing radii to construct the defense barrier. Compared with the
mechanism proposed in [17], this paper proposed a distributed mechanism JSQE, which
has better scalability and flexibility. Xu. et al. [21] applied the ESM to cope with the target
coverage problem, aiming to minimize the total energy cost while satisfying the require-
ments of both coverage and connectivity. However, the mechanism proposed in [21] is not
suitable for barrier coverage, which is the investigated issue of this paper. Fan et al. [22]
focused on providing a cost-efficient directional barrier construction method, which aimed
to form barriers and prolong network service lifetime. However, the surveillance quality
was not considered [22]. In contrast to [22], this paper aims at constructing a barrier to
guarantee the user-required surveillance quality.

Regarding the algorithm, plenty of existing studies of barrier coverage can be further
divided into centralized [13,14,17] and distributed [15,16] approaches. The centralized
mechanisms assume that the sink node is aware of the location of all sensors and executes
an algorithm to determine the set of working sensors. To achieve this, the sink node needs
to collect the reports from sensor nodes and makes a decision according to these reports.
The big challenge of centralized approaches is that they increase communication overheads
for obtaining the locations of all sensor nodes and then reporting the decision results to
all sensors. These overheads consume more energy from sensors in advance. Another
common challenge of centralized mechanisms is that they lack scalability, which is a key
factor that should be considered in WSNs. To reduce the traffic overheads and energy
consumption and improve the scalability of WSNs, some other studies have proposed
distributed approaches, which allow each sensor to execute the monitoring work based on
its local calculation. One big challenge of these algorithms is to make a decision without
global information. In general, the surveillance quality increases with the number of
working sensors. Therefore, another big challenge is to guarantee monitoring quality while
reducing the number of working sensors to save energy.

This paper proposes a distributed Joint Surveillance Quality and Energy Conservation
mechanism (JSQE), aiming to dynamically wake up the minimal number of working
sensors to guarantee the required monitoring quality of the barrier boundary. In the
proposed mechanism, the boundary curve is initially partitioned into several line segments
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to simplify the complexity of the investigated problem. Then, each sensor locally calculates
its contribution to the monitoring quality. The sensor that has the largest contribution
wakes up to join the monitoring work. The following presents the main contributions of
this paper.

(1) Guaranteeing the predefined surveillance quality of the boundary barrier

The proposed JSQE mechanism guarantees the surveillance quality of the boundary
barrier. This is achieved by identifying and improving the weakest monitoring quality
round by round.

(2) Lower number of working sensors

In the proposed mechanism, the sensor that has the largest contribution to monitoring
quality wakes up. This also implies that the number of working sensors can be reduced.
Compared with existing works [15,17], the proposed mechanism wakes up lower numbers
of working sensors.

(3) Scalability due to adopting the distributed approaches

The operations designed in the proposed JSQE are totally distributed. Each sensor
locally calculates the contribution of monitoring quality and makes a decision. Adopting
the distributed approaches can reduce the overheads of maintaining networks, such as
network flooding and centralized operations. As a result, the efficiency of the proposed
algorithm can be guaranteed even as the network grows, improving the scalability of
the WSNs.

(4) Realistic

Compared with the existing studies [14–16] which apply BSM as the sensing model,
this paper applies the ESM, which considers the physical characteristics of sensors and the
interference of the external environment. Hence, the proposed JSQE mechanism is more
realistic in the calculation of surveillance quality.

The remainder of this paper is organized as follows: Section 2 introduces the related
work. Section 3 describes the network environment and problem formation. Section 4
details the proposed JSQE algorithm. Section 5 presents the simulation results, while
Section 6 reviews the conclusions of this paper.

2. Related Work

This section presents the existing works related to the barrier coverage problem in
WSNs. In the literature, plenty of studies have been developed for the construction of a
defense barrier. These studies can be mainly classified into two categories: centralized and
distributed approaches.

2.1. Centralized Approaches for Barrier Coverage

Chen. et al. [13] presented the concept of local barrier coverage, which can provide
global barrier coverage in thin belt regions. They proposed a localized sleep–wake algo-
rithm, aiming to prolong the network lifetime. Saipulla et al. [14] proposed a line-based
sensor deployment strategy, which outperformed that of the Poisson point process in
the monitoring region. Then, they further presented an efficient algorithm that adopts
mobile sensors to fill gaps along the deployed line, aiming to improve barrier coverage.
However, the long distance of movement leads to the energy consumption of the sensors.
Dong et al. [17] introduced a centralized mechanism, aiming to improve the surveillance
quality of a given boundary curve and to maintain the perpetual network lifetime. However,
the centralized approaches [13,14,17] require the collection of messages from all sensors
to the sink node, leading to low scalability and significant energy consumption. In addi-
tion, previous works [13,14] have designed centralized algorithms by applying the BSM
model. However, the BSM model cannot accurately present physical characteristics, such
as interference and other environmental conditions.
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2.2. Distributed Approaches for Barrier Coverage

Weng et al. [15] first presented the Cover Adjacent Net (CA-Net) to simplify the
problem of k-barrier coverage, aiming to reduce computational complexity. Based on the
CA-Net, the distributed mechanism was presented to construct the maximum number of
distinct k-barriers by using the minimum number of sensors. Xu et al. [16] proposed an
efficient distributed algorithm that wakes up the minimal number of visual sensors to form
a disjoint full-view barrier. The given region was first partitioned into a set of grids. Then,
each visual sensor checked if its neighboring grids satisfied the full-view coverage. Finally,
a locally weighted graph was formed by using the relationships among the girds meeting
the full-view coverage. Based on the weighted graph, full-view barriers can be constructed.
However, the above-mentioned existing works applied the BSM model, which cannot
reflect the practical environment. This paper proposes a distributed mechanism, JSQE, by
adopting the ESM model, which aims to maximize the weakest sensing quality of the barrier
boundary while satisfying the user-defined monitoring quality with the minimum number
of awake sensors. Table 1 simply compares these works with the proposed algorithm.

Table 1. Comparisons between the proposed JSQE with the existing studies. 7, Not have this property.
X, Have this property.

Studies Distributed ESM Model Monitoring
Quality

Goal of Minimum
Numbers of Sensors

[13] 7 7 X 7

[14] 7 7 X 7

[15] X 7 7 7

[16] X 7 7 X
[17] 7 X X 7

[22] X X 7 7

JSQE X X X X

3. Network Environment and Problem

This section first introduces the network environment and assumptions in wireless sen-
sor networks. Then, the sensor sensing model and the problem formulations are presented.

3.1. Network Environment

Assume that there is a barrier boundary L existing between the two countries. This
boundary can also be the dividing line between dangerous and safe regions or between
prohibited or open areas. Let L be a curve that can be modeled by function f (x) and can be
contained in a minimal rectangle R. The left and right boundaries of R are denoted by Wl
and Wr, respectively. A set of sensors, S = {s1, s2, s3, . . . . . . , sn}, is randomly deployed in R.
Let (xi, yi) denote the location of sensor si. Each sensor si is assumed to have a unique ID
and to be aware of its own location. All sensors are assumed to be clock synchronized. The
sensing and communication radiuses are denoted by rs and rc, respectively, where rc = 2rs.
Through the exchanges of beacons with one-hop neighbors, each sensor can collect the
messages, including the IDs and locations of its neighbors.

3.2. Sensing Model

This section introduces the ESM (Elfes Sensing Model) of the given wireless sensor
networks. The sensing range of each sensor can be divided into two regions, denoted by r̂s
and r̂g

s , respectively. As shown in Figure 1, the probability of sensing is 100% if the object
falls in the region r̂g

s . When the object falls in the region r̂s, the sensing probability decreases
along with the increase in the distance between the sensor and the object.
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Figure 1. The applied Elfes Sensing Model.

Consider a point, v, in the region r̂s, and the coordinates of point v are (xv, yv). Let
p(si, v) denote the sensing probability of point v detected by si, and d(si, v) denote the
distance between sensor si and point v. The following Equation (1) represents the relations
between sensing probability p and distance d.

p(si, v) =


1 d(si, v) ≤ rg

s

e−λ(d(si ,v)−rg
s )

γ
rg

s < d(si, v)
0 d(si, v) ≥ rs

< rs (1)

In Equation (1), the distance d(si, v) can be obtained through the following computation.

d(si, v) =
√
(xi − xv)

2 + (yi − yv)
2 (2)

The λ and γ are the path-loss exponents of the sensing signal strength, which are
adjusted by the different physical properties of sensors. In the case that point v satisfies the
condition rg

s < d(si, v) < rs, the detection probability p(si, v) of point v decreases with the
reduction in the value of d(si, v).

3.3. Problem Formulation

Given a predefined monitoring quality ρ, the ρ-guaranteed barrier coverage problem
aims to construct a defense barrier by scheduling a minimal set of working sensors, which
are denoted by Ŝ, such that any path crossing the boundary can be detected by the working
sensors with a probability of at least ρ. In case the number of deployed sensors is not
enough to support the ρ-guaranteed barrier coverage, the set of working sensors should
guarantee that the monitoring quality of the barrier boundary can be maximized, while
the number of sensors can be minimized. Let h represent the number of sensors in Ŝ. The
activation sensors Ŝ can be represented by Equation (3).

Ŝ = {ŝ1, ŝ2, . . . . . . ŝh}, Ŝ ⊂ S (3)

Figure 2 depicts the considered scenario. As shown in Figure 2, the sensing range of
sensor ŝi covers the segment marked with red ink of the boundary curve. For any point,
say v, it can be monitored by sensor ŝi: that is, any intruder that crosses point v from south
to north can be detected by sensor ŝi using a probability. Let λi,v denote the monitoring
quality of point v contributed by sensor ŝi. Herein, we notice that the monitoring quality is
a probability value as the probability sensing model is applied. Let the distance between
sensor ŝi and point v be represented by d(ŝi, v). The following Equation (4) evaluates the
value of λi,v, by applying the sensing model proposed in Equation (1).

λi,v = p(ŝi, v) (4)
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Figure 2. A scenario of the sensor set λv.

Let λv denote the probability of point v monitored by sensors in Sv. Let Sv ⊂ S denote
the set of sensors that can cover point v, and λv denote the detection probabilities that the
event of point v can be monitored by sensors in Sv. The weakest monitoring quality of any
point in L, denoted by λ̂, can be presented as

λ̂ = min
v∈L

λv (5)

This paper aims to maximize the weakest sensing quality of the barrier boundary
while satisfying the minimum number of sensors. Equation (6) formulates the major goal
of this paper.

Objective Min(ρ, maximize(λ̂)) (6)

When the major goal is achieved, the monitoring quality of the weakest segment
has been maximized. This means that the quality of barrier coverage cannot be further
improved even when a sensor wakes up. Therefore, the second goal is energy conserva-
tion, which aims to minimize the number of sensors that wake up. Equation (7) reflects
this sub-goal:

Minimize(n̂) (7)

The goal is given in Equations (6) and (7), which should satisfy some constraints. The
first is the working state constraint, which requires each sensor to remain in either a sensing
or a sleeping state.

(1) Working State constraint:

ri
sen + ri

slp = 1, ri
sen, ri

sl p ∈ {0, 1}, ∀i (8)

Let Boolean variables rsen
i and rslp

i denote sensing and sleeping states, respectively.
Equation (8) reflects this constraint.

(2) Sensor energy constraint:

ei
rem ≥ T

t
∗ et

sec, ∀i (9)

Let T denote the period of time required to monitor the barrier boundary. Recall that
the time can be partitioned into several equal-length time units, denoted by t. Let esec

t
denote the energy consumptions of any sensor staying in a sensing state for a time unit, t.
Let erem

i denote the remaining energy of sensor si. To ensure that the monitoring task can
be executed over T, Equation (9) proposes that the battery energy of each sensor si should
be large enough to support the energy consumption.
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(3) Continuous constraint:

For any sensor,si ∈ Ŝ, there exists at least one sensor, sj ∈ Ŝ, such that the following
condition is satisfied.

si
sen ∩ sj

sen 6= ∅ (10)

Let ssen
i denote the sensing range of the ith sensor in Ŝ. Equation (10) guarantees that

there is no coverage hole existing in the constructed barrier.

(4) Boundary constraint:

ssen
le f tmost ∩Wl 6= ∅∧ ssen

rightmost ∩Wr 6= ∅ (11)

Equation (11) shows that the sensing range of the leftmost sensor, which is denoted
by ssen

le f tmost, should be overlapped with the left boundary of rectangle R (i.e.,Wl), and the
sensing range of the rightmost sensor, denoted by ssen

rightmost, should be overlapped with Wr.
The next section presents the proposed JSQE algorithm, which aims to achieve the

goal given in Equations (6) and (7) while satisfying constraints Equations (8)–(11).

4. Joint Surveillance Quality and Energy Conservation (JSQE) Algorithm

The proposed JSQE is a distributed algorithm, which mainly consists of four phases:
Boundary Curve Partitioning Phase, Basic Contribution Evaluation Phase, Collaborative
Contribution Evaluation Phase, and Terminating Phase. In the Boundary Curve Partitioning
Phase, a given barrier boundary,L, is partitioned into a set of equal-sized segments to
simplify the barrier coverage problem. Each sensor in the Basic Contribution Evaluation
Phase aims to independently calculate the monitoring quality of line segments it contributes.
Based on the calculated contribution, the sensor determines its sleeping time. This can
wake up the sensor with the largest contribution. Any sensor that stays in sleeping mode
but learns that some neighbors have woken up should switch to the next phase, the
Collaborative Contribution Evaluation Phase. The sensor staying in the Collaborative
Contribution Evaluation Phase aims to calculate its contribution to the weakest segment.
The calculation of the contribution should take into consideration the collaborative sensing
of some common segments. The sensor that has the largest contribution to the weakest
segment will be awake.

If any sensor that stays in sleeping mode determines that its contribution to the
weakest segment is small enough, it should switch to the Terminating Phase. The sensor in
the Terminating Phase does not participate in the monitoring task and stays in sleeping
mode to save electricity.

The following presents the details of each phase of the proposed JSQE.

4.1. Boundary Curve Partitioning Phase

This section presents the details of the Boundary Curve Partitioning Phase. The main
purpose of this phase is to partition the boundary curve into several equal-length line
segments. To better present the details, the following provides some formal definitions.
Assume that the boundary curve can be mapped to a geographic two-dimensional plan,
and it can be modeled by function y = f (x), x1 ≤ x ≤ xn, where x1 and xn denote the
x coordinates of the leftmost and rightmost points of the boundary curve, respectively.
In general, the direction for partitioning the boundary is taken as the direction that is
perpendicular to the boundary. Without the loss of generality, this paper simply assumes
that the boundary is horizontal. To facilitate the evaluation of the monitoring contribution
of each sensor, as shown in Figure 3, we partition the boundary curve into a set of equal-
sized n-line segments. Let L[xa : xb] denote a sub-curve of the boundary curve, starting
from x-coordinate xa and ending at x-coordinate xb. The boundary curve can be presented
by set L = {lk|lk = [xk : xk+1] , 1 ≤ k ≤ n− 1} or simplicity L[x1 : xn].
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For simplicity, we assume that each sensor can cover several complete line segments.
Thus, the covered segment of sensor si is denoted by Lcov

i , as shown in Figure 4. Assume
that the length of Lcov

i is ki. The covered segment of sensor si can be represented as shown
in Equation (12).

Lcov
i = L[xi

start : xi
end] =

{[
xi

1 : xi
2

]
,
[

xi
2 : xi

3

]
, . . . . . .

[
xi

ki−1
: xi

ki

]}
(12)
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4.2. Basic Contribution Evaluation Phase

In this phase, each sensor independently calculates its contribution to monitoring
quality. According to its own contribution, each sensor determines its waiting time. In order
to wake up a minimal number of sensors to monitor the barrier boundary, the sensor with
the largest contribution should wake up the earliest and then broadcast the join-monitoring
message, which includes the ID and location of that sensor in a distributed manner. The
following presents the detailed calculation of the contribution of each sensor.

Initially, all sensors stay in the sleeping state. Herein, we notice that each sensor
si ⊂ S is aware of its coordinates (xi, f (xi)). Consider any point v that lies in the segment
Lcov

i . Assume that the coordinates of point v are (xv, f (xv)). The following introduces
how to calculate the monitoring quality of point v contributed by si. Let p(si, v) denote
the monitoring quality of point v contributed by sensor si. Let notation d(u, v) denote the
distance of two points, u and v. The distance between sensor si and v can be denoted by
d(u, v), whose value can be obtained by Equation (13).

d(si, v) =
√
(xi − xv)

2 + ( f (xi)− f (xv))
2 (13)
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By applying the probabilistic model, as shown in Equation (1), the value of p(si, v) can
be calculated through Equation (14).

p(si, v) =

{
1 d(si, v) ≤ rg

s

e−λ(d(si ,v)−rg
s )

γ

rg
s < d(si, v) < rs

(14)

The total contribution of sensor si, which is denoted by ci, for its covered segment,
Lcov

i , can be evaluated by applying Equation (15).

ci =

xi
ki∫

xi
1

p(si, v)dx, v ∈ Lcov
i , si ∈ S (15)

As we aim to wake up as few sensors as possible, the policy design for waiting time
is that the sensor with the largest contribution should wake up the earliest. Equation (16)
depicts the calculation of the waiting time.

ti =
1
ci

, ∀i (16)

Figure 5 provides an example to show that sensor s1 wakes up earlier than sensor s2.
As shown in Figure 5, assume that the contribution of any sensor s1 is c1. As the value
of c1 is larger than that of c2, the waiting time of sensor s1 is shorter than that of sensor
s2, according to Equation (16). When sensor s1 finishes its waiting time, it wakes up and
broadcasts the join-monitor message, which contains its ID = s1 and physical location
(x1, f (x1)) in a distributed manner.
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Upon receiving the join-monitor message from a neighbor, each sensor learns the fact
that its neighbor has been awake. The neighboring sensors should check whether or not
they should switch to the next phase.

The following presents the criteria for the switching phase. A sensor, say sj, is said to
be a loser of sensor si if it satisfies the following two conditions. Similarly, sensor si is said
to be a winner if it joins the monitoring task.

Phase switching criteria:

(1) Sensor sj neighbors si.
(2) The covered segments of si and sj are overlapped, that is, the following condi-

tion holds.

Lcov
i ∩ Lcov

j 6= ∅ (17)
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Each sensor that stays in sleeping state but hears the join-monitor message should
further check if it satisfies the phase switching criteria. If this is the case, the sensor switches
to the Collaborative Contribution Evaluation Phase.

4.3. Collaborative Contribution Evaluation Phase

The collaborative contribution evaluation phase will be initiated if the sensor receives
the join-monitor message and satisfies the phase switching criteria. In this phase, each
sensor should recalculate its contribution to its covered segment if it has an overlapped
segment with some awake sensors. Recall the major goal of the considered barrier problem
is to maximize the monitoring quality of the weakest point. Therefore, the contribution
calculation only cares about monitoring contribution to the weakest point, rather than the
monitoring contribution to the whole covered segment. The sensor that has the largest
contribution to the weakest line segment should be awake and join the monitoring task.

Assume that sensor si is awake and has joined the monitoring tasking. Assume that
sensor sj is the loser due to receiving the join-monitoring message from si. When sensor
sj switches to the collaborative contribution evaluation phase, it should recalculate the
contribution of the overlapped segment. Let the covered segment Lcov

j be classified into
two types according to whether or not the segment is overlapped segment. As shown in
Figure 6, let Lnocovered

j denote the no-covered segment marked with red ink by the sensor sj.

Similarly, let Loverlapped
j denote the overlapped segment that is commonly covered by the

sensor sj and awake sensors. That is, we have

Lcov
j = Lnocovered

j ∪ Loverlapped
j (18)
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j marked with red ink and Loverlapped

j ,
respectively.

Let pnocovered
m denote the monitoring probability of each line segment lm ∈ Lnocovered

j .

According to the ESM, the value of pnocovered
m can be obtained by Equation (19).

pnocovered
m = 0 (19)

Assume that Slq ⊂ S denotes the set of awake sensors that can cover line segment
lq ∈ Loverlapped

j . It is obvious that sj /∈ Slq . The calculation of the contribution of sensor sj

to line segment lq should take into consideration collaborative monitoring. Let p̃overlapped
q

denote the probability that none of the awake sensors in Slq can monitor line segment lq.
For simplicity, the leftmost point, say vq, of line segment lq, represents line segment lq,
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that is, the monitoring probability of vq presents the monitoring probability of segment lq.
We have

p̃overlapped
q = ∏

sk∈Slq

(1− p(sk, vq)) (20)

Let poverlapped
q denote the probability that any awake sensor in Slq can monitor line

segment lq. According to Equation (20), the value of poverlapped
q can be calculated as shown

in Equation (21).

poverlapped
q = 1− p̃overlapped

q = 1− ∏
sk∈Slq

(1− p(sk, vq)) (21)

Equation (21) depicts the probability that any sensor in Slq can monitor line segment lq.
However, we need to evaluate the monitoring probability contributed by sensor sj. Let Φ(I)
denote the probability that any sensor in set I can monitor line segment lq. It is obvious
that we have

Φ(Slq) = poverlapped
q (22)

Equation (23) represents the increased probability contributed by the single sensor, sj,
if sensor sj wakes up and cooperatively monitors line segment lq.

Φ(Slq ∪ sj)−Φ(Slq) =

1− ∏
sk∈Slq∪sj

(1− p(sk, vq))

−
1− ∏

sk∈Slq

(1− p(sk, vq))

 (23)

Given that the set of awake sensors is denoted by Slq , let lweakest
j denote the line segment

with the weakest monitoring probability and pweakest
j denote its monitoring probability.

We have

lweakest
j =


lh, lh ∈ Lnocovered

j , 1 ≤ h ≤ ki

arg
lh∈Lcov

j

minΦ(Slh), Slh 6= ∅

pweakest
j = Φ(Slweakest

)

(24)

As we aim to maximize the monitoring quality of the weakest line segment while
reducing the number of awake sensors, the waiting times of sensors should be decreased
alongside their contributions for the weakest line segment covered by sj. Let cj denote the
contribution of the single sensor, sj, for the weakest line segment. The value of cj can be
calculated as shown in Equation (25).

cj = Φ(Slweakest ∪ sj)−Φ(Slweakest
) (25)

Thus, the waiting time of each sensor sj can be presented as

tj =
1

cj × 1
pweakest

j +1

(26)

Upon completing the waiting time, sensor sj takes part in the monitoring work and,
therefore, plays the role of the winner. All the other sensors neighboring the winner, which
still stay in a sleeping state, are losers of the sj. Each loser, say, sw, should recalculate its
own contribution to the overlapped segment and then reset its waiting time accordingly.
Each loser should repeatedly execute the Collaborative Contribution Evaluation Phase to
maximize the monitoring quality. The loser will switch to the Terminating Phase until the
following condition is satisfied.

cw ≤ σ (27)
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where σ is the predefined contribution threshold, that is, the monitoring quality of the
weakest line segment cannot be significantly improved, even though the loser wakes up to
participate in the monitoring task.

4.4. Terminating Phase

Each sensor switches to the Terminating Phase and should stay in the sleeping state
until some neighboring working sensors run out of energy. The sleeping sensor should
switch to the Collaborative Contribution Evaluation Phase to check if it should participate
in the monitoring work.

In this section, the JSQE algorithm, which consists of four phases, is proposed for
maximizing the weakest sensing quality of the given barrier boundary while reducing the
number of awake sensors. Each sensor performs the proposed JSQE and locally determines
whether it should participate in the monitoring task, and plays the role of the working
sensor. Finally, the set of working sensors is the output of the proposed JSQE algorithm. In
the next subsection, the formal algorithm is presented.

4.5. The Proposed JSQE Algorithm

This subsection presents the JSQE algorithm to summarize the operations presented
in the previous subsection.

The overall distributed JSQE algorithm is shown in Algorithm 1. Each step will be
performed locally by sensor si. In phase I, steps 1 and 2 evaluate the covered segment of
sensor si and the number of line segments covered by sensor si. In phase II, steps 3 to 5
calculate the contribution of each sensor si, then obtain the waiting time accordingly. Next,
step 6 calls the Wait() procedure to reduce the waiting time in order to determine the role of
sensor si. Steps 7 to 9 check whether or not the loser si has an overlapped segment with its
neighbor working sensor. The calculation of the contribution of the overlapped segment
should take into consideration collaborative sensing. In phase III, steps 10 to 15 evaluate
the line segment with the weakest monitoring probability covered by sensor si. Step 16
calculates its monitoring probability. Next, steps 17 and 19 calculate the contribution of the
single sensor, si, and its waiting time. Step 20 calls the Wait() procedure to determine the
role of sensor si. When sensor si is a loser, steps 21 to 23 check if it satisfies the criteria to
participate in the monitoring task. In phase IV, steps 24 to 27 express that the loser si stays
in a sleeping state until its neighbor working sensor runs out of energy. The loser si then
switches to phase III. Step 28 returns a set of all working sensors, Ŝbest, and finishes the
JSQE executions.

The following describes the computing complexity of this algorithm. In phase I, the
computing complexity of steps 1 and 2 is O(1). In phase II, each sensor evaluates its
contribution and obtains the waiting time in steps 3 to 5. Thus, the computing complexity
of steps 3 to 5 is O(1). In phase III, steps 10 to 13 evaluate the weakest line segment of the
loser, si, which is not an overlapped segment. The computing complexity is O(q). Step 14
further evaluates the collaborative probability of the neighbors of any awake sensor. As the
number of neighbors is k, the computing complexity of this step is O(k). Steps 15 and 16
evaluate the weakest line segment and its monitoring quality. The computing complexity
of steps 15 and 16 are O(q) and O(k), respectively. Steps 17 to 19 calculate the contribution
of the loser, si, for the weakest line segment and set up the waiting time. The computing
complexity of steps 17 to 19 is O(1). In phase IV, the computing complexity of steps 24 to 27
is O(1). Therefore, the computing complexity of the JSQE algorithm is max(O(k), O(q)).
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Algorithm 1. Joint Surveillance Quality and Energy Conservation (JSQE)

Inputs: A set of sensors, S = {s1, s2, . . . . . ., sn}. Notation (xi, yi) denotes the location of sensor si.
The boundary curve can be modeled by function y = f (x), x1 ≤ x ≤ xn, where x1 and xn denote
the x coordinates of the leftmost and rightmost points of the boundary curve, respectively. A
partitioned boundary curve with n line segments.
Output: The set of working sensors Ŝbest.
//Phase I. Boundary Curve Partitioning Phase//
1. Sensor si evaluates the covered line segments Lcov

i according to Equation (12);
2. Let ki denote the number of line segments covered by sensor si;
//Phase II. Basic Contribution Evaluation Phase//
3. Each sensor si executes the following operations.
4. Evaluate its contribution ci according to Equation (15);
5. Set up its waiting time ti according to Equation (16);
6. Call wait(ti);
7. If (The loser si has no overlapped segment with any neighboring working sensor)
8. Go to Step 6;
9. End If
//Phase III. Collaborative Contribution Evaluation Phase//
10. For each lq ∈ Lnocovered

i
11. Evaluate pnocovered

m = 0;
12. lweakest

i = lq;
13. End for
14. Evaluate poverlapped

q according to Equation (21);

15. lweakest
i = arg

lq∈Lcov
i

minpoverlapped
q ;

16. Evaluate pweakest
i = Φ(Slweakest

i );

17. Let Φ(Slq ) = poverlapped
q ;

18. Evaluate ci according to Equation (25);
19. Evaluate ti according to Equation (26); //set up waiting time
20. Call wait(ti);
21. If (ci > σ)//σ is the predefined contribution threshold
22. Goto 10;
23. End if
//Phase IV. Terminating Phase//
24. Sensor ci stays in sleeping state;
25. While (listen()! = null)
26. Goto 10;//si is a loser again
27. EndWhile
28. Return Ŝbest;//the set of working sensors
//Procedure Wait()//
Procedure Wait(Timer ti){
While(listen( )=Null or backoff time ti >0){
Wait for one time slot;
backoff time ti–; }
EndWhile
If (backoff time ti = 0) {
Wake up and set My_role = winner;
End of Scheduling and switch to working state; }
End If
My_role = loser; }

5. Simulation

This section presents the performance comparisons of the proposed JSQE against the
existing top-down one-coverage barrier approach (TOBA) [15] and Boundary Surveillance
mechanism with the adjustable sensing radius (BSAS) [17]. Based on the developed CA-
Net (Cover Adjacent Net), the TOBA mechanism forms a k-barrier by combining multiple
1-barriers with the purpose of minimal energy consumption and maximal lifetime. The
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BSAS mechanism constructs the defense barriers with the sensor of the adjustable sensing
radius, aiming to improve the surveillance quality of the barrier boundary and the utiliza-
tion of sensors. The following first illustrates the simulation environment and then presents
the simulation results.

5.1. Simulation Environment

The simulation parameters are given in Table 2. MATLAB is used as the simulation tool
in the experimental study. The sensor nodes are randomly deployed in the 400 m × 40 m
monitoring area, as shown in Figure 7. The number of sensors is varied, ranging from
400 to 800. Each node is aware of its own location. The communication radius is twice
the size of the sensing radius, which is set to 10m. The user-required monitoring quality,
denoted by Qreq, is set to 0.3, 0.5, and 0.7. To further study the performance of the proposed
JSQE mechanism, two different boundaries, namely, Small-boundary and Big-boundary,
are considered, which are denoted by S-b and B-b, respectively.

Table 2. Simulation parameters.

Parameter Description

Monitoring area 400 m × 40 m
Number of sensor nodes 400–800

Sensing range 10 m
Communication range 20 m

Required monitoring quality 0.3, 0.5, 0.7
Working energy cost 0.05 J/s

Deployment Randomly
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5.2. Simulation Results

Figure 8 investigates the boundary surveillance quality under different numbers of
deployed sensors and different required quality, Qreq. As shown in Figure 8a, both the
Small-boundary and Big-boundary are considered, and the surveillance quality of the
proposed JSQE is measured. The performance of the Small-boundary is better than that
of the Big-boundary in all cases. This occurs because the Small-boundary has a small
amplitude, where the line segments are concentrated around the central barrier. As a
result, the line segments can be easily covered by the deployed sensors, resulting in higher
monitoring quality.
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Figure 8b further compares the surveillance qualities of JSQE, BSAS, and TOBA
mechanisms by varying the number of sensors and the quality requirement, Qreq. Three
mechanisms have a similar trend in that the quality is increased with the increase in
the number of deployed sensors and the required quality. This occurs because more
sensors can participate in monitoring tasks when a large number of sensors are deployed.
Furthermore, the proposed JSQE has a higher monitoring quality in the case of the low-
density sensor deployment and high user-required quality Qreq, as compared with the
other two mechanisms. The reason for this is that the proposed JSQE adopts the ESM
model, which can reflect the physical parameters. It selects the sensor with the maximal
contribution to improve the surveillance quality of the bottlenecked line segments.

Figure 9 compares the surveillance qualities of the eight randomly selected points
when 500 sensors are randomly deployed in a monitoring region. Figure 9a shows the
surveillance quality of the eight selected points on the Big-boundary by applying the
proposed JSQE. It is observed that the surveillance qualities of all selected points are
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higher than the user-required value Qreq. This implies that the proposed JSQE supports
sufficient fairness of surveillance quality. This occurs because the selection policy of the
JSQE mechanism selects the sensor with the largest contribution to cover the bottleneck
segment, which can balance the surveillance quality of each line segment.
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Figure 9b further compares the surveillance qualities of the proposed JSQE and existing
BSAS and TOBA by using different boundaries. The required quality Qreq is set to 0.7,
while the settings of other parameters are identical to those of Figure 9a. In comparison,
the proposed JSQE mechanism outperforms BSAS and TOBA in terms of the monitoring
quality for those randomly selected points. The reason for this is that the existing TOBA
mechanism aims to construct the k-barrier with a minimal number of working sensors.
This policy might lead to the imbalanced monitoring quality of each line segment, as the
line segment with the minimal quality might not be covered by the working sensors. In
addition, the BSAS mechanism is a centralized approach, which consumes more energy
to control overheads. Therefore, a lower amount of remaining energy results in lower
surveillance quality, as compared with the proposed JSQE.

Figure 10 compares the number of working sensors by applying the three mechanisms
in the Small-boundary scenario. The number of deployed sensors ranges from 400 to
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800. As shown in Figure 10, three mechanisms have a similar trend in that the number of
working sensors is increased with the increase in the number of deployed sensors. This
occurs because a large number of deployed sensors can provide more opportunities to
find the appropriate sensors, which contribute better monitoring quality to satisfy the
user-required quality Qreq. As shown in Figure 10a, in the case that the required quality
Qreq is equal to 0.3, three mechanisms have small differences in terms of the number of
working sensors. This is because all three mechanisms have a similar trend in that fewer
sensors can achieve the requirements of surveillance quality. Figure 10b shows that the
proposed JSQE mechanism has better performance than BSAS and TOBA, especially in the
scenario in which there is a high density of sensor nodes. This occurs because the proposed
JSQE mechanism can exactly estimate the surveillance quality by applying the ESM. In
addition, the JSQE selects more sensors with the largest contribution, such that the segment
with the weakest surveillance quality can be significantly improved. For example, when the
weakest surveillance quality is below quality Qreq = 0.7, the JSQE mechanism only needs to
wake up a few sensors to improve the weakest surveillance quality. On the contrary, the
existing TOBA mechanism wakes up more sensors to construct the barrier, aiming to form
the continuous cover set. The BSAS mechanism first schedules sensors with the farthest
distance to the boundary barrier, aiming to improve the utilization of sensors. This results
in a larger number of working sensors, as compared with the proposed JSQE.
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Assume that all sensors have the same total energy. As the working sensors run
out of energy, we add 100 sensors over a fixed period. As shown in Figure 11, the three
mechanisms have a similar trend in that the energy consumption increases is increased with
the number of sensor nodes. The reason for this is that adding sensors allows for the energy
consumption needed to construct the new barriers. The total energy consumption of the
JSQE is lower than that of the other two mechanisms. This is because the JSQE schedules a
smaller number of working sensors but satisfies the user-defined surveillance quality.
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Figure 11. Comparison of three mechanisms in terms of energy consumption by increasing the
number of sensors.

Figure 12 compares the flexibilities of the JSQE, BSAS, and TOBA algorithms. The
flexibility of an algorithm is observed by measuring the control overheads and the incre-
ment of coverage contribution when the number of deployed sensors is increased. In the
experiment, fifty sensors are added every fixed period of time. The number of sensors is
varied, ranging from 400 to 700. As shown in Figure 12, the proposed JSQE outperforms
the BSAS in terms of control overheads. The reason for this is that the BSAS algorithm
adopts a centralized approach, which increases significant control overheads for communi-
cation when 50 additional sensors are deployed. Meanwhile, the proposed JSQE has better
performance than the TOBA in terms of the coverage contribution. By applying the JSQE,
the newly scheduled sensors can accurately calculate their contributions and improve the
weakest surveillance quality. However, the TOBA can increase its coverage only when the
number of increased sensors is larger than a certain number. Thus, the JSQE is better than
the BSAS and TOBA in terms of the scalability of the WSNs.
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Figure 13 further examines the efficiency index, which considers two parameters,
namely, the weakest surveillance quality and the number of working sensors. Let Nnum
denote the total number of working sensors and Pweakest denote the weakest monitoring
quality of the barrier boundary. The monitoring efficiency, denoted by Me f f iciency, is defined
as shown in Equation (28).

Me f f iciency =
pweakest
Nnum

(28)
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Figure 13. Comparison of the different user-required qualities Qreq in terms of monitoring efficiency
by varying the number of deployed sensors: (a) Small-boundary; (b) Big-boundary.

A high-efficiency index indicates that the mechanism can obtain better monitoring
quality by using fewer working sensors. In Figure 13, the monitoring efficiency is examined
for the three required qualities Qreq in two scenarios, where the number of deployed
sensors is varied, ranging from 400 to 800. As shown in Figure 13, the monitoring efficiency
at Qreq = 0.7 is better than that of the other two required qualities, in the case that the
number of sensors is larger than 500. This occurs because more appropriate sensors with
better contributions can be selected in the case of a large number of sensors. Comparing
Figure 13a,b, the performance in the Small-boundary scenario is better than that in the
Big-boundary scenario in all cases. This occurs because the Big-boundary has a large
amplitude, leading to the segments being widely distributed. Hence, the segments of the
barrier cannot be easily covered by the sensors.
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Figure 14 further investigates the fairness indices of the three compared mechanisms
in the Small-boundary scenario. The user-required quality is set to 0.3, 0.5, and 0.7. The
number of sensors is 500. The fairness index of monitoring quality, denoted by Tf airness, is
defined as shown in Equation (29), where pi denotes the monitoring quality of each line
segment and n denotes the number of line segments.

Tf airness =
(∑n

i=1 pi)

n∑n
i=1 pi

2

2

(29)
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In comparison, the proposed JSQE outperforms the other two mechanisms in terms of
the fairness index. The key reason for this is that the TOBA does not consider the lowest
monitoring quality, which impacts its fairness. The BSAS aims to maximize the utilization
of sensor energy. This policy leads to low fairness when the deployed sensors are not
balanced. The proposed JSQE finds the weakest line segment and selects the sensors with
the largest contribution to improve the monitoring quality of the weakest line segment.
Therefore, the fairness index of JSQE is close to 1.

Figure 15 further examines the fairness index of the JSQE mechanism by varying the
values of the required quality in the Small-boundary scenario. The number of sensors is
varied, ranging from 400 to 800. As shown in Figure 15, the fairness index of monitoring
quality increases with the increase in the number of deployed sensors. This occurs because
more sensors can provide more opportunities for sensors to cooperatively monitor the
bottleneck line segment, which has the lowest monitoring quality.
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6. Conclusions

This paper proposes a distributed barrier coverage mechanism, JSQE, which aims to
dynamically wake up the minimal number of working sensors to guarantee the required
monitoring quality of the barrier boundary. The proposed JSQE initially partitions the
boundary curve into several line segments. Then, it applies the ESM to calculate the sensing
probability of each sensor, identify the weakest line segments, and schedule the sensor
with the maximal contribution in advance to improve the weakest line segment. The
experimental results show that our proposed mechanism outperforms the compared TOBA
and BSAS mechanisms. Future work will consider mobile sensors and further optimize the
surveillance quality of barrier coverage.
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