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Abstract: Reference-based image super-resolution (RefSR) methods have achieved performance su-
perior to that of single image super-resolution (SISR) methods by transferring texture details from an
additional high-resolution (HR) reference image to the low-resolution (LR) image. However, existing
RefSR methods simply add or concatenate the transferred texture feature with the LR features, which
cannot effectively fuse the information of these two independently extracted features. Therefore, this
paper proposes a dual projection fusion for reference-based image super-resolution (DPFSR), which
enables the network to focus more on the different information between feature sources through
inter-residual projection operations, ensuring effective filling of detailed information in the LR feature.
Moreover, this paper also proposes a novel backbone called the deep channel attention connection
network (DCACN), which is capable of extracting valuable high-frequency components from the LR
space to further facilitate the effectiveness of image reconstruction. Experimental results show that
we achieve the best peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) performance
compared with the state-of-the-art (SOTA) SISR and RefSR methods. Visual results demonstrate that
the proposed method in this paper recovers more natural and realistic texture details.

Keywords: reference-based super-resolution; attention mechanism; texture transformer; dual
projection fusion

1. Introduction

Image super-resolution (SR) aims to reconstruct an HR image with clear texture details
from a blurred LR image [1]. In recent years, deep learning-based SISR algorithms [2–6]
have made significant progress and are widely used for various real-world tasks, such
as medical image processing [7,8], surveillance imaging [9], and object recognition [10].
However, when the upsampling factor reaches 4× or greater, the reconstruction results of
most existing methods show blurred visual effects or artifacts. Although generative adver-
sarial network (GAN) [11] and perceptual loss [12]-based methods have been proposed to
improve the quality of the reconstructed images, they cannot guarantee the realism of the
generated textures, resulting in the degradation of the PSNR performance.

To address this problem, the RefSR method [13–18], which transfers fine details from
an additional reference image (Ref) to the LR image, is proposed. Compared to traditional
SISR, RefSR exhibits better reconstruction performance. RefSR transforms the more complex
texture generation process into a relatively simple texture search and transfer operation,
thus producing more realistic and natural-looking textures. For example, Zhang et al. [16]
feed the Ref and LR images into a pre-trained VGG model for feature extraction, and then
performed feature matching and texture transfer in the neural feature space. Yang et al. [18]
firstly introduced the transformer architecture to the SR tasks and proposed a novel texture
transformer to model the correspondence between the LR and Ref images, which helps to
perform feature matching more accurately.

However, the previous methods ignore that the information in the LR space still
has valuable high-frequency components. Besides, they simply add or concatenate the
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LR feature and the Ref feature together without taking the different information between
feature sources into account. To tackle the aforementioned issues, we propose a novel RefSR
method called DPFSR, which not only makes full use of the high-frequency information
from the Ref image and the LR space, but also performs effective feature fusion. In summary,
the main contributions of this paper are as follows:

• We propose a lightweight backbone, called deep channel attention connection network
(DCACN), which can extract valuable high-frequency components from the LR space
for image reconstruction. With the help of DCACN, the proposed DPFSR possesses
stronger feature representation capability;

• We also propose a novel fusion module, called dual projection fusion module (DPFM),
which enables the network to focus on the different information between feature
sources through inter-residual projection operations, generating more discriminative
fusion features and further improving the performance of the model;

• We evaluate the proposed DPFSR on three publicly available datasets, and our method
proved to be superior to the state-of-the-art SISR and RefSR methods through quanti-
tative and qualitative comparisons. Furthermore, we also conduct an ablation study
to explore the effect of utilizing reference images with different similarity levels on the
model performance. Experimental results demonstrate that the proposed approach
possesses superior robustness.

The rest of this paper is organized as follows. In Section 2, we review some deep
learning-based SISR and RefSR approaches. In Section 3, we discuss the proposed network
framework. Section 4 discusses the details of the experiments and the analysis of the results.
Finally, the summary of this paper is given in Section 5.

2. Related Work
2.1. Single Image Super-Resolution

Deep learning-based SISR algorithms have attracted significant attention in recent
years. Dong et al. first applied convolutional neural networks (CNNs) to image SR
reconstruction and proposed SRCNN [2]. Later, Dong et al. proposed a faster and more
efficient FSRCNN [19] model based on SRCNN, which directly takes the LR image as
input and then adopts deconvolution at the end of the network to upscale the feature maps,
greatly reducing the number of network parameters. Kim et al. introduced residual learning
structures and recurrent neural networks into the optimization process of the network
and proposed VDSR [20] and DRCN [21], which can effectively control the number of
parameters while increasing the depth of the network. To improve the processing speed of
the network, Shi et al. reconstructed the HR image using sub-pixel convolution [22] rather
than deconvolution. Lai et al. [23] combined the idea of progressive image reconstruction
to super-resolve the LR image in a step-by-step zooming manner. Lim et al. [5] removed
the BN layer in the residual network, thus building a deeper SR network. Moreover,
Zhang et al. combined the dense structure and residual structure to construct a RDN [24],
resulting in faster convergence of the network. Recently, RCAN [25] adopted the residual-
in-residual (RIR) architecture and introduced the channel attention mechanism to achieve
superior PSNR performance.

The methods mentioned above mainly focus on minimizing MAE or MSE loss, giving
the reconstructed images a high PSNR value. However, they often fail to recover texture
details of the image effectively and are thus unsatisfactory in terms of perceptual quality.
For this reason, Johnson et al. [12] proposed a perceptual-driven SR model that minimizes
the distance between the semantic features extracted from the VGG network to improve
visual quality. Inspired by GAN, Ledig et al. proposed SRGAN [26], which utilizes content
loss and adversarial loss as the objective function for optimization, yielding more natural
image texture. Later, Wang et al. [27] improved on the structure of SRGAN to further
enhance the image reconstruction performance. Zhang et al. [28] trained a ranker that
can simulate perceptual metrics. Moreover, they introduced rank-content loss to produce
visually more plausible results. Recently, Ma et al. [29] introduced the notion of gradient
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guidance to super-resolution tasks, which retains the advantages of GAN while reducing
the image distortion problem to achieve state-of-the-art perceptual results.

2.2. Reference-Based Image Super-Resolution

Compared with SISR, which only involves a single LR image as input, RefSR super-
solves the LR image by leveraging the high-frequency details provided by an additional
Ref image with similar content. RefSR transforms more complex texture generation into
relatively simple texture search and transfer, effectively improving the performance of SR
reconstruction. The key factor that affects the performance of RefSR is how to transfer suit-
able high-frequency texture details from the Ref image as auxiliary information for image
reconstruction, which is generally performed in two ways, namely pixel-wise alignment
and patch-wise matching.

One solution of RefSR is to perform pixel-wise alignment between the LR and Ref im-
ages. Specifically, Yue et al. [30] achieved the goal of aligning the LR and Ref images by
a global registration operation, followed by a local matching operation to super-resolve
the LR image. Zheng et al. proposed a RefSR model called CrossNet [15], which aligns the
Ref and LR images using optical flow and warps features at different scales according to
the flow. However, CrossNet suffers severe performance degradation when there are large
displacements between the Ref and LR images. To alleviate this issue, Shim et al. [31] em-
ployed deformable convolution [32] rather than optical flow to estimate the offset between the
Ref and LR images, which effectively improves image alignment quality. Nevertheless, these
methods have limitations in capturing long-range dependencies.

Another solution adopts the patch-wise matching scheme to search for related texture
features from the Ref image, which is not limited by long-range dependencies and thus is
more flexible. Zheng et al. [14] defined RefSR as a two-stage task, where patch matching
is performed in the first stage to find feature correspondence, and feature synthesis is
performed according to the correspondence in the second stage. SRNTT [16] fed the Ref
and LR images into a pre-trained VGG network for feature extraction, then applied dense
patch matching to calculate texture similarity between the Ref and LR feature, and used it to
adaptively transfer high-frequency details from the Ref image into the LR image. Yue et al.
used a learnable texture extractor instead of a fixed VGG network for feature extraction, and
the proposed TTSR [18] is capable of achieving more accurate patch matching and texture
feature transfer. However, the above methods, such as SRNTT and TTSR, ignore the fact
that the LR space still contains valuable high-frequency details. Besides, they simply add
or concatenate the LR and transferred Ref features together, which cannot effectively fuse
these two independently extracted features. In this paper, we propose a novel backbone for
extracting more elaborate features from the LR space, as well as a new fusion module for
combining the LR and Ref features more efficiently.

3. Methods

The overall structure of the proposed dual projection fusion for reference-based image
super-resolution (DPFSR) is shown in Figure 1. The proposed DPFSR can be divided
into four parts: LR feature extraction with the deep channel attention connection network
(Section 3.1), Ref feature transfer with the improved texture transformer (Section 3.2), fea-
ture fusion with the dual projection fusion module (Section 3.3), and image reconstruction
with the cross-scale feature integration module (Section 3.4).



Sensors 2022, 22, 4119 4 of 15

Figure 1. The overall structure of the proposed dual projection fusion for reference-based image
super-resolution (DPFSR).

Let us denote ILR and ISR as the input and output of DPFSR. IRe f , IRe f ↓↑, and ILR↑

denote the reference image, the 4× bicubic-downsampled and upsampled reference image,
and the 4× bicubic-upsampled input image, respectively. We first adopt a backbone
network to extract the feature FLR from the LR input:

FLR = HDCACN(ILR) (1)

where HDCACN(·) represents our proposed deep channel attention connection network
(DCACN). Then, taking IRe f , IRe f ↓↑, and ILR↑ as inputs, the texture feature FRe f is trans-
ferred from the reference image using the improved texture transformer (ITT):

FRe f = HITT(IRe f , IRe f ↓↑, ILR↑) (2)

where HITT(·) denotes the output of ITT. Note that ITT can be further stacked to transfer
texture features of different scales. FLR and FRe f are then used for feature fusion with the
dual projection fusion module (DPFM):

Ff used = HDPFM(FLR, FRe f ) (3)

where Ff used represents the fused comprehensive feature. Finally, the fused feature is used
for image reconstruction:

ISR = HREC(Ff used) (4)

where HREC(·) denotes the reconstructed network with the cross-scale feature integration
module (CSFI).

The objective functions used to train the network will be described in detail in
Section 3.5.

3.1. Deep Channel Attention Connection Network

Inspired by [33,34], we propose a deep channel attention connection network (DCACN)
to exploit the valuable high-frequency information in LR space. The proposed DCACN
makes full use of the interdependence among the channel-wise features and the information
flow among attention blocks to build a solid foundation for image reconstruction. As
shown in Figure 2, the proposed DCACN mainly consists of two parts: a shallow feature
extraction and a deep feature extraction part [35]. We use a convolutional layer and a
ReLU [36] activation layer to extract the shallow features of the input image, while the deep
feature extraction part consists of multiple residual channel attention blocks (RCABs) with
connected attention (CA), a convolutional layer, and a long skip connection (LSC). Since the
shallow feature extraction part we use is the same as that in previous works [16,18], we pay
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more attention to the deep feature extraction. More details about RCAB and CA are given
as follows.

Figure 2. An illustration of the deep channel attention connection network (DCACN). The ConvBlock
in RCAB consists of two convolutional layers and a ReLU activation layer placed between them.

For a given feature map F ∈ RH×W×C produced by a convolutional block, we adopt the
global averaging pooling (GAP) operation to generate the channel statistics as E ∈ R1×1×C,
which is obtained by shrinking F through spatial dimensions H ×W [37]:

E = HGAP(F) =
1

H ×W

H

∑
i=1

W

∑
j=1

F(i, j) (5)

where HGAP(·) represents the global averaging pooling operation; F(i, j) is the value at
position (i, j) of F.

After that, we perform a faster 1D convolution followed by a gating mechanism with
sigmoid [38] activation to generate the attention map S [33]:

S = σ(Conv1D3(E)) (6)

where Conv1D3(·) indicates 1D convolution with kernel size of 3. As explained in [34], at-
tention maps are essential for attention learning, and the addition of an attention connection
mechanism can further facilitate information flow among attention blocks. Consequently,
we incorporate the informative features of the previous attention block into the current
attention block by applying the attention connection mechanism. The resulting attention
map can be represented as [34]:

S = σ(Conv1D3(αE + βS̃)) (7)

where α and β are learnable parameters. For the first residual channel attention block in
the deep feature extraction part, (α, β) is set to (1, 0); then, Equation (7) is simplified to
Equation (6). S̃ is the attention map produced by the previous attention block. Finally, S is
used to rescale F:

F′ = F⊗ S (8)

where ⊗ represents element-wise multiplication.
In summary, the proposed DCACN can effectively capture cross-channel interactions

for channel attention learning, thus facilitating the mining of valuable high-frequency
information from the LR features.

3.2. Improved Texture Transformer

As shown in Figure 3, the proposed ITT mainly consists of three parts: the texture
feature encoder (TFE), the similarity embedding module (SE), and the texture feature selec-
tor (TFS). LR↑ and Ref denote the 4× bicubic-upsampled LR and Ref images, respectively.
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Ref↓↑ is obtained by sequentially applying 4× bicubic-downsampling and upsampling to
Ref. By doing so, it is ensured that Ref↓↑ matches the frequency domain of LR↑. After that,
ITT takes LR↑, Ref↓↑, and Ref as inputs and outputs a reference texture feature. Details
will be discussed below.

Figure 3. The improved texture transformer (ITT).

3.2.1. Texture Feature Encoder

We use the first 12 layers of the VGG19 [39] network as the texture feature encoder,
which can extract three different scales of feature maps (4×, 2×, 1×) from the relu1_2,
relu2_1, and relu3_1 layers of the VGG19 network. Based on the properties of TFE, we
can stack multiple ITTs and perform similarity embedding at different extraction scales
to transfer multi-scale texture features. More details will be discussed in Section 3.4. The
encoding process is defined as [18]:

Q = TFE(LR ↑) (9)

K = TFE(Re f ↓↑) (10)

V = TFE(Re f ) (11)

where TFE(·) denotes the output of the texture feature encoder. Note that the parameters
of the texture feature encoder are first initialized with the pre-trained model of VGG19,
after which the encoder will continue training along with the whole network. The output
features Q, K, and V will be further processed in the next modules.

3.2.2. Similarity Embedding Module

The similarity embedding module (SE) aims to find the correspondence between the
Ref and LR images. To this end, Q is unfolded into HLR ×WLR patches {q1, . . . , qHLR×WLR},
and K is unfolded into HRe f ×WRe f patches {k1, . . . , kHRe f×WRe f }. Then, for each patch of
Q, we find its most relevant patch in K. Specifically, we perform the dense patch matching
on the unfolded patches of Q and K. Taking the i-th patch qi, for example, we compute the
cosine similarity [40] with each patch of K as:

ri,j =

〈
qi
‖qi‖

,
k j∥∥k j
∥∥
〉

(12)

where qi is the i-th patch of Q, k j is the j-th patch of K, and ri,j is their similarity score. Next,
we utilize ri,j to calculate the hard-attention map H and the soft-attention map S. The i-th
position of H is calculated as:

hi = arg max
j

ri,j (13)
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The i-th position of S is the highest similarity score associated with the i-th patch qi in
Q, which is computed as:

si = max
j

ri,j (14)

3.2.3. Texture Feature Selector

The texture feature selector aims to transfer high-resolution texture features from the
Ref image. To this end, we extract related patches from V with the guidance of the hard
attention map H as [18]:

ti = vhi
(15)

where ti is the i-th element of T. We fold these extracted patches to form the feature map T.
To save the computational cost of the network, we perform a 1× 1 convolutional layer on
T to decrease the number of feature map channels, and obtain a new feature map T′:

T′ = Conv(T) (16)

In addition, we multiply T′ element-wise with the soft attention map S to obtain
the final reference texture features. By doing so, the transferred texture features with
high-correlation will be enhanced, while low-correlation ones will be suppressed [35].
This process can be expressed as:

FRe f = T′ ⊗ S (17)

where FRe f represents the high-resolution texture features transferred by ITT. ⊗ denotes
the element-wise product operation.

Compared with the texture transformer (TT) proposed in [18], ITT uses deeper features
for similarity embedding so that it can transfer more accurate texture features from Ref.
In addition, it also uses a 1 × 1 convolutional layer for data dimensionality reduction of the
preliminary extracted texture feature T. Such a design allows ITT to effectively reduce the
number of module parameters while maintaining considerable performance.

3.3. Dual Projection Fusion Module

Since the LR features FLR and the transferred texture features FRe f originate from
different information sources, the question of how to fuse them into a comprehensive
feature map is essential to synthesizing the final super-resolve results [41]. Unlike previous
works that simply add or concatenate them together, we propose a dual projection fusion
module (DPFM) to effectively combine them together, as shown in Figure 4.

Figure 4. An illustration of the proposed dual projection fusion module (DPFM).

Our DPFM consists of two branches: the Ref branch and the LR branch. Such a design
allows the network to further refine the information that differ from each other. Taking the
Ref branch as an example, we first compute the residual between FRe f and the LR features
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FLR, then apply a convolutional layer with kernel size of 3 to the residual and add it back
to the FRe f to obtain a more discriminative feature representation F′Re f :

F′Re f = FRe f + Conv(FRe f − FLR) (18)

Similarly, the processing procedure of the LR branch can be expressed as:

F′LR = FLR + Conv(FLR − FRe f ) (19)

After that, we concatenate the output features from two branches and apply a 3× 3
convolution layer to obtain the final fused features:

Ff used = Conv(Concat(F′LR, F′Re f )) (20)

where Concat indicates the concatenation operation along the channel dimension.
In summary, the proposed DPFM fully considers the differences between the LR

features and the transferred texture features, and then fuses them into a more representative
and comprehensive feature representation, laying a solid foundation for the next stage of
image reconstruction.

3.4. Image Reconstruction

Compared with single-scale features, multi-scale features contain richer information,
which is beneficial to enhancing the effect of image super-resolution reconstruction. There-
fore, we stack multiple ITTs to gradually fuse the multi-scale Ref features (1×, 2× and 4×)
into the LR features. Moreover, we apply the CSFI module [18] to facilitate the feature
exchange across each scale whenever upsampling the LR feature to the next scale. In this
way, we can fully fuse the texture feature information at different scales, thus achieving a
more powerful feature representation capability. The reconstruction procedure is shown in
the right half of Figure 1.

3.5. Loss Function

As in [18], the loss function used in this paper contains three losses. The overall loss
function is defined as follows:

L = λrecLrec + λperLper + λadvLadv (21)

• Reconstruction loss: Lrec is the Mean absolute error (MAE) loss:

Lrec =
∥∥∥IHR − ISR

∥∥∥
1

(22)

where IHR and ISR represent the ground-truth and the output of our network;
• Perceptual loss: Perceptual loss Lper aims to improve the visual quality of the recov-

ered image. In this paper we uses the conventional perceptual loss [12]:

Lper =
∥∥∥φ

vgg
relu5_1(IHR)− φ

vgg
relu5_1(ISR)

∥∥∥2

2
(23)

where φ
vgg
relu5_1(·) denotes the relu5_1 layer output features of the VGG19 model;

• Adversarial loss: Ladv is the adversarial loss that promotes the synthesized images to
obtain clear and natural image details. Here, we also adopt the WGAN-GP[42]:

LD = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(‖∇x̂D(x̂)‖2 − 1)2] (24)

LG = − E
x̃∼Pg

[D(x̃)] (25)



Sensors 2022, 22, 4119 9 of 15

where LD and LG denote the discriminator loss and generator loss in WGAN-GP,
respectively. Note that the generator refers to DPFSR in this paper. D is the set of
1-Lipschitz functions. x̃ and x denote the output of the generator and the real data,
respectively. x̂ is defined as the data randomly sampled along the line between x̃ and
x, and Px̂, Pg, and Pr are the data distributions they obey.

4. Experiments and Results
4.1. Datasets and Evaluation Metrics

We followed previous work [18] to train our model using the training set of the
CUFED5 dataset, which is collected from photo albums depicting daily life events and
contains a total of 11,871 image pairs. Each image pair has a ground-truth image and a
corresponding reference image. To verify the robustness of the model, we evaluated it on
three publicly available datasets: the testing set of the CUFED5 dataset, the Sun80 [43]
dataset, and the Urban100 [44] dataset. The CUFED5 testing set contains 126 sets of
images, each with one high-resolution input image and five reference images with different
similarity levels. The Sun80 dataset contains 80 images from natural scenes; each image
is paired with several references. The Urban100 dataset consists of 100 images of indoor,
urban, and architectural scenes with strong self-similarity. Due to its lack of reference
images, we use its LR images instead. All the SR results are measured on Y channel of the
YCrCb color space by PSNR and SSIM [45] metrics.

4.2. Implementation Details

We construct LR images by performing 4× bicubic interpolation downsampling on
HR images in all experiments. The number of RCAB in DCACN is set to 20. The dense
patch matching operation is performed only on the smallest scale (1×) in the TFE and
propagates the correspondence to other scales (2×, 4×). During training, training examples
are augmented by randomly rotating 90◦, 180◦, 270◦, and randomly flipping horizontally
and vertically. Our network was trained with a batch size of nine, and an Adam [46]
optimizer with β1 = 0.9 and β2 = 0.999 was used to optimize the network. The learning
rates of both the generator and the discriminator were set to 1e−4. The weights for Lrec,
Lper, and Ladv were 1, 1e−2, and 1e−3, respectively. We initially pre-trained the network
with only 10 epochs using the reconstruction loss, then fine-tuned the network by applying
all losses and continued training for 60 epochs. The proposed DPFSR was implemented
on a NVIDIA 1080 Ti GPU using the PyTorch [47] framework; more information on the
experimental configuration is shown in Table 1.

Table 1. Experimental configuration.

Experimental Configuration Options

Linux version Ubuntu 20.04
Deep-learning framework PyTorch 1.10

CUDA version 11.2
Input patchsize 160 × 160

Reference patchsize 160 × 160
Scale factor 4×

4.3. Ablation Study

In this section, we conduct ablation studies to investigate the effectiveness of several
important designs in our network. Furthermore, we also investigate the effect of using
reference images with different similarity levels on model performance.

4.3.1. Effect of DPFM and DCACN

The dual projection fusion module DPFM is used to fuse the LR features extracted
by DCACN with the transferred Ref features. To independently verify the effectiveness of
DPFM, we first removed the attention mechanism and connected attention in DCACN and
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then replace DPFM with a concatenation operation and a convolutional layer to construct
the “Base” model. As illustrated in Table 2, we can observe that the PSNR performance is
not greatly improved if only one branch in the DPFM is used. Taking “Base + LR branch
of DPFM” as an example, while the inter-residual projection operation enables the LR
branch to obtain useful high-frequency information from FRe f , it also loses the rich common
information in the Ref branch. If the complete DPFM is used, the PSNR value will be
improved from 27.18 dB to 27.23 dB compared with the “Base” model. Furthermore, to
verify the effectiveness of DCACN, we continued to add the attention mechanism and
connected attention to the “Base + DPFM” model. With the help of attention mechanism and
connected attention, we found that the constructed “DPFSR” model achieves a performance
gain of 0.02 dB over the “Base + DPFM” model.

Table 2. Ablation study on the dual projection fusion module and deep channel attention connec-
tion network.

Model PSNR/SSIM

Base 27.18/0.806
Base + LR branch of DPFM 27.18/0.807
Base + Ref branch of DPFM 27.16/0.805

Base + DPFM 27.23/0.807
DPFSR (Ours) 27.25/0.808

4.3.2. Effect of ITT

Table 3 provides the ablation results on improved texture transformer. We first replaced
the ITT with TT to construct the “DPFSR (replace ITT with TT)” model. It is worth noting
that in TT, the LR features are simply concatenated with the transferred texture features
and then fused together by a convolution layer, which means that this model does not
use DPFM. For fair comparison, we constructed another comparison model, “DPFSR (use
ITT without DPFM)”, by removing the DPFM and using a concatenation operation and
a convolution layer instead. With the ITT, we can find that the PSNR value increases by
0.02 dB. This result shows that the ITT is capable of transferring more accurate texture
features from Ref. On the other hand, it also demonstrates that the combination of ITT and
DCACN can achieve better performance.

Table 3. Ablation study on improved texture transformer.

Model PSNR/SSIM

DPFSR (replace ITT with TT) 27.18/0.806
DPFSR (use ITT without DPFM) 27.20/0.807

4.3.3. Effect of Different Reference Similarity Levels

We ran ablation experiments on the CUFED5 to investigate the effect of reference
images with different similarity levels on the model performance. In Table 4, the similarity
level from “L1” to “LR” gradually decreases. Among them, “LR” denotes utilizing the
low-resolution image itself as the reference. We can observe that the performance of the
model benefits from the similarity level between the reference and LR image. The higher the
similarity, the better the performance. Compared with the previous state-of-the-art RefSR
methods, we achieved the best performance at every similarity level. Especially when
using “LR” as the reference image, the proposed DPFSR-rec can improve the performance
of PSNR by 0.2 dB compared to TTSR-rec.
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Table 4. Ablation study on reference images with five different similarity levels.

Level CrossNet SRNTT-rec TTSR-rec DPFSR-rec
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

L1 25.48/0.764 26.15/0.781 26.99/0.800 27.15/0.805
L2 25.48/0.764 26.04/0.776 26.74/0.791 26.86/0.794
L3 25.47/0.763 25.98/0.775 26.64/0.788 26.73/0.790
L4 25.46/0.763 25.95/0.774 26.58/0.787 26.68/0.789
LR 25.46/0.763 25.91/0.776 26.43/0.782 26.63/0.786

4.4. Comparisons with State-of-the-Art Methods

We made a comparison of the proposed DPFSR with various SR methods, includ-
ing state-of-the-art SISR methods and RefSR methods. For SISR methods, we included
SRCNN [2], MDSR [5], RDN [24], RCAN [25], SRGAN [26], ENET [48], ESRGAN [27], RSR-
GAN [28], and SPSR [29]. For RefSR methods, CrossNet [15], SRNTT [16], and TTSR [18]
were compared with our method. To achieve fair comparison, all methods were trained
using the training set of the CUFED5 dataset and were tested on the CUFED5, Sun80, and
Urban100 datasets.

4.4.1. Quantitative Evaluation

Table 5 reports the quantitative comparison results on the three testing benchmarks.
The best results are highlighted in red, while the second-best results are highlighted in blue.
Note that the RefSR method with the suffix “-rec” indicates training with reconstruction
loss only, aiming to achieve a higher PSNR. It can be found that our method achieves
the state-of-the-art PSNR performance for all the testing benchmarks. On the CUFED5
testing set, the proposed method outperforms the state-of-the-art method by 0.16 dB.
Moreover, we achieve 0.08 dB and 0.16 dB improvements on the Sun80 and Urban100
datasets, respectively. The superior performance demonstrates the effectiveness of our
well-designed module.

Table 5. Quantitative comparison with other SR methods on three benchmark datasets. We group
methods by SISR (top) and RefSR (bottom). The best performance is highlighted in red, while the
second-best performance is highlighted in blue.

Method CUFED5 Sun80 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 24.22/0.684 28.65/0.766 23.13/0.659
SRCNN [2] 25.33/0.745 28.26/0.781 24.41/0.738
MDSR [5] 25.93/0.777 28.52/0.792 25.51/0.783
RDN [24] 26.17/0.771 29.97/0.812 25.59/0.768

RCAN [25] 26.19/0.771 30.02/0.813 25.65/0.771
SRGAN [26] 24.40/0.702 26.76/0.725 24.07/0.729

ENet [48] 24.24/0.695 26.24/0.702 23.63/0.711
ESRGAN [27] 21.90/0.633 24.18/0.651 20.91/0.620
RSRGAN [28] 22.31/0.635 25.60/0.667 21.47/0.624

SPSR [29] 24.39/0.714 27.94/0.744 24.29/0.729

CrossNet [15] 25.48/0.764 28.52/0.793 25.11/0.764
SRNTT-rec [16] 26.24/0.784 28.54/0.793 25.50/0.783

SRNTT [16] 25.61/0.764 27.59/0.756 25.09/0.774
TTSR-rec [18] 27.09/0.804 30.02/0.814 25.87/0.784

TTSR [18] 25.53/0.765 28.59/0.774 24.62/0.747
DPFSR-rec 27.25/0.808 30.10/0.815 26.03/0.787

DPFSR 25.23/0.749 28.42/0.762 24.35/0.734

In addition, we also considered the comparison with other patch-based RefSR methods
in the number of network parameters and execution time. We took five pairs of images
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as input to calculate the average execution time, where each pair contains a 120 × 120 LR
image and a 400 × 400 Ref image, respectively. As described in Table 6, it can be found that
TTSR and DPFSR are significantly faster than SRNTT in terms of execution time. Combining
the results in Table 5, we can conclude that DPFSR achieves the best performance on PSNR
and SSIM, although it is slightly inferior to TTSR in terms of the number of network
parameters and execution time.

Table 6. Comparison of the number of network parameters and execution time. The methods used
for comparison are all patch-based RefSR methods.

Method Param. (M) Average Execution Time (ms)

SRNTT [16] 5.74 3811.18
TTSR [18] 6.73 198.58

DPFSR 6.91 212.19

4.4.2. Qualitative Evaluation

Figure 5 shows the results of the qualitative comparison. We can observe that the SISR
methods suffer from the distinct blurring artifacts because it only utilizes the information
from the LR image. In contrast, our method shows visual results with more natural and
realistic textures. In addition, our method also has greater relevancy to the ground-truth
images than other RefSR methods. The qualitative comparison indicates that our proposed
DPFSR can effectively fuse the transferred texture features into the LR features, which
is beneficial for generating satisfactory SR results. Therefore, the proposed DPFSR is
perceptually superior to other state-of-the-art methods.

Figure 5. Qualitative comparison with other SR methods on the CUFED5 testing set (the top
two examples), Sun80 [43] (the third example), and Urban100 [44] (the bottom example). To see
the details of the image clearly, the area marked by the red frame is enlarged.

5. Conclusions

In this paper, we propose a dual projection fusion for reference-based image super-
resolution (DPFSR). The proposed dual projection fusion module can effectively combine
the transferred texture feature and the LR feature to form more discriminative fusion
feature maps. Moreover, we propose a novel backbone termed deep channel attention
connection network, which is capable of extracting valuable high frequency components
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from the LR space. Such a design allows the proposed DPFSR to recover images with more
natural and realistic texture details. Experimental results show that our DPFSR achieves the
best performance in terms of both quantitative and qualitative comparisons. Specifically,
DPFSR achieves PSNR gains of 0.16 dB, 0.08 dB, and 0.16 dB on three benchmark datasets
(CUFED5, Sun80, and Urban100) compared to TTSR. In the future, we would like to
explore the application of the RefSR in real-world scenarios such as medical imaging and
dual-camera imaging. Furthermore, we will also try to stack more ITTs to achieve super-
resolution at larger scale factors (8×, 16×) and try to handle the input data in the presence
of noise.
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