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Abstract: This paper reports on a new approach to face verification in long-wavelength infrared
radiation. Two face images were combined into one double image, which was then used as an
input for a classification based on neural networks. For testing, we exploited two external and
one homemade thermal face databases acquired in various variants. The method is reported to
achieve a true acceptance rate of about 83%. We proved that the proposed method outperforms other
studied baseline methods by about 20 percentage points. We also analyzed the issue of extending the
performance of algorithms. We believe that the proposed double image method can also be applied
to other spectral ranges and modalities different than the face.

Keywords: face verification; long-wavelength infrared radiation; convolutional neural networks

1. Introduction

To date, most of the research on face recognition has focused on the visible range of
radiation [1]. Recently, a growing interest has been observed in face recognition by the
long-wavelength infrared radiation (LWIR) ranging from 8 to 12 µm [2]. Thermal cameras
are passive devices which can work in low light conditions and are highly resistant to
illumination changes [3]. Registered radiation is proportional to the relative distribution
of the apparent temperature of objects placed in the field of the camera view and their
emissivity. In addition, thermal cameras offer spoofing detection capability [4].

Face recognition in the thermal infrared spectrum has not been explored extensively.
The main reason for the lower popularity in the thermal infrared domain is the higher
cost of cameras and a still relatively small number of scientific image datasets. Visible
light cameras are more accessible with prices starting from tens of dollars compared to
the thermal infrared sensors that cost at least several thousand dollars. However, thermal
infrared domain has many security and military applications; thus, the exploration of
thermal face recognition is highly desired.

The paper presents a new approach for face verification based on a combination of
traditional Siamese architecture with a classification task. The face verification method
proposed in this paper was inspired by the Siamese architecture where two images were
introduced as an input. Before the feature extraction stage, we combined two face images
into one double image consisting of both sample images framed side by side. However,
unlike the Siamese architecture, where both images are processed in separate paths, here,
the double image is processed in a single path which is similar to the identification with
CNNs. The proposed method uses a two-class classification to compute the face verification
score. Taking the above under consideration, we call this method the verification through
identification (VTI) method.

There is a very limited number of works related to thermal face recognition; the
method presented in this paper was implemented for comparing thermal infrared images.
However, it is possible to use the method for other spectral domains as well. A thorough
description of the method is provided together with the experimental methodology and
results. For reference, results obtained with baseline methods are presented.
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The contributions are summarized as follows:

- A new approach for face verification called verification through identification;
- The use of VTI for thermal face verification;
- Evaluation of existing state-of-the-art methods for face verification in the thermal

infrared domain.

The organization of the paper is as follows. Section 2 presents a review of related works.
Section 3 consists of a description of three databases used in the presented analysis and the
baseline methods used for comparison. Verification through identification is detailed in
Section 4. VTI performance is compared with the baseline methods in Section 5. Finally,
the work is summarized, and further applications of the developed method are presented.

2. Related Works

Since there is a limited number of works on face recognition in the thermal infrared
domain, we first focus on analyzing existing methods in the visible spectrum. Face recogni-
tion in the visible range can be based on appearance (3D morphable models [5], 2D active
appearance model [6], and elastic bunch graph matching method [7]) or texture (local fea-
ture descriptors, such as scale invariant feature transform [8], local binary pattern (LBP) [9],
histogram of oriented gradients (HOG) [10], and local derivative patterns (LDP) [11] with
statistical decision functions, such as support vector machines (SVMs) [12], linear discrimi-
nant analysis [13], principle component analysis [14], independent component analysis [15],
or convolutional neural networks (CNNs) [16]).

Two-dimensional face recognition in visible light often struggles with non-uniform
and varying illumination. A considerable part of face recognition methods uses 3D data
to avoid illumination issues. As an example, Mantecón et al. proposed novel depth face
descriptor called bag of dense derivative depth patterns (Bag-D3P), which more precisely
extracts specific characteristics of depth images, and exploits the extended spatial and depth
resolutions of the latest 3D cameras [17]. You et al. proposed a multi-channel deep 3D face
network for face recognition based on 3D face data that uses nine channels instead of three
in the input layer [18]. Pini et al. [19] used VGG16, ResNet-18 and InceptionV3 without
the last classification layer for the extraction of features from depth images. Authors
compared probe and gallery depth maps, computing the cosine similarity between the
deep features that were extracted by the networks. For every probe, they selected the
predicted identity as the gallery candidate corresponding to the maximum similarity. The
paper also introduced a new database composed of several facial modalities, including
thermal infrared face images.

Several approaches for facial verification have been proposed, including Siamese,
Triplet and Quadruplet architectures. The Siamese network consists of two identical neural
networks that process two images in parallel paths. The two processing paths are connected
at the end and fed the last layer which calculates the similarity between the two images.
In the method introduced by Chopra et al. [20], they selected pairs of images from the
same and different subjects, performed feature extraction using neural networks, and then
calculated the similarity between the pairs using similarity metric and loss functions. The
loss function was designed so as to decrease the energy function of genuine pairs (features
derived from the same subjects) and increase the energy of impostor pairs (features derived
from different subjects). The energy function was defined as a compatibility measure
between two images. The Siamese architecture uses a dedicated feature extraction method
for both processing channels and a decision function comparing the samples. Both local
descriptors and neural networks can be used as feature extraction methods.

Regarding local descriptors, Lu et al. proposed to verify both the identity and the
kinship between subjects using a pair of images. For each image, they extracted four
feature descriptors: LBP, dense scale invariant feature transform, HOG, and local phase
quantization. They developed a decision function called discriminative deep multi-metric
learning. This decision function learned multiple neural networks so that common and
discriminative information could be extracted to make all features more reliable [21]. One of
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the results presented in their work shows that the feature extraction stage can be modified
to obtain better accuracy. They showed this by comparing the results of accuracy for one
feature extraction method and for multi-extracted features. For example, accuracy with the
LBP method was 81.26%. While many extracted features gave an accuracy of 82.54% for
the YTF database.

Schroff et al. presented the Siamese architecture based on the modification of the
Face-Resnet architecture for feature extraction [22]. Authors proposed an additional L2-
normalization and the addition of a scale layer after a fully connected layer to improve
the true acceptance rate (TAR). They showed that the modification of CNN allows a TAR
of 0.975 for FAR = 0.1 for the IJB-A database to be achieved. The initial value of TAR
was 0.957 [23].

The selection of the decision function is the second key factor in the Siamese archi-
tecture. Shnain et al. implemented a similarity measure between images for face recogni-
tion [24]. They proposed an efficient similarity index that resolved the shortcomings of
the existing measures of feature and structural similarity. They combined the best features
of the well-known structural similarity index measure (SSIM) and the feature similarity
index measure (FSIM). This work showed that proposed feature-based structural measure
(FSM) outperforms the conventional SSIM and FSIM in its ability to detect the similarity
among similar faces, even under significantly noisy conditions. The FSM produces maximal
similarity when the images are similar, while giving near-zero similarity when the images
are dissimilar.

Triplet architecture can be considered as a natural progress of the Siamese architecture.
It was proved that a higher performance of face verification can be achieved by adding an
additional sample at the initial stage of the algorithm which also determines the change
in the decision function. The Triplet architecture with three biometric samples, positive,
negative, and randomly selected, called an anchor, was introduced for a better separation
of impostor and genuine samples by the decision function. Features were extracted from
each sample, and then sets of data were learned to meet the assumption that the distance
function between the positive examples is reduced and the distance function between the
negative examples is increased [22]. The method based on the Triplet architecture achieved
an accuracy of 99.63% for the LFW database, while the reference Siamese architecture
achieved an accuracy of 97.35% [25].

A similar idea was investigated by Yu et al., which resulted in a development of the
Quadruplet architecture based on four images [26]. Two images formed a pattern and a test
image, while two others were derived from two other randomly selected subjects. In this
case, the loss function consisted of two margin parameters: the distance between positive
and negative pairs containing the same face image and the distance between positive
and negative pairs containing different face images. The presented Quadruplet method
achieved Rank-1 of 48.42% compared with 28.16% achieved by the Triplet architecture.

As far as face identification in LWIR is concerned, Bi et al. focused on the multi-feature
fusion technique. They used four methods of feature extraction: LBP, Gabor jet descriptor,
Weber local descriptor, and a down sampling feature [27]. The decision function responsible
algorithm was the sparse representation classifier. They minimized the total prediction
error of all testing faces and used least-squares and regularization methods for optimal
learning to obtain a weight vector. Multi-feature fusion was highlighted by the weight
vector computation and the final residual computation components. The method achieved
an accuracy of 91.5% for the face identification task using the IRIS thermal face database.

The work of Rodriguez-Pulecio et al. considered thermal face identification [2]. They
implemented thermal signature templates with natural scene statistic features to optimize
the model based on the quality-aware complex wavelet similarity index. Their decision
function was based on the similarity measure using the Euclidean distance function and
threshold to determine whether the subject identity in the test image was recognized. The
proposed method uses aligned images which were annotated manually due to the lack of
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automatic landmark detection method for thermal images. They achieved 86.6% in Rank-1
for the UND-X1 database.

From the above analysis, it can be concluded that the verification performance progress
can be achieved by modifying the subsequent steps: architecture inputs (one or two more
samples), feature extraction methods (CNNs or local descriptors), and decision functions
(similarity measure or metric learning).

3. Methodology

This section provides a description of three databases used for comparative tests.
Moreover, two feature extraction methods and two decision functions, which constitute
baseline methods, are also described.

3.1. Dataset

The database prepared for the research consisted of 132 subjects selected from three
databases: In-House, CARL [28], and PROTECT [29]. The characteristics of each database
are presented below. Twelve images were selected per subject. Examples of images from
each database are shown in Figure 1.

Figure 1. Gallery of thermal face images from (a) PROTECT dataset, (b) CARL dataset, (c) In-House
(FLIR A65), (d) and In-House (FLIR P640).

3.1.1. In-House Database

The In-House dataset collected on the premises of Military University of Technology,
Warsaw, Poland, contains images of 44 subjects which were recorded using two thermal
infrared cameras, namely, FLIR A65 (resolution 640 × 480, 16 subjects) and FLIR P640
(resolution 640 × 480, 28 subjects). The protocol of the dataset has been partially described
in [30]. The dataset was recorded during two sessions, initial and repeated after a year.
Since the acquisition process was long, we used two cameras and obtained a database of
a wide variety of subjects and variants. Twelve images per subject were acquired—four
images with the head turned in four directions and 8 images with the face in a frontal
position. The subjects age ranged from 19 to 85 years. The distance between the cameras
and the subject was about 1.5 m.
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3.1.2. CARL Database

Images were recorded by a TESTO 880-3 camera in the spectral range from 8 to 14 µm.
A thermal camera equipped with an uncooled detector with a germanium lens recorded
images with a resolution of 160 × 120 pixels. The distance between the user’s face and the
camera was 1.35 m. The CARL database contained images of 41 subjects. There were 4
sessions. Fifteen images per subject were recorded for one session. For further research, we
selected 12 images for each subject from the first session.

3.1.3. PROTECT Multimodal DB

The database was developed as a part of the Horizon 2020 PROTECT project and
contained data on several biometrics modes, including thermal facial images. Thermal
images were recorded by FLIR A65 working in the range of 7.7 to 11.5 µm with a resolution
of 640 × 512 pixels. The distance between the camera and subject was 1.5 m. The thermal
face dataset included 47 subjects with a 57%/43% male/female distribution, aged from 20
to 80 years. Twelve images per subject were recorded—8 images with the face in a frontal
position to the camera and four images with the head turned in four directions: left, right,
up, and down.

3.2. Baseline Methods

For reference purposes, the VTI method was compared with other baseline methods.
Due to the limited number of works for thermal face verification, we selected the most
popular methods for face verification operating well in the visible domain as the baseline.
Images can be pre-processed before the feature extraction. Pre-processing can include
filtering, normalization, and face detection. In this work, images were sent to the face
detection algorithm based on Faster R-CNN [31,32]. Face images were cropped to 300 ×
300 pixels.

3.2.1. Feature Extraction Methods

The feature extraction stage aims to extract distinctive biometric features from each
image separately. In this work, we used two methods, local descriptors and neural net-
works, for feature extraction. The selected set of local descriptors includes LBP, HOG, and
LDP. Parameters of the local descriptor algorithms are presented in Table 1.

Table 1. Parameters of the algorithms used in the study.

Name of Method Parameters

Histogram of Oriented Gradients
cell size: 30 × 30 pixels

number of cells in a block: 2 × 2
overlapping of a block: 1 × 1

Local Binary Pattern
cell size: 30 × 30 pixels

number of neighboring pixels: 8
L2 normalization with a linear interpolation

Local Derivative Pattern cell size: 30 × 30 pixels
L2 normalization

Sample features may be extracted from an image using certain layers of trained
convolutional neural networks. In this case, the set of architectures included AlexNet [33],
DenseNet-201 [34], Inception-v1 (GoogLeNet), Inception-v3 [35], InceptionResNet-v2 [36],
ResNet-18, ResNet-50, ResNet-101 [37], VGG-16, and VGG-19 [38]. All the images were
resized to fit the size of an input layer. The same principle was applied to image layers—
if an image did not consist of 3 layers, the layers were duplicated to match the neural
network requirements.

For each testing and training set, the feature extraction stage was applied. Features
extracted from testing and training sets were paired and categorized into genuine and
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impostor. Extracted features from testing and training sets were paired with the appropriate
labels, 1 and 0 for the same and different subjects, respectively.

3.2.2. Decision Functions

Two feature extraction methods, namely, the convolutional neural network and the
local descriptors, as well as two decision functions (metrics and support vector machines)
were selected as the baseline methods. Training sets of features extracted both using CNNs
and local descriptor algorithms were combined with SVM and metrics. Finally, we received
four reference methods, including local descriptors with metrics, local descriptors with
SVM, CNNs with metrics, and CNNs with SVM.

A support vector machine is a multi-classification algorithm which finds an optimal
linear or polynomial decision surface [12]. For the purpose of face verification, SVM can be
used as a binary classification algorithm. The weighted combination of support vectors for
the training set creates a decision surface. Support vectors define a boundary between the
two classes only when two sets are analyzed.

Before feeding the data into the algorithm, the feature vectors were combined into a
single vector. If the first feature vector had a dimension of 1× L1 and the second vector had
a dimension of 1 × L2, then the finally obtained vector had a dimension of 1 × (L1 + L2).
This produced training samples that should be labeled as 1 when the vectors are from the
same person and 0 when they are derived from different subjects.

The second method used in this paper was the decision function-based method which
aims to measure similarity using metrics and threshold function. Features extracted from
CNNs or local descriptors were paired to obtain pairs of vectors from the same person
and from different subjects. The distance functions or metrics provided similarity between
two vectors for each pair. We used four distance functions: correlation, Euclidean, cosine,
and Spearman. As each distance provides different results, we investigated a variety of
configurations and provided the best achieved results.

The similarity result for similar pairs is described as D(x, y) and for dissimilar pairs
as D(x’, y’). The similarity D of the genuine pair is expected to be small, and the sim-
ilarity D of the impostor pair is expected to be large, so the model needs to meet the
following condition:

D(x, y) + m < D(x′, y′) (1)

Here, m is the margin which allows us to find the decision function threshold for
which the following formula is fulfilled:

Y(x, y) =
{

1, i f D(x, y) < th
0, otherwise

}
(2)

where Y is the score of similarity for two feature vectors, x and y; th is the threshold value;
and D is the distance function for the testing pair [16].

4. Verification through Identification

In this paper, we present the neural network-based VTI method which connects some
aspects of verification and identification. Although the method provides a result of a
classification of two images, it can be considered as a novel approach to face verification.
The main difference between the presented approach and the existing methods is the
input data structure. In the Siamese and triplet methods, two or three separate images
are processed in two or three separate paths, while in the case of VTI, only one image
composed of two images is analyzed. Images during processing in VTI, when composed in
one image, have only one processing path.

The data preparation process is as follows. Considering a given set of N images that
were split into two equal parts to obtain two temporary sets, pairs of images taken from
the two temporary sets are generated. The number of possible combinations includes both
pairs of the same and different subjects. Therefore, two conditions must be established. The
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first condition checks the ID numbers of the generated image pairs. If the ID numbers are
equal, the pairs of images are assigned to the genuine class; otherwise, they assigned to the
impostor class. In the case of images presenting the same subjects, if possible, component
images are extracted from two different recording sessions. In the case of the In-House
database component, images were recorded with 1-year intervals. After selecting pairs of
images for appropriate classes, we obtain two classes with a different number of pairs of
images. The impostor class contains many more pairs than the genuine class. Therefore,
the second condition is to randomly select pairs from the genuine class so that the number
of pairs in each class is equal. It is important that the data learning algorithm does not
assign learning weights to one class.

In the next step, pairs of images are processed so that two images compose one image.
If a face image has dimensions of h × w, where h is the height and w is the width, then a
new image is a combination of two images with respect to the edges of their height. Hence,
one can define a symbolic vertical line halfway across the new image width which divides
the image into two face images (Figure 2).

Figure 2. Scheme of combining two images into genuine and impostor classes.

The two-class dataset can be interpreted and analyzed as a two-class identification ap-
proach. Further steps in the VTI method, such as feature extraction and data classification,
were based on state-of-the-art CNNs and a SoftMax layer, the same as in a typical classifi-
cation task. Therefore, the proposed method is called verification through identification, as
the purpose is to verify the identity based on a task classification.

For the preparation of training data, we used neural networks which had been pre-
trained in the ImageNet database, in the same way as the feature extractions tested for
baseline methods. The newly prepared images were changed depending on the input layer
of the neural network used. This is very important because combining two images into one
requires increasing dimensions. The fully connected layer of the neural network model
was replaced with a new fully connected layer with two outputs. The scheme of the VTI
method is shown in Figure 3.

Figure 3. Scheme of the verification through identification method.
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Each neural network model during training process was optimized using the stochastic
gradient descent with momentum [39]. To increase the amount of training data, we also
introduced a mirror image augmentation. The learning of the neural network finished
when the accuracy given for the validation set no longer improved. In other words, if
the validation set accuracy after 20 consecutive runs was not higher than or equal to
the previous highest accuracy, then the learning was stopped. The learning speed was
related to the learning rate, which was 0.001, and the batch size was 64. The method was
implemented and tested in the MATLAB environment.

5. Results and Discussion

The method was validated in a 5-fold cross validation scheme. Each section contained
a set of test and training data split by 30%/70%. Due to this approach, the results were
not affected by the error related to repeating the same image in the training and testing
sets, which increased the credibility of the experiments. At the feature extraction stage, the
same amount of data was obtained, regardless of the method used. We received 6624 and
2880 images for training and testing datasets, respectively.

All the results are presented using the true acceptance rate (TAR) and the false accep-
tance rate (FAR) as the common biometric performance indicators. For each method, the
results of TAR obtained for the 5-fold division are presented as the mean with the standard
deviation. In this work, we considered many methods and configurations which led to
many results and, hence, only the best ones are presented.

5.1. Baseline Methods

As for the feature extraction, the input data size for local descriptor methods was
of 300 × 300 pixels, while for the neural networks, it depended on the first layer of the
selected network. Due to the lack of large face databases in LWIR, the neural network
models used for feature extraction were pre-trained in the public ImageNet database of
various objects collected in the visible range.

The calculation of the results based on metrics was performed in the same way for
each dataset. First, for the training data, the values of the metrics for the respective distance
function were determined between the feature vectors. For the received values, a threshold
for FAR equal to 1% and 0.1% was calculated. The threshold values from the training data
could be used to calculate the TAR value for the testing data.

In Table 2, the percentage share of each database in each dataset from 1 to 5 is presented.
Later in the work, we also present the results of TAR for each database separately. In this
article, the database names are used in the form of abbreviations: IOEA—In-House dataset
acquired with FLIR A65; IOEP—In-House dataset acquired with FLIR P640; CARL—CARL
dataset; PROTECT—PROTECT dataset.

For the decision function based on metrics, four distance functions were tested. Table 3
presents the best results for the decision function based on metrics with local descriptors
and models of neural networks for four distance functions.

The best result for local descriptor algorithms was obtained for the LBP with the
Spearman distance. The TAR value of around 40% for FAR = 0.1% could probably be
improved by a better selection of the feature extraction method parameters. For FAR = 0.1%,
AlexNet is the best CNN model for the feature extraction, while models with the inception
modules reach the lowest values.

The next two methods consisted of decision functions based on SVM with feature
extractions using local descriptors and CNNs, respectively. The received scores determined
how far the test sample was from the learned function. To present the results, the scores
were transformed into posterior probabilities by means of the sigmoid or step function.
Table 4 presents the results of the extraction methods with local feature descriptors and
neural networks.
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Table 2. Percentage share of each database in the appropriate training and test dataset for local
descriptor and CNNs models.

Training Datasets

Number of Datasets IOEA [%] IOEP [%] PROT [%] CARL [%]

1 13.04 23.91 34.78 28.27
2 9.78 22.83 31.52 35.87
3 11.96 19.57 36.96 31.51
4 11.96 23.91 36.96 27.17
5 10.87 26.09 34.78 28.26

Testing Datasets

Number of Datasets IOEA [%] IOEP [%] PROT [%] CARL [%]

1 10.00 17.50 35.00 37.50
2 17.50 20.00 42.50 20.00
3 12.50 27.50 30.00 30.00
4 12.50 17.50 30.00 40.00
5 15.00 12.50 35.00 37.50

Table 3. TAR results for the local descriptor and CNN models with the decision function based
on metrics.

Local Descriptor Methods

Algorithm of Feature
Extraction Distance Function TAR @ FAR 1% TAR @ FAR 0.1%

HOG Spearman 48.46 ± 4.11 36.22 ± 4.50
LBP Spearman 56.90 ± 3.13 40.33 ± 5.65
LDP Spearman 35.25 ± 1.83 17.88 ± 2.51

Models of CNNs
AlexNet Spearman 53.36 ± 2.31 35.32 ± 3.83

DenseNet-201 Spearman 53.15 ± 4.67 34.13 ± 6.16
GoogLeNet Euclidean 48.18 ± 2.51 26.85 ± 2.97

InceptionResNet-v2 Spearman 45.01 ± 4.86 26.49 ± 5.19
Inception-v3 Spearman 46.33 ± 3.97 29.71 ± 4.08

ResNet-18 Euclidean 53.60 ± 2.04 33.04 ± 2.49
ResNet-50 Euclidean 49.56 ± 4.01 29.92 ± 3.48

ResNet-101 Spearman 49.50 ± 4.73 30.73 ± 5.51
VGG16 Euclidean 44.08 ± 2.06 26.19 ± 2.55
VGG19 Euclidean 48.68 ± 3.27 28.69 ± 6.17

The results obtained for local descriptor and CNN models with SVM are insufficiently
low, which suggests that these methods cannot be used for the efficient face verification
in LWIR.

Figure 4 presents the receiver operating characteristic (ROC) curves for each method
with the best parameters, broken down into individual databases and the average for
all databases.

Given the best method, i.e., the decision function based on metrics, there is no reason
to argue that some databases had a significant negative or positive impact on the out-
comes. Thus, it can be concluded that mixing the datasets had no negative impact on the
method’s performance.
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Table 4. TAR results for the local descriptor and CNN models with SVM.

Local Descriptors Methods

Algorithm of Feature
Extraction TAR @ FAR 1% TAR @ FAR 0.1%

HOG 8.94 ± 1.88 1.99 ± 1.34
LBP 5.08 ± 6.81 0.86 ± 1.21
LDP 5.95 ± 3.16 1.65 ± 1.19

Models of CNNs

AlexNet 6.35 ± 3.12 0.36 ± 0.18
DenseNet-201 4.03 ± 0.72 0.10 ± 0.10

GoogLeNet 9.12 ± 2.02 1.44 ± 0.43
InceptionResNet-v2 2.72 ± 1.09 0.25 ± 0.25

Inception-v3 5.15 ± 2.96 0.32 ± 0.38
ResNet-18 6.42 ± 1.74 1.01 ± 0.55
ResNet-50 4.39 ± 2.45 0.32 ± 0.26
ResNet-101 4.90 ± 1.95 0.44 ± 0.92

VGG16 5.74 ± 3.27 0.99 ± 0.95
VGG19 5.85 ± 2.50 1.24 ± 1.15

Figure 4. ROC curves for individual databases: (A) CNNs with metrics, (B) CNNs with SVM,
(C) local descriptor methods with metrics, and (D) local descriptor methods with SVM.

5.2. Verification through Identification

As with the baseline methods, each of the five datasets contained a different share of
separate databases in the training and testing datasets (Table 5).

To compare the baseline methods with the neural networks, the same models were
selected for the VTI method, which was only trained using the ImageNet database. In the
previous section, the training parameters of neural network models for the VTI method
were described. The validation set contained 30% of the images from the testing set.

The best results for the VTI method were achieved using the Inception-v3 model
(Table 6), due to a different data structure. The inception module for this type of data
structure gave better results than simply extracting features from a single face image. The
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primary purpose of the inception module was to learn small details, medium-sized features,
or almost entire images if they appear very often. It can be assumed that the inception
module in accordance with its intended purpose extracts significantly more details for
double-face images. Models with residual modules, even if based on inception modules,
did not work well in the two-class classification task. To obtain these results, the neural
network was trained by an average of 31 epochs. Neural network models with many
parameters, such as VGG16 or AlexNet, also achieved low TAR values. These neural
networks were trained by an average of 37 epochs. It was confirmed that CNNs with
inception modules are trained faster than simple CNNs with many parameters, such as
VGG16 or AlexNet. The DenseNet-201 model also had significantly fewer parameters
and achieved high TAR values for FAR = 1%. However, to also achieve high values for
FAR = 0.1%, extended structures of inception modules extracting smaller-sized features
are needed. The inception modules from the first version of the Inception-v1 network
(GoogLeNet) contained inception modules that extract fewer details. In Figure 5, we
present the ROC curves for individual databases selected for the experiment. It can also be
concluded that the mixing of databases did not have a negative impact on the TAR values.

Table 5. Percentage share of each database in the training and testing datasets for the VTI method.

Training Datasets

Number of Datasets IOEA [%] IOEP [%] PROT [%] CARL [%]

1 11.96 20.65 34.78 32.61
2 13.04 21.74 36.96 28.26
3 10.87 20.65 35.87 32.61
4 10.87 26.09 34.78 28.26
5 15.22 20.65 36.96 27.17

Testing Datasets

Number of Datasets IOEA [%] IOEP [%] PROT [%] CARL [%]

1 12.50 25.00 35.00 27.50
2 10.00 22.50 30.00 37.50
3 15.00 25.00 32.50 27.50
4 15.00 12.50 35.00 37.50
5 5.00 25.00 30.00 40.00

Table 6. TAR results for the VTI method.

Neural Network Model TAR @ FAR 1% TAR @ FAR 0.1%

AlexNet 61.57 ± 14.89 21.14 ± 10.09
DenseNet-201 78.16 ± 7.29 11.01 ± 24.63

GoogLeNet 58.00 ± 12.06 4.71 ± 10.53
InceptionResNet-v2 64.66 ± 9.81 9.76 ± 21.83

Inception-v3 83.54 ± 7.04 60.22 ± 14.26
ResNet-18 59.92 ± 9.06 20.51 ± 13.44
ResNet-50 57.89 ± 9.01 8.24 ± 11.46
ResNet-101 58.28 ± 10.23 15.42 ± 14.91

VGG16 63.64 ± 11.57 17.23 ± 15.91
VGG19 60.25 ± 6.76 19.82 ± 18.33

A natural problem that arises immediately when analyzing the VTI method is whether
it is sensitive to the order of images in the double image. Considering two component
images, image 1 and image 2, they give two combinations of component images called “12”
and “21”.

The results presented in Table 6 were developed for each training of a CNN model
with a randomly mirrored data augmentation. The random augmentation means that not
all images included in the training dataset are given in both combinations of component
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images. Identifying this information is crucial for further analysis, which involves checking
what would happen if the amount of data increased not randomly, but exactly twice.

For this purpose, we performed an additional training of the Inception-v3 model for
data with a full augmentation instead of a random one. Table 7 shows the results of the
experiment with the image positions swapped.

Figure 5. ROC curves for individual databases for the VTI method.

Table 7. Test results for different sample image and test image positions for the VTI method for the
Inception-v3 model.

Full Augmentation

Location of Images TAR @ FAR 1% TAR @ FAR 0.1%

“12” 83.92 ± 6.96 49.24 ± 19.08
“21” 85.33 ± 11.53 52.81 ± 15.69

Random augmentation
“12” 83.54 ± 7.04 60.22 ± 14.26
“21” 83.39 ± 8.94 51.46 ± 13.04

For FAR = 1%, TAR differences between combinations “12” and “21” are small in the
case of both augmentations, while for FAR = 0.1%, the differences are greater and equal to
about 10 percentage points for the random augmentation. It can be concluded that the full
augmentation process did not have a high impact on the performance and can be omitted.

5.3. Results Summary

Figure 6 summarizes the results of all methods and shows the best ROC curves for
four baseline and VTI methods.
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Figure 6. The best ROC curves for five face verification methods.

The results prove that better results can be obtained for training with the decision
function based on metrics than on the SVM function. The same data in the form of feature
vectors were used in each experiment for each method.

It cannot be generalized that neural networks are better at extracting features than
local descriptors, but some of them, such as AlexNet, DenseNet-201, or ResNet-18, have
better results for TAR than LDP or HOG algorithms. The algorithm for extracting LBP
features is comparable with the mentioned CNNs, but it is possible that neural network
models trained initially in the ImageNet extract general features from the image. If the
models had been trained prior to the experiment on the same type of data, i.e., thermal
images, it is possible that the convolutional layers would have detected more significant
facial shapes and features.

The proposed VTI method achieves a TAR of 83.54% for the experiment with different
datasets. This performance is better than that of the baseline methods described in this
paper. The method proposed by Rodríguez-Pulecio et al. [2] achieved Rank-1 of 86.6% by
using thermal signature templates with natural scene statistic features. However, their
method is not fully automatic and requires manual landmark annotation before the actual
data processing. In contrast, VTI is fully automatic and may be applied with any classifier.

6. Summary

In this paper, we present a new method for face verification based on a composition
of two images and binary classification. The method was applied and validated for
thermal infrared facial images, but could be potentially applied to other spectra as well.
The proposed method draws inspiration from the Siamese architecture and identification
process. However, it is not a typical identification because it considers only two classes.
The method shows an improvement in comparison with other baseline methods based
on local descriptors and CNNs. The presented results show that the order of combining
pictures has no effect on the method’s performance.

The results obtained show that the longwave infrared face recognition can provide
reliable performance. Since the proposed method is universal, further investigations with
new architectures and new applications are planned. We plan to use the method for
thermal-to-visible face recognition.
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