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Abstract: In this work, an Appliance Scheduling-based Residential Energy Management System
(AS-REMS) for reducing electricity cost and avoiding peak demand while keeping user comfort
is presented. In AS-REMS, based on the effects of starting times of appliances on user comfort
and the user attendance during their operations, appliances are divided into two classes in terms
of controllability: MC-controllable (allowed to be scheduled by the Main Controller) and user-
controllable (allowed to be scheduled only by a user). Use of all appliances are monitored in the
considered home for a while for recording users’ appliance usage preferences and habits on each day
of the week. Then, for each MC-controllable appliance, preferred starting times are determined and
prioritized according to the recorded user preferences on similar days. When scheduling, assigned
priorities of starting times of these appliances are considered for maintaining user comfort, while
the tariff rate is considered for reducing electricity cost. Moreover, expected power consumptions of
user-controllable appliances corresponding to the recorded user habits and power consumptions of
MC-controllable appliances corresponding to the assigned starting times are considered for avoiding
peak demand. The corresponding scheduling problem is solved by Brute-Force Closest Pair method.
AS-REMS reduces the peak demand levels by 45% and the electricity costs by 39.6%, while provides
the highest level of user comfort by 88%. Thus, users’ appliance usage preferences are sustained at a
lower cost while their comfort is kept impressively.

Keywords: residential energy management; appliance scheduling; peak demand; user comfort;
brute-force closest pair

1. Introduction

In the present day, the population and the usage of technological devices are increased
in cities yielding an increase in energy demand. That high energy demand causes high
depletion of natural resources and pollution of the environment as well as high costs
for both users and energy providers. Hence, efficient and conscious use of energy is
essential for people, the environment and the future. Since residential energy consumption
constitutes 38% of the total energy consumption in the US [1], studies on Residential Energy
Management (REM) have gained importance nowadays.

Residential users have various habits of energy use according to their lifestyles and
want to keep their comfort in today’s life, while reducing electricity cost is the common goal
of all users. Hence, keeping user comfort and reducing electricity cost are two parameters
that should be under consideration in REM studies. On the other hand, the total electricity
consumption of independent homes may exceed the power limit provided by the grid, thus
the peak demand occurs at certain times of the day, i.e., in the evenings when all occupants
are at home. This leads to expensive failures in the grid and the requirement for more grid
infrastructure to prevent these failures. Grid malfunctions may also pose serious problems
affecting the public’s social life, such as disruption of health and transportation activities in
the city. Consequently, for both residential users and energy provider sides, avoiding peak
demand parameters should also be considered in REM studies.
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Many studies have been done on REM systems in the literature considering electricity
cost, peak demand and user comfort.

Some REM studies in the literature dealt with cost reduction and keeping user comfort
simultaneously. Through these studies, the work in [2] proposed a pre-emptive priority-
based load scheduling approach at residential premises, while a REM algorithm using
reinforcement learning and an artificial neural network was presented in [3]. The work
in [4] demonstrated that comfort and energy consumption can be partially decoupled by an
adaptive indoor comfort management approach. An automated switching off system with
load balancing and appliance planning algorithm was proposed in [5]. In that work, all
appliances are scheduled to manage the cumulative energy consumption below a defined
power level with less interaction to users. Authors in [6] presented a multi-objective
optimization model to reduce the electricity cost as well as the inconvenience level of the
home user. They evaluated the performance of the proposed method by using the energy
consumption patterns of several different social-economic Brazilian families. The work
in [7] presented a consensual negotiation-based decision model for eliminating the overload
by using appliances with the IoT concept. In that model, all connected appliances make
their individual decisions based on the consensus algorithm. In [8], a REM approach was
presented by a mixed-integer nonlinear programming problem with time or energy-based
task classification. In [9] authors presented an improved multi-objective optimization
algorithm to minimize the electricity cost with considering the user comfort. A new binary
particle swarm optimization with quadratic transfer function was proposed in [10] for
scheduling shiftable appliances in smarthomes. Authors in [11] presented a mathematical
model to assist aggregator that is able to match a flexibility request from distributor system
operator while reducing the cost and rescheduling shiftable appliances. In [12], a level
billing approach was proposed with the aim of providing user comfort and cost reduction
while a probabilistic scenario-based method [13] and an intensive quadratic programming
approach [14] were presented with the same aim. Performance of different types of Demand
Side Managements (DSMs) are compared in [15]; such as, deterministic and stochastic
DSMs, and day-ahead and real-time DSMs. The authors in [16] propose robust energy
management for grid-connected and islanding microgrids by considering stochasticity over
the active power injections from photovoltaic units, wind turbine units, and conventional
demands. Authors presented a multilayer control mechanism in [17] and they proposed to
use Tabu search for scheduling HVAC (heating, ventilation and air conditioning) system.

Some studies in the literature aimed at reducing the electricity cost and avoiding the
peak demand as well as keeping users comfortable. For example, the aim of the work [18]
is to minimize the energy cost and dissatisfaction of the customer by using different
electricity tariffs (time of use (TOU), inclining block rate (IBR) and real-time pricing (RTP)).
The work in [19] proposes an automatic control approach that reduces the peak demand
of buildings as compared to manual control. An incentive-based energy optimization
method is proposed [20] for scheduling a number of residential electric appliances of a
residential community. Authors propose a crow search optimization algorithm in [21] for
appliance scheduling with RTP tariff rate. In [22], mixed-integer quadratic programming
problem is proposed to find the optimal energy scheduling of controllable loads as well as
charging/discharging strategies of the energy storage systems and plug electric vehicles
by considering renewable energy resources (RESs). Authors take the forecast uncertainty
caused by the RESs energy profiles into account, as well as the users’ energy demand.

The main drawback of these works is using the average powers of appliances instead
of their real power profiles. That is, power consumption of appliances are assumed to
be constant during a time period, i.e., 1 h. This drawback was eliminated in the authors’
previous works by using real power profiles of appliances: In [23], a real-time residen-
tial power management scheme based on power unit prioritization due to their current
status and tariff rates was presented, while in [24] an appliance-based residential power
management system that manages home’s power consumption based on the operational
characteristics of smart appliances was introduced. Although user comfort was also taken
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into consideration besides reducing the electricity cost and avoiding the peak demand in
these works, ignoring user preferences and allowing comprehensive intervention to some
appliances kept the user comfort at a limited level.

Remarkable REM studies in the literature are summarized with their methods, objec-
tives and descriptions in Table 1.

Table 1. Synthesis of remarkable REM studies in the literature.

Reference Method Objective Description

[5] Multiobjective optimization Minimizing cost Schedule some selected appliances
programming using TOU and rated power

[8] Mixed integer nonlinear Minimizing cost Schedule the time and energy based appliances
programming

[10] Binary particle swarm Minimizing daily electricity bill Schedule the shiftable appliances
optimization without effecting comfort by using TOU and rated power

[12] Level billing approach Minimizing daily bill Schedule the time shiftable loads
with a mathematical model

[14] Intensive quadratic Minimizing cost and peak Flatten the power consumption
programming by using PV power

[20] Intensive based energy Minimizing the electricity bill Schedule the shiftable
optimization appliances by using rated power

[24] Rolling wave planning Minimizing cost and peak Control controllable appliances
by using the real power consumption

In this study, an Appliance Scheduling-based Residential Energy Management System
(AS-REMS) which avoids peak demand and keeps user comfort while reducing electricity
cost is proposed. In AS-REMS, based on the effects of starting times of appliances on
user comfort and the user attendance during their operations, appliances are classified as
MC-controllable appliances which are allowed to be scheduled by the Main Controller and
user-controllable appliances which are allowed to be scheduled only by users. Use of all
appliances are monitored in the considered home for a while for getting users’ appliance
usage preferences and habits for each day of the week. Then for each MC-controllable
appliance, favorite starting times are determined and prioritized according to the recorded
user preferences on similar days. When scheduling MC-controllable appliances, assigned
priorities of starting times are considered for maintaining user comfort. On the other hand,
the sum of expected power consumption of user-controllable appliances corresponding
to the recorded user habits, and the power consumption of MC-controllable appliances
corresponding to the assigned starting times is obtained as the total power consumption of
considered home which is taken into account for avoiding peak demand, while the tariff
rate is considered for reducing the electricity cost. The corresponding scheduling problem
is solved by Brute-Force Closest Pair method.

AS-REMS provides important advantages over similar REM studies. The main contri-
butions of AS-REMS to the literature can be summarized as follows:

• AS-REMS is a multi-objective REMS structure that considers avoiding peak demand,
reducing electricity cost and keeping user comfort simultaneously.

• AS-REMS provides a realistic and high-level user comfort; because it is based on the
users’ appliance usage preferences and habits which are obtained by monitoring the
considered home for a while.

• AS-REMS assures to detect the short-term peak demand and consequently procure
smooth and continuous energy from the grid since it uses real power consumptions of
appliances instead of their rated (average) powers.

This paper is organized as follows: The proposed AS-REMS is introduced in Section 2
in detail. Case studies and their results are presented and interpreted in Section 3. Finally,
conclusions and future work directions are given in Section 4.
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2. Appliance Scheduling System for Residential Energy Managements

In this work, AS-REMS is proposed for scheduling allowed appliances with the aim of
avoiding peak demand and reducing electricity cost while keeping user comfort.

AS-REMS consists of the Main Controller (MC), a database, communication units, elec-
trical appliances, power measurement units (smart plugs) mounted on appliances, control
units (Wifi-RS232 converters or Wifi-relay modules) and a smart meter. The configuration
of AS-REMS is presented in Figure 1.

Historical 

Database

Main Controller

Monitoring

Control

Storing

Communicating

Grid

Smartmeter

Non-delayable Delayable

User-Controllable Appliances MC-Controllable Appliances

Power 

Wifi-RS232 

communication / Wifi 

relay

Figure 1. AS-REMS Structure.

In AS-REMS, one execution period (e.g., one day, 24 hours) is discretized into a
prescribed T number of uniform time slots, i.e., t ∈ T = {1, 2, . . . , T}; hence, the total
number of time slots (shortly, ts) in a day is T = 24/∆t. Here, ∆t represents the length of
each ts.

2.1. Appliances

In AS-REMS, appliance scheduling is strictly based on users’ appliance usage prefer-
ences. Within this scope, the home is monitored for a while to constitute usage and power
consumption information of appliances. During the monitoring, at the beginning of each
ts of one execution period T (e.g., one day), MC communicates with appliances to gather
usage information of each appliance a ∈ L, where L represents the set of appliances. This
appliance usage information is stored in a database in a matrix form, namely utilization
matrix. In AS-REMS, for each appliance a ∈ L distinct utilization matrices are composed
for each set of similar days of observed weeks; thus seven different utilization matrices are
constructed for each appliance. The set of similar days of the observed weeks is represented
by the set D.

Utilization matrix of an appliance a ∈ L for the set of the similar days D, is represented
by UUUa

D : {0, 1}|D|×T . Ua
D(d, t) is constructed as in Equation (1):

Ua
D(d, t) =

{
1 , a is operating at ts t ∈ T on d ∈ D
0 , o.w.

(1)

In AS-REMS, in order to get power consumption profiles of appliances, power con-
sumptions of appliances are measured via power measurement units during proper du-
rations and stored in a database in a vector form, namely power profile vector. Power
profile vector of an appliance a ∈ L is represented by P̃a : R1×|Ta

m |, where Ta
m ∈ T is the

measurement duration of a and P̃a(t̃) refers to the power consumption of a at its t̃th internal
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ts. Note that, in this study, the internal ts of appliances during their operation is indicated
by t̃ (∆t̃ = ∆t); such that t̃ = 0 at the time that the appliance is turned on, t̃ increases as
long as the appliance is running, t̃ is reset when the appliance is switched off.

In AS-REMS, power consumption of an appliance a ∈ L at a ts t ∈ T of a day d ∈ D
is defined in Equation (2).

Pa
d (t) = P̃a(t− ta

s )U
a
D(d, t) (2)

Here, ta
s ∈ T is the starting time of the appliance a, and t− ta

s refers to internal ts t̃ of a.
In appliance scheduling-based REM studies, generally, it is needed to interfere with

appliances externally. It is not appropriate for some appliances because of their own
intended use and technical features. Therefore, most of the REM studies dealing with
appliance scheduling in the literature have considered the classification of appliances.
The main basis of classifications is the suitability of appliances for external interference.
Therefore, classification types are consistent with each other, although assigned class names
are different; such as controllable (C)/uncontrollable (UnC), shiftable (Sh)/unshiftable
(USh), schedulable (Sc)/unschedulable (USc), normally operated (NO), fixed and task-
based (FTB), comfort-based elastic (CBE), energy-based elastic (EBE) etc. (see Table 2 for
types of classification in the literature). For example, the refrigerator is considered in
categories such as unshiftable, uncontrollable or task-based, since its operation time and
duration are not suitable for any external interference.

In AS-REMS, the suitability of appliances for external interference is determined
based on the effects of starting times of appliances on user comfort and user attendance
during their operations. Accordingly, appliances are divided into two classes in terms of
controllability: MC-controllable (MCC) appliances which are allowed to be scheduled by a
main controller and user-controllable (USC) appliances which are allowed to be scheduled
only by a user. The set of appliances is represented by L = LMC ∪ LUC , where LMC is
the set of MC-controllable appliances, while LUC is the set of user-controllable appliances.
These classes will be explained in detail in the following subsections.

Table 2. Types of classifications at REM studies in the literature.

Appliance NO,FTB C,CBE,EBE UnC Sh,Sc USh,USc AS-REMS

WM 3,23,24 2,7,8,11, MCC
13,14,15,19,20

DW 23,24 2,8,12,13, MCC
14,15,20,21

Thumble dryer 16 7,13,14,20,21 MCC
Battery Powered MCC

Pool pump 2,8,11,15,22 MCC
Coffee Machine 7 dUSC

Kettle 2 dUSC
Water Heater 7,11,12 7 dUSC

AC 8,13 15,22 2 dUSC
Lights 8,13,15,20 22,23,24 2,7,11 ndUSC

TV 15 23,24 2,7,11,19 ndUSC
Blender 2,11 ndUSC

Hair dryer 11 ndUSC
Microwave oven 3 7 ndUSC
Vacuum cleaner 8,20 2,7,11 ndUSC

Refrigerator 8 22 12 11,24 ndUSC

2.1.1. User-Controllable Appliances

Appliances whose starting times directly affect user comfort are classified as user-
controllable appliances. Their starting times are set by users and are not negotiable. Inter-
fering with starting times of these appliances against the demand of users undoubtedly
deteriorates user comfort. User-controllable appliances can be two types: non-delayable
(ndUSC) and delayable (dUSC). Non-delayable user-controllable appliances are generally
appliances that must be turned on immediately upon users’ request, and they are basically
operated by an attending user (e.g., TV, hairdryer, toaster, rice cooker, microwave oven,
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vacuum cleaner, iron, lights and etc.). Appliances whose operations are fixed (e.g., refrig-
erator) are also considered in this type. On the other hand, delayable user-controllable
appliances can be scheduled for a specific time due to users’ requests (e.g., kettle, coffee
machine, water heater, air-conditioner). For example, when a user wants coffee to be ready
at 8:00 a.m., he/she can schedule the starting time of the coffee machine correspondingly.
For both delayable and non-delayable user-controllable appliances, only users can decide
when and how long these appliances will operate. Hence, any user-controllable appliances
are not allowed to be scheduled by MC in AS-REMS.

The power consumption of a user-controllable appliance a ∈ LUC is given in Equation (3).

Pa
UC(t) = P̃a(t− ta

s )U
a
D(d, t) (3)

Here, ∀t ∈ [ta
s − Ta

m]. In AS-REMS, power measurement duration Ta
m of any user-

controllable appliance a ∈ LUC is one execution period, that is Ta
m = T. Power consumption

profiles of a kettle and an air-conditioner are given as examples of power consumption
profiles of user-controllable appliances in Figure 2 and in Figure 3, respectively.
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Figure 2. Power consumption profile of a kettle (1000 W and 1.2 lt capacity).
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Figure 3. Power consumption profile of an air conditioner (6.74 kW cooling and 7.03 kW heating
capacity).

2.1.2. MC-Controllable Appliances

Appliances whose starting times can interfere without deteriorating user comfort are
classified as MC-controllable appliances. These appliances are unattended appliances that
are operated with little supervision (e.g., washing machine, dishwasher, tumble dryer,
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battery-powered appliances). For example, dirty laundry can wait in the washing machine
for a while (until the assigned starting time) without deteriorating user comfort. Hence,
MC-controllable appliances are allowed to be scheduled by MC in AS-REMS.

Any MC-controllable appliance a ∈ LMC operates during a certain time Ta
o ∈ T after

it is switched on. The power consumption of a MC-controllable appliance a ∈ LMC is given
in Equation (4).

Pa
MC(t) = P̃a(t− ta

s )U
a
D(d, t) ∀t ∈ [ta

s − Ta
m] (4)

In AS-REMS, power measurement duration Ta
m of any MC-controllable appliance

a ∈ LMC is its operation period, that is Ta
m = Ta

o . The power consumption profiles of a
washing machine is given in Figure 4.
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Figure 4. Power consumption profile of a washing machine (7 kg front-load).

2.2. Brute Force Closest Pair Method

Brute-Force Closest Pair (BFCP) method finds the closest point to a reference point
through a set of candidate points by considering euclidean distance. For example, let we
consider Figure 5 where (xr, yr) is the reference point and the other (xi, yi), i ∈ {1, 2, . . . , 5}
are candidate points making up the set Pcandidates.

BFCP finds out all euclidean distances of the reference point Pr = (xr, yr) from the
five points Pci = (xi, yi), i ∈ {1, 2, .., 5} which accumulates 5 distance computations {PrPc1 ,
PrPc2 , PrPc3 , PrPc4 , PrPc5}, and determines the green point as the closest point from the
reference point according to the following euclidean distance equation:

Distance = min
(xi ,yi)∈Pcandidates

√(
(xi − xr)2 + (yi − yr)2

)
(5)
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Figure 5. An example application of the BFCP method.

2.3. Scheduling Parameters

AS-REMS schedules MC-controllable appliances at the beginning of each day with the
aims of avoiding peak demand and reducing electricity cost while keeping user comfort.
Hence the scheduling parameters are electricity cost, peak demand and user comfort.

2.3.1. User Comfort

For scheduling MC-controllable appliances without deteriorating user comfort, AS-
REMS considers users’ appliance usage preferences stored in the database. For each
MC-controllable appliance a ∈ LMC, starting times ta

s on similar days in D are obtained
from the corresponding utilization matrix UUUa

D and listed in the set of starting times, i.e.,
TSa

D as in Equation (6).

TSa
D = {ta

s |Ua
D(d, ta

s )−Ua
D(d, (ta

s − 1)) = 1 , ta
s ∈ T , d ∈ D} (6)

For each ta
s ∈ TSa

D, the number of being chosen as starting time, i.e., NCa
D(t

a
s ), and its

probability, i.e., Pra
D(t

a
s ), at any day in D are calculated in Equation (7) and Equation (8)

respectively.
NCa

D(t
a
s ) = ∑

d∈D
(Ua

D(d, ta
s )−Ua

D(d, (ta
s − 1))) (7)

Pra
D(t

a
s ) =

NCa
D(t

a
s )

∑ta
s∈TSa

D
NCa

D(t
a
s )

(8)

Then for each appliance a ∈ LMC each starting time ta
s is labeled with the correspond-

ing priority level for the considered day d, i.e., PrL
a
d(t

a
s ), such that the priority level of

starting time with the highest probability is 1, that with the second-highest probability is 2,
and so on. Note that, the priority level of the starting time with the lowest probability is
|TSa

D|.
The total priority level induced by starting the operation of MC-controllable appliances

ai ∈ LMC at times tai
s ∈ TSai

D in a day d ∈ D is defined as the square root of the sum of the
squared priority level of each MC-controllable appliance as in Equation (9).

PrL
LMC
d (TLMC

s ) =

√
∑

ai∈LMC

(PrL
ai
d (t

ai
s ))2 (9)

Here, TLMC
s stands for a combination of starting times of all MC-controllable appli-

ances, such that (ta1
s , ta2

s , . . . , t
a|LMC |
s ) where tai

s ∈ TSai
D, ∀ai ∈ LMC.
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Unlike previous studies in the literature, for a more realistic approach, AS-REMS gets
users’ appliance usage preferences by monitoring their power consumption in the consid-
ered home. The total priority level is a determining parameter that shows the preference of
starting time combinations of MC-controllable appliances. As operating an appliance at
the most preferred starting time increases user comfort, AS-REMS considers operating the
MC-controllable appliances at the most preferred starting times by minimizing the total
priority level.

Users can prefer to operate MC-controllable appliances at times different from the
recorded user habits, which may yield uncertainties at the preferred starting times. In
order to eliminate the effects of these uncertainties on user comfort, users are also allowed
to select a specific starting time interval Tai

sinterval ⊂ T for each MC-controllable appliance
ai ∈ LMC. In this case, the user’s present preference is considered instead of stored
historical usage preferences, and the priority level of ai is set to 0 (i.e., PrL

ai
d (t) = 0 ∀t ∈ T ).

Therefore, the priority level of ai does not add up to the total priority level value.

2.3.2. Electricity Cost

Since the electricity tariff rate is generally time-dependent, different starting times of
appliances yield different electricity costs. For scheduling MC-controllable appliances with
reducing the electricity cost, AS-REMS takes the tariff rate into consideration.

The total electricity cost of MC-controllable appliances ai ∈ LMC induced by starting
their operation at times tai

s ∈ TSai
D in a day d ∈ D is calculated in Equation (10).

CLMC
d (TLMC

s ) = ∑
ai∈LMC

∑
t∈T

P̃a(t− tai
s )U

ai
D(d, t)Tariff(t) (10)

Here, Tariff(t) is the unit price of electricity per kWh at a ts t.
For reducing electricity cost, AS-REMS considers minimizing the total electricity cost

as much as possible.

2.3.3. Peak Demand

For scheduling MC-controllable appliances by avoiding peak demand, AS-REMS
intends total power consumption of appliances in the considered home not to exceed previ-
ously specified grid power limit, Plim, at any time of the day. The total power consumption
at each time is the sum of the expected power consumption of user-controllable appliances
corresponding to the recorded user habits on similar days, and the power consumption of
MC-controllable appliances corresponding to the assigned starting times.

Expected power consumption of a user-controllable appliance a ∈ LUC at a ts t of a
day d ∈ D, i.e., Pa

dexp
(t), is calculated in Equation (11) by regarding all similar days, that is,

all days in D:

Pa
dexp

(t) =
∑

d∈D
Pa

d (t)

|D| . (11)

Expected power consumption of all user-controllable appliances at a ts t of a day
d ∈ D, i.e., PLUC

dexp
(t), is calculated in Equation (12).

PLUC
dexp

(t) = ∑
a∈LUC

Pa
dexp

(t). (12)

Power consumption of MC-controllable appliances ai ∈ LMC with starting times
tai
s ∈ TSai

D in a day d ∈ D at a ts t ∈ T , i.e., PLMC
d (t, TLMC

s ), is calculated in Equation (13).

PLMC
d (t, TLMC

s ) = ∑
ai∈LMC

P̃ai (t− tai
s )U

ai
D(d, t) (13)
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Corresponding total power consumption of all appliances in a day d ∈ D at a ts t ∈ T
is calculated as in Equation (14).

PLd (t, TLMC
s ) = PLUC

dexp
(t) + PLMC

d (t, TLMC
s ). (14)

According to the total power consumption, whether the predefined power limit, Plim,
is exceeded at any ts t ∈ T of the day d ∈ D is represented by power limit indicator, i.e.,
Id(T

LMC
s ) is obtained as in Equation (15).

Id(T
LMC
s ) =

{
0 , Plim − PLd (t, TLMC

s ) > 0 ∀t ∈ T
1 , o.w

(15)

In order to provide a realistic approach, AS-REMS uses recorded appliance usage
habits to determine expected power consumptions of user-controllable appliances and
consequently Power limit indicator which is a determining parameter that shows power
limit violation of power consumption. For avoiding the peak demand, AS-REMS deals to
keep power limit indicator value at 0.

Users can operate user-controllable appliances whenever they want which may yield
uncertainities at the total power consumption. In order to eliminate the effects of these
uncertainities at the electricity cost and power limit indicators, these parameters are calcu-
lated by considering the expected power consumptions which are determined by usage of
appliances during several days under several environmental conditions.

2.4. Scheduling Procedure

AS-REMS aims to schedule MC-controllable appliances by minimizing power limit
indicator, total electricity cost and total priority level parameters. The corresponding
scheduling procedure is given in AS-REMS Algorithm (namely, Algorithm 1).

At step 1 of AS-REMS Algorithm, the set of starting times TSai
D is found for each

appliance ai ∈ LMC. If user does not select a specific starting time interval Tai
sinterval = ∅ for

an appliance ai ∈ LMC, TSai
D is obtained as given in Equation (6), otherwise TSai

D is the set
of all times in Tai

sinterval and the priority level of aj does not add up to the total priority level
value (i.e., PrL

ai
d (t) = 0 ∀t ∈ T ).

At step 2 of AS-REMS Algorithm, the set of all possible combinations of starting
times of MC-controllable appliances, namely practical solution set, is constructed for the
considered day d ∈ D as follows:

TSLMC
D = {TLMC

s1 , TLMC
s2 , . . . , (TLMC

sn )} (16)

where TLMC
sj = {ta1

s , ta2
s , . . . , t

a|LMC |
sj } is the jth possible starting time combination and n is

the number of the possible combinations n = ∏
∀ai∈LMC

|TSai
D|.

At step 3 of AS-REMS Algorithm, for each practical solution TLMC
sj ∈ TSLMC

D parame-

ters of total electricity cost CLMC
d (TLMC

sj ), power limit indicator Id(T
LMC
sj ) and total priority

level PrL
LMC
d (TLMC

sj ) are calculated.
In order to find the optimal practical solution among the candidate solution set, the

BFCP method which uses the Euclidean distance approach to find the optimal solution
through a practical solution set is used. Note that, the number of MC-controllable appli-
ances and the number of their preferred starting times are limited, the number of possible
combinations of starting times of MC-controllable appliances, thus the size of the practical
solution set is also limited in this problem. Hence, applying the BFCP method (calculating
the value of the objective function for each possible practical solution and which is also
verified by the analysis results given in the case study section.
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Algorithm 1 AS-REMS algorithm.

Input:LMC, LUC, d, Tai
sinterval , UUUa

D, P̃a, Plim, Tari f f .

Step 1. Determine the set of possible starting times TSai
D of each ai ∈ LMC such that:

If Tai
sinterval = empty
Find TSai

D via Equation (6)
Else

TSai
D = Tai

sinterval

PrL
ai
d (t

ai
s ) = 0

End If

Step 2. Determine the set of possible combination of possible starting times MC-
controllable appliances TSLMC

D as in Equation (16)

Step 3. Determine corresponding parameters values for each TLMC
sj ∈ TSLMC

D

PrL
LMC
d (TLMC

sj ) via Equation (9)

CLMC
d (TLMC

sj ) via Equation (10)

Id(T
LMC
sj ) via Equation (15)

Step 4. Normalize the corresponding parameter values for each TLMC
sj ∈ TSLMC

D as

PrL
LMC
d (TLMC

sj )→ PrL
LMC
d (TLMC

si )

CLMC
d (TLMC

sj )→ CLMC
dscaled(T

LMC
si )

Id(T
LMC
sj )→ Idscaled(T

LMC
sj )

Step 5. Call BFCP Algorithm with PrL
LMC
d (TLMC

s ), Idscaled(T
LMC
s ), CLMC

dscaled(T
LMC
s )

Output: TLMC
soptimal

Since BFCP method uses euclidean distance approach and takes the magnitude of
parameters neglecting the units, parameters with high magnitude ranges will dominate
the parameters with low magnitude ranges. In order to supress this effect and each of
parameter to contribute to the result equally, all parameters are brought to the same scale of
magnitudes at step 4 of AS-REMS Algorithm. Thus, total electricity cost of MC-controllable
appliances CLMC

d (TLMC
s ), and power limit indicator values Id(T

LMC
s ) are scaled in the range

of priority level values PrL
LMC
d (TLMC

s ) via min-max normalization yielding scaled total

electricity cost values, i.e., CLMC
dscaled(T

LMC
s ), and scaled power limit indicator values, i.e.,

Idscaled(T
LMC
s ), respectively.

At step 5 of AS-REMS Algorithm, BFCP with the normalized parameters of PrL
LMC
d

(TLMC
s ), Idscaled(T

LMC
s ) and CLMC

dscaled(T
LMC
s is applied. BFCP searches the optimal starting

time combination of MC-controllable appliances, i.e., TLMC
sopt ∈ TSLMC

D such that (CLMC
dscaled

(TLMC
sopt ), Idscaled(T

LMC
sopt ), PrL

LMC
d (TLMC

sopt )) which is the closest triple to the triple of ideal
minimum parameter values according to the following euclidean objective function (17):

di = sqrt
(

wPr.(PrL
LMC
d (TLMCsi )− ˆPrL

LMC
d )2

+ wC.(CLMCdscaled(T
LMC
si )− ĈLMCd )2 + wI .(Idscaled(T

LMC
si )− Îd)

2
) (17)

where, TLM
si represents i-th possible combination of starting times, ˆPrL

LMC
d stands for the

ideal value of total priority level, ĈLMC
d stands for the ideal value of total electricity cost, Îd



Sensors 2021, 21, 3287 12 of 23

stands for the ideal value of power limit indicator. Note that for BFCP method of AS-REMS,
ˆPrL
LMC
d =

√
(|LMC|), ĈLMC

d = 0, Îd = 0 for |LMC| number of MC-controllable appliances.
Note that, by changing the weights of the parameters (wC,wI and wPr) in the euclidean

objective function (17), it is possible to find the optimal solution and the corresponding
starting times of MC-controllable appliances for different weighted parameters. Thus, in
the case that any parameter is desired to be more effective, this is achieved by increasing
the weight of the corresponding parameter. For example, if the primary goal is reducing the
electricity cost, the weight of the relevant parameter (i.e., wC) is chosen bigger than the other
weights (i.e., wC > wI , wC > wPr). If the primary preference is keeping the user comfortable
and reducing the electricity cost simultaneously, the weights of these two parameters
(i.e., wC and wPr) are chosen higher than the weight of power limit indicator (i.e., wC >
wI , wPr > wI). If the weights of all parameters are selected equal (i.e., wC=wI=wPr as in the
scenarios of the case study), optimal starting times of MC-controllable appliances for equal
precedence of three parameters are obtained.

Since the practical solution set TSLMC
D of BFCP problem consists of only allowed

solutions, any TLMC
sopt ∈ TSLMC

D minimizing the objective function is determined as the
solution of the problem. Consequently, this problem is independent of any constraints.

3. Case Studies and Discussion

In this section, in order to demonstrate AS-REMS’s performance on avoiding peak
demand and reducing electricity cost while keeping user comfort, several scenarios are
designed and simulations of these scenarios are carried out.

The scenarios are for a residence monitored for 12 weeks. The residence is 120 m2 flat
with four occupants and equipped with kettle (1000 W), hair dryer (1600 W), toaster (700 W),
rice cookers (400 W), microwave ovens (800 W), vacuum cleaner (700 W), water heater
(1000 W), iron (1700 W), coffee machine (500 W), TV (116 cm), lamps (25 W), refrigerator
(nofrost-540 lt) and air conditioner (6.74 kW cooling and 7.03 kW heating capacity) as
user controllable appliances and washing machine (wm) (7 kg front-load), dishwasher
(dw) (60 cm free standing) and battery powered appliances (bp) (for example, e-scooter,
e-bike, etc.) as MC-controllable appliances. The power consumptions of all appliances are
measured via Itech IT9121 power meter and Fibaro smart wall plugs and measured real
power consumption profiles of appliances are used in the experiments.

Some appliances (e.g., microwave ovens, dw, wm) can draw very high power in a
very short time (<3 min). In order to catch these short term high power variations, time slot
duration is taken as 2 min, i.e., ∆t = 2 and T = 720. Besides, the same days of the weeks
are defined as similar days, that is for each appliance a ∈ L, seven different utilization
matrices UUUa

D : {0, 1}|12|×720 are constructed.
For the grid power, the time of use (TOU) pricing tariff rate set by the Turkish Electric-

ity Distributor Company (TEDAS) is used [25]. This pricing tariff is a three-level TOU tariff
with on-peak, mid-peak, and off-peak periods. As it is clear in Table 3, electricity prices are
lower when the demand is low (off-peak) and higher when the demand is high (on-peak)
to encourage the user. Besides, the grid power limit is chosen as Plim = 4500 W according
to the agreement between home residents and TEDAS.

Table 3. Pricing tariff rates.

Duration Cost (Euro/kWh) Plim

6:00 a.m.–5:00 p.m. 0.094 4500 W
5:00 p.m.–10:00 p.m. 0.136 4500 W
10:00 p.m.–6:00 a.m. 0.059 4500 W

Let we consider scheduling wm, dw and bp on a Friday from June as Scenario 1. Thus,
the set of similar days D is the set of monitored Friday days. The sets of starting times of
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wm, i.e., TSwm
D , that of dw, i.e., TSdw

D and that of bp, i.e., TSpb
D are formed via utilization

matrices, as follows:

TSwm
D = {00 : 00, 05 : 00, 05 : 12, 05.28, 06 : 00, 20 : 28, 23 : 30, 23 : 38}

TSdw
D = {16 : 30, 16 : 40, 17 : 04, 19 : 12, 20 : 00, 22 : 00, 22 : 32}

TSbp
D = {6 : 00, 6 : 20, 6 : 30, 6 : 50, 20 : 38, 21 : 52}

For each possible preferred starting times of wm, i.e., twm
s ∈ TSwm

D , that of dw, i.e.,

tdw
s ∈ TSdw

D and that of bp, i.e., tbp
s ∈ TSbp

D , on similar days in D; the number of being

chosen as starting time (i.e., NCwm
D (twm

s ), NCdw
D (tdw

s ),NCbp
D (tbp

s ) and their probabilities (i.e.,

Prwm
D (twm

s ), Prdw
D (tdw

s ), Prbp
D (tbp

s )) and the corresponding priority levels of the considered

day d (i.e., PrL
wm
d (twm

s ), PrL
dw
d (tdw

s )) and PrL
bp
d (tbp

s )) are determined as given in Tables 4–6,
respectively.

Table 4. Priority level values for twm
s for Scenario 1.

twm
s NCwm

D (twm
s ) Prwm

D (twm
s ) PrL

wm
d (twm

s )

05:12 18 34.62 1
00:00 9 17.31 2
20:28 9 17.31 3
23:30 6 11.54 4
06:00 4 7.69 5
05:28 2 3.85 6
23:38 2 3.85 7
05:00 2 3.85 8

Table 5. Priority level values for tdw
s for Scenario 1.

tdw
s NCdw

D (tdw
s ) Prdw

D (tdw
s ) PrL

dw
d (tdw

s )

16:40 16 30.77 1
22:00 9 17.31 2
17:04 8 15.38 3
22:32 8 15.38 4
16:30 5 9.62 5
19:12 4 7.69 6
20:00 2 3.85 7

Table 6. Priority level values for tbp
s for Scenario 1.

tbp
s NCbp

D (tbp
s ) Prbp

D (tbp
s ) PrL

bp
d (tbp

s )

06:50 17 32.69 1
06:00 13 25.00 2
20:38 8 15.38 3
06:30 6 11.54 4
06:20 6 11.54 5
21:52 2 3.85 6

Moreover, for the considered day d, for each possible combinations of preferred start-
ing times of these appliances, that is, for each possible triplet of (twm

s , tdw
s , tbp

s ) corresponding
total electricity cost CLMC

d (twm
s , tdw

s , tbp
s ), power limit indicator values Id(twm

s , tdw
s , tbp

s ) and

total priority level values PrL
LMC
d (twm

s , tdw
s , tbp

s ) are determined and represented on the
three-axis chart in Figure 6. For some numerical samples, see Table 7.
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Table 7. For the possible triplets of starting times; priority level, electricity cost, power limit indicator,
scaled priority level, scaled power limit indicator values and the corresponding values of objective
function of BFCP Algorithm (Algorithm 2) for Scenario 1.

(twm
s , tdw

s , tbp
s ) PrL

LMC
d (.) CLMC

d (.) Id(.) CLMC
dscaled(.) Idscaled di(.)

(05:12,16:40,06:50) 1.73 13.44 1 5.94 12.21 13.69
(00:00,16:40,06:50) 2.45 13.44 1 5.94 12.21 13.79
(20:28,16:40,06:50) 3.32 15.83 1 8.46 12.21 15.22
(23:30,16:40,06:50) 4.24 13.44 1 5.94 12.21 14.22
(06:00,16:40,06:50) 5.20 14.50 1 7.06 12.21 15.03

(-,-,-) - - - - - -
(05:12,22:32,21:52) 7.28 9.45 0 1.73 1.73 7.68

(-,-,-) - - - - - -
(05:28,20:00,21:52) 11.00 12:20 1 4.63 12.21 17.07
(23:38,20:00,21:52) 11.58 12.11 1 4.54 12.21 17.42
(05:00,20:00,21:52) 12.21 12.11 1 4.54 12.21 17.85

Algorithm 2 BFCP Algorithm of AS-REMS

Input:PrL
LMC
d (TLMC

s ), Idscaled(T
LMC
s ), CLMC

dscaled(T
LMC
s )

ˆPrL
LMC
d ,ĈLMC

d , Îd = (sqrt(|LMC|), 0, 0)
dmin = ∞
for i = 1 to N

di = sqrt
(

wPr.(PrL
LMC
d (TLMC

si )− ˆPrL
LMC
d ))2+

(wC.(CLMC
dscaled(T

LMC
si )− ĈLMC

d ))2 + (wI .(Idscaled(T
LMC
si )− Îd))

2
)

If di < dmin
dmin = di; index = i

End If
End For
Output:TLMC

sindex ; dmin

In the considered day, through the possible triplets of starting times, triplets with the
cheapest cost (9.45 cent), their priority level values and power limit indicator values are
given in Table 8 and indicated by blue diamond on the chart in Figure 6. For some of these
triplets, the power limit is exceeded. For one of these triplets corresponding daily total
power consumption graph is given Figure 7.

On the other hand, through the possible triplets of starting times, the triplet with the
minimum total priority level value (i.e., 1.73) is (05:12, 16:40, 06:50) (indicated by a red square
on the chart in Figure 6). The induced cost of this triplet is 13.44 cent, while the power limit is
exceeded. The daily power consumption graph of this triplet is given in Figure 8.

In order to obtain optimal starting times of wm, dw and bp from the view of cost,
peak demand and user comfort, for each possible triplet of starting times, AS-REMS scales
corresponding total electricity cost values and power limit indicator values in the range
of priority level values via min-max normalization yielding scaled total electricity cost,
i.e., CLMC

dscaled(t
wm
s , tdw

s , tbp
s ), and scaled power limit indicator values, i.e., Idscaled(twm

s , tdw
s , tbp

s ),
respectively (see Table 7 for examples) and schedules starting time of wm at (05:12),
i.e., twm

s =05:12, that of dw at (22:32) i.e., tdw
s =22:32, and that of bp at (21:52), i.e.,

tbp
s = 21:52, according to BFCP Algorithm. For the corresponding triplet of starting

times, i.e., (05:12,22:32,21:52) (marked as black circle on the chart in Figure 6), the cost is
9.45 cent, the total priority level value is 7.28, while the power limit is not exceeded, i.e.,
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Id(twm
s , tdw

s , tbp
s ) = 0. The daily power consumption graph is given in Figure 9. As it is clear

from the Figure 6, this is the closest triplet to the theoretically ideal point.

Table 8. For the triplets of starting times with the minimum cost; priority level, electricity cost, power
limit indicator, scaled priority level, scaled power limit indicator values and the corresponding values
of objective function of BFCP Algorithm 2 for Scenario 1.

(twm
s , tdw

s , , tbp
s ) PrL

LMC
d (.) CLMC

d (.) Id(.) CLMC
dscaled(.) Idscaled(.) di(.)

(05:12,22:00,21:52) 6.40 9.45 1 1.73 12.21 13.89
(00:00,22:00,21:52) 6.63 9.45 1 1.73 12.21 14.00
(23:30,22:00,21:52) 7.48 9.45 1 1.73 12.21 14.42
(23:38,22:00,21:52) 9.43 9.45 1 1.73 12.21 15.51
(05:00,22:00,21:52) 10.20 9.45 1 1.73 12.21 16.00
(05:12,22:32,21:52) 7.28 9.45 0 1.73 1.73 7.68

(-,-,-) - - - - - -
(23:38,22:32,21:52) 10.05 9.45 0 1.73 1.73 10.34
(05:00,22:32,21:52) 10.77 9.45 0 1.73 1.73 11.05

Figure 6. Three-axis chart for possible triplets of (twm
s , tdw

s , tbp
s ) for Scenario 1.
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Figure 7. Power consumption graph of the minimum cost solution for Scenario 1.
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Figure 8. Power consumption graph of the highest priority solution for Scenario 1.
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Figure 9. Power consumption graph of the optimal solution for Scenario 1.

Let we consider scheduling wm, dw and bp on a Thursday from April as Scenario 2.
Thus, the set of similar days D is the set of monitored Wednesday days. Then the sets of
starting times of wm, i.e., TSwm

D , that of dw, i.e., TSdw
D and that of bp, i.e., TSbp

D , are formed
via utilization matrices as follows:

TSwm
D = {00 : 00, 05 : 10, 05 : 28, 06.00, 20 : 32, 23 : 30}

TSdw
D = {16 : 30, 16 : 40, 20 : 00, 22 : 02, 22 : 30}

TSbp
D = {6 : 00, 6 : 18, 6 : 30, 6 : 52, 20 : 40}

For each possible starting times of wm, i.e., twm
s ∈ TSwm

D , that of dw, i.e., tdw
s ∈ TSdw

D

and that of bp, i.e., tbp
s ∈ TSbp

D , on similar days in D; the number of being chosen as starting

time (i.e., NCwm
D (twm

s ), NCdw
D (tdw

s )) and NCbp
D (tbp

s )), and their probabilities (i.e., Prwm
D (twm

s ),

Prdw
D (tdw

s ) and Prbp
D (tbp

s ) and the corresponding priority levels of the considered day d (i.e.,

PrL
wm
d (twm

s ), PrL
dw
d (tdw

s ), PrL
bp
d (tbp

s )) are determined as given in Tables 9–11.
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Table 9. Priority level values for twm
s for Scenario 2.

twm
s NCwm

D (twm
s ) Prwm

D (twm
s ) PrL

wm
d (twm

s )

05:28 18 34.62 1
23.30 11 21.15 2
20.32 9 17.31 3
00:00 6 11.54 4
05:10 6 11.54 5
06:00 2 3.85 6

Table 10. Priority level values for tdw
s for Scenario 2.

tdw
s NCdw

D (tdw
s ) Prdw

D (tdw
s ) PrL

dw
d (tdw

s )

16:30 15 28.85 1
22.02 15 28.85 2
22.30 14 26.92 3
16.40 6 11.54 4
20.00 2 3.85 5

Table 11. Priority level values for tbp
s for Scenario 2.

tbp
s NCbp

D (tbp
s ) Prbp

D (tbp
s ) PrL

bp
d (tbp

s )

06:18 20 38.46 1
06:00 11 21.15 2
06:30 9 17.31 3
20:40 6 11.54 4
06:52 6 11.54 5

For each possible combinations of starting times of these appliances, that is, for all pos-
sible triplets of (twm

s , tdw
s , tbp

s ) corresponding total electricity cost CLMC
d (twm

s , tdw
s , tbp

s ), power

limit indicator values Id(twm
s , tdw

s , tbp
s ) and total priority level values PrL

LMC
d (twm

s , tdw
s , tbp

s )
are represented on the three-axis chart in Figure 10.

Figure 10. Three-axis chart for possible triplets of (twm
s , tdw

s , tbp
s ) for Scenario 2.

In the considered day, through the possible triplets of starting times, triplets with the
cheapest cost (16.40 cent), their priority level values and power limit indicator values are
given in Table 12 and indicated by blue diamond on the chart in Figure 10. For some of
these triplets, the power limit is exceeded. For one of these triplets corresponding daily
total power consumption graph is given Figure 11.
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Table 12. For the triplets of starting times with the minimum cost, priority level, electricity cost,
power limit indicator values for Scenario 2.

(twm
s , tdw

s ) PrL
LMC
d (.) CLMC

d (.) Id(.)

(23:30,22:02,06:18) 3.00 16.40 1
(00:00,22:02,06:18) 4.58 16.40 1
(05:10,22:02,06:18) 5.48 16.40 1
(23:30,22:30,06:18) 3.74 16.40 1
(00:00,22:30,06:18) 5.10 16.40 1
(05:10,22:30,06:18) 5.92 16.40 1
(23:30,22:02,06:00) 3.46 16.40 1
(00:00,22:02,06:00) 4.90 16.40 1

(-,-,-) - - -
(05:10,22:30,06:52) 7.68 16.40 1
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Figure 11. Power consumption graph of minimum cost (a) and optimal (b) solution for Scenario 2.

On the other hand, through the possible triplets of starting times, the one with the
minimum total priority level value (i.e., 1.73) is (05:28,16:30,06:18) (indicated by a red
square on the chart in Figure 10). However, the induced cost of this triplet is 23.01 cent,
while the maximum power consumption is reached 4427.85 kW.

For this scenario, AS-REMS schedules starting time of wm at (05:28), that of dw
at (22:30) and that of bp at (06:18). For the corresponding triplet of starting times, i.e.,
(05:28,22:30,06:18) (marked as black circle in the chart in Figure 10), the cost is 16.48 cent,
the total priority level value is 3.32, while the power limit is not exceeded (maximum power
consumption is 4427.85 kW). As it is clear from the Figure 10, this is the closest triplet to
the theoretically ideal point. The total power consumption graph of optimal solution is
given Figure 11.

Let we consider scheduling dw, wm and bp on a Sunday from September as Scenario 3.
Apart from previous scenarios, in this case, user sets specific starting time intervals for wm,
dw and bp, such that Twm

sinterval
=[08:44 11:44], Tdw

sinterval
=[19:38 23:38], Tbp

sinterval =[20:30 23:30].
The priority level of each of these appliances is set to 0 and the optimal triplet of starting
times (twm

s , tdw
s ,tbp

s ) must be determined through these intervals, i.e., twm
s ∈ Twm

sinterval
, tdw

s ∈
Tdw

sinterval
, tbp

s ∈ Tbp
sinterval , by considering the cost and power limit parameters.

In the considered day, AS-REMS obtains optimal triplet of starting times as (09:26,21:58,
23:00) with the cost of 14.15 cent, while the power limit is not exceeded. The daily power
consumption graph is given in Figure 12. Note that, without AS-REMS, wm and dw start
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to operate at the beginning of their specified starting time interval, such that twm
s = 08:44,

tdw
s = 19:38 and tbp

s = 20:30. In that case, the cost is 23.45 cent while the power limit is
exceeded (see Figure 12).
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Figure 12. Power consumption graph of both without AS-REMS (a) and optimal (b) solution for
Scenario 3.

In order to demonstrate AS-REMS’s performance, numerous scenarios (≥500) are
designed and the corresponding simulations are carried out. According to the results of
these simulations, AS-REMS completely avoids all peak demands exceeding the specified
grid power limit by reducing the peak demand levels by approximately 45%. Consequently,
smooth and continuous energy from the grid is ensured for the user, while possible
maintenance cost of energy provider is reduced. Furthermore, in the simulations, the first
preferences of the users are realized by 88% while the electricity costs could be reduced by
39.6%. Thus, users’ appliance usage preferences are sustained at a lower cost while their
comfort is kept impressively.

In the simulations of scenarios, sensitivity analysis of computational times are also
carried out on a PC with 2.8 GHz CPU, i7 Core, and 16 GB RAM and results are given in
Table 13.

Table 13. Sensitivity of computational times with respect to the number of possible starting time
combinations.

# of Combinations of Starting Times (|TSLMC
D |) Computational Time

{12} 1.57 s
{64} 3.33 s
{128} 5.45 s
{256} 9.14 s
{384} 11.54 s
{512} 17.39 s

The comparison of AS-REMS with the recent studies in the literature from the view of
considered parameters and simulation results are given in Table 14 which demonstrates
the reasonability and effectiveness of the proposed AS-REMS. Unlike most studies in the
literature, in AS-REMS, avoiding peak demand, reducing electricity cost and keeping user
comfort are considered simultaneously. Despite this complexity, simulation results of case
studies are very satisfactory and also they are much better than the recent works in the
literature. This is not surprising, because AS-REMS is based on the users’ appliance usage
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preferences and habits providing a realistic and high-level user comfort; and real power
consumption profiles of appliances are used instead of their average powers assuring to
detect even short-term peak demands. In this way, smooth and continuous energy from
the grid is also procured.

Table 14. Comparision of AS-REMS with the recent REM studies in the literature.

Method Cost Minimization Peak Reduction User Comfort

Incentive-based energy optimization method [20] 6.2% 21% no value
Intensive quadratic programming approach [14] 10% 44% no value
Level billing approach [12] 13–25% not considered only financial satisfaction
Appliance based Rolling Wave Planning algorithm[24] 13–24% 38–53% no value
Binary particle swarm optimization [10] 32.8% - 66%
AS-REMS 39.6% 45% 88%

On the other hand, the hardware configuration of AS-REMS is also constructed to
verify the results of simulations and the scenarios are realized on this configuration. At
this configuration, a PC with 2.8 GHz CPU, i7 Core, and 16 GB RAM stands for the MC
of AS-REMS. Power consumptions of all appliances are measured via Fibaro smart wall
plugs connected to the appliances and verified by the Itech IT9121 power meter. PC
collects power consumption information of all appliances from smart plugs connected to
the appliances via a USB Z-wave stick controller. MC-controllable appliances are equipped
with wi-RS232 converter (or Wi-relay module), for starting the operation of appliances.
AS-REMS algorithm is implemented via developed C++ software which is also used for
simulations of scenarios. Simulation and real application results of scenarios are found to
be compatible with each other.

4. Conclusions

Due to the increase in the population and the use of technological devices in cities,
electricity demand is increasing day by day leading to high depletion of natural resources
and pollution of the environment. Besides, peak demand may occur at certain times
of the day leading to expensive failures in the grid. This circumstance may also pose
serious problems that may affect the public’s social life as disruption of health, education
and transportation activities in the cities. Consequently, for both residential users and
energy providers sides, avoiding peak demand parameters should also be considered in
REM studies.

In this work, a new REM system, namely AS-REMS, is proposed. AS-REMS avoids
peak demand and keeps user comfort while reducing electricity costs simultaneously
for responding to the expectations of both residential users and energy providers. In
AS-REMS, based on the effects of starting times of appliances on user comfort and user
attendance during their operations, appliances are divided into two classes such as MC-
controllable appliances, whose starting times can be set by MC and user-controllable
appliances, whose starting times strictly set by the user even if it is delayable. Use of all
appliances are monitored in the considered home for a while for recording users’ appliance
usage preferences and habits for each day of the week and for each appliance. Then
for each appliance, preferred starting times are determined and prioritized according to
the recorded user preferences on similar days. When scheduling, assigned priorities of
starting times of MC-controllable appliances are considered for maintaining user comfort,
while the tariff rate is considered for reducing the electricity cost. Moreover, expected
power consumptions of user-controllable appliances according to user’s usage habits and
power consumptions of MC-controllable appliances according to assigned starting times
are considered for avoiding peak demand. The practical solution set of the corresponding
scheduling problem consists of possible preferred starting time combinations of MC-
controllable appliances. Since the numbers of MC-controllable appliances and preferred
starting times are limited, the size of practical solution set of the problem is limited. BFCP
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method whose computational complexity is proportional to the number of candidate
solutions, and therefore very suitable for this problem is used to solve it. Besides, the BFCP
method is simple to implement and one can add different starting time combinations to
the practical solution set, as well as remove some from this set easily.

One future work direction of this work would be to investigate the effects of AS-REMS
by integrating it into homes in a neighborhood system. Besides, monitoring the power
consumption of household appliances and identifying users’ appliance usage preferences
will contribute to future works in research areas, such as improving user comfort and home
safety in smart cities.
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Abbreviations

The following abbreviations are used in this manuscript:

a appliance
t time
t̃ internal time of appliances (∆t̃ = ∆t)
ts time slot
∆t length of each time t
C Controllable
D set of similar days
L set of appliances
T number of uniform time slots
T execution period
NO Normally Operated
Sc Scheduable
Sh Shiftable
CBE Comfort Based Elastic
EBE Energy Based Elastic
FTB Fixed and Task Based
MCC Main Controller Controllable
UnC Uncontrollable
USh Unshiftable
USc Unscheduable
USC User Controllable
dUSC Delayable User Controllable
ndUSC Non-delayable User Controllable
UUUa

D utilization matrix of an appliance a ∈ L for the set of the similar days D
P̃a power profile vector of an appliance a ∈ L (W)
Pa

d (t) power consumption of an appliance a ∈ L at a t of a day d ∈ D (W)
Ta

m measurement duration of an appliance a ∈ L
ta
s starting time of an appliance a ∈ L
LUC set of user-controllable appliances
LMC set of MC-controllable appliances
Pa
UC(t) power consumption of a user-controllable appliance a ∈ LUC at a t (W)

Ta
e one execution period of an appliance a ∈ LUC

Pa
MC(t) power consumption of a MC-controllable appliance a ∈ LMC at a t (W)
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Ta
o operation period of an appliance a ∈ LMC

TSa
D set of starting times of an appliance a on the similar days D

NCa
D(t

a
s ) number of ta

s to be chosen as starting time of an appliance a ∈ LMC
Pra

D(t
a
s ) probability of ta

s to be chosen as starting time of an appliance a ∈ LMC
PrL

a
d(t

a
s ) priority level of ta

s to be chosen as starting time of an appliance a ∈ LMC
T

aj
sinterval

specific starting time interval for each of MC-controllable appliance
aj ∈ LMC

Pa
dexp

(t) expected power consumption of an appliance a ∈ LUC at a t of a day
d ∈ D (W)

PLUC
dexp

(t) expected power consumption of all USC appliances at a t of a day
d ∈ D (W)

PLMC
d (t)

power consumption of a MC-controllable appliance a ∈ LMC at a t of a
day d ∈ D (W)

PLMC
d (t)

power consumption of all MC-controllable appliances at a t of a day
d ∈ D (W)

PLd (t) total power consumption of all appliances at a t of a day d ∈ D (W)
Plim power limit (W)

TLMC
s

a starting time combinations of MC-controllable appliances, i.e.,
ta1
s , ta2

s , . . . , t
a|LMC |
s

TLMC
si ith possible combination of starting times of MC-controllable appliances

TLMC
soptimal optimal combination of starting times

CLMC
d (TLMC

s ) total electricity cost of MC-controllable appliances for TLMC
s ($)

Id(T
LMC
s ) power limit indicator for TLMCs

PrL
LMC
d (TLMC

s ) total priority level of MC-controllable appliances for TLMCs

CLMC
dscaled(T

LMC
s ) scaled total electricity cost for TLMCs

Idscaled(T
LMC
s ) scaled power indicator value for TLMCs

ˆPrL
LMC
d ideal priority level

ĈLMC
d ideal total electricity cost

Îd ideal power limit indicator
wC weight of the total electricity cost
wI weight of the power limit indicator
wPr weight of the total priority level

di
output of distance function for ith possible combination of starting
times of MC-controllable appliances
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