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Abstract: We study here the spectral characteristics of square-wave-modulated type II long-period
fiber gratings (LPFGs) inscribed by a femtosecond laser. Both theoretical and experimental results
indicate that higher-order harmonics refractive index (RI) modulation commonly exists together with
the fundamental harmonic RI modulation in such LPFGs, and the duty cycle of a square wave has a
great influence on the number and amplitudes of higher-order harmonics. A linear increase in the
duty cycle in a series of square wave pulses will induce another LPFG with a minor difference in
periods, which is useful for expanding the bandwidth of LPFGs. We also propose a method to reduce
insertion loss by fabricating type II LPFGs without higher-order harmonic resonances. This work
intensifies our comprehension of type II fiber gratings with which novel optical fiber sensors can
be fabricated.

Keywords: long-period fiber gratings; higher-order harmonics; femtosecond laser

1. Introduction

LPFGs can realize the coupling between the copropagating core modes and cladding
modes [1]. In the single-mode transmission region, the fundamental mode diverts to
cladding modes after passing through an LPFG, and LPFGs can also play a role as mode
converters in few-mode fibers. Since the first demonstration in the 1990s, LPFGs have
been applied in many fields up to now, such as fiber sensors, fiber lasers, and so on [2].
Due to the high sensitivity of coupled cladding modes to the environment, LPFGs found
their applications in RI sensing [3,4]. Furthermore, LPFGs were applied in temperature
or stress detection [5–8]. Except for applications in fiber sensors, researchers applied
LPFGs as spectral filtering devices in fiber lasers [9–12]. For example, LPFGs have been
used to suppress the stimulated Raman scattering (SRS) effect in high-power fiber lasers,
where core-guided SRS light can be stripped out of the core by inserting LPFGs, and the
proportion of signal light in the output terminal can be increased [9–11]. By inscribing
LPFGs in an erbium-doped fluoride glass fiber, Heck et al. proposed a new concept to
mitigate the parasitic laser effect in mid-infrared fiber amplifiers [12].

Up to now, many methods have been utilized to fabricate LPFGs, including mechanical
stress [13,14], electrical arc [15,16], CO2 laser [2,17], femtosecond laser [18,19], and so
on. Exerting periodical mechanical stress on a few-mode fiber could induce coupling
between two copropagating core-guided modes, but such LPFGs could persist when
mechanical stress was released [20]. A periodic taped structure induced by an electrical arc
or structuring a fiber with a CO2 laser could also realize the fabrication of LPFGs [21–24],
but these LPFGs were relatively fragile because a few sections of the fiber became thinner
just like microfibers [25–27]. UV lasers could inscribe relatively stable LPFGs by the
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direct-writing method or with the help of amplitude masks, but sufficient photosensitivity
of fibers is necessary, so fibers should usually be hydrogen loaded in advance [28]. A
femtosecond laser is another effective tool to fabricate LPFGs [29–31] with which the fiber
is intact after fabrication, and the photosensitivity of fibers is not necessary.

Recently, Heck et al. reported their investigations on type I LPFGs inscribed by a
femtosecond laser, whose cross-RI modulation was positive (magnitude: 1× 10–4) and took
up the majority of the core area [32,33]. Type I LPFGs might degenerate in high-temperature
environments. Another kind of LPFG inscribed by a femtosecond laser, namely type II
LPFGs, is completely different. The RI profile is negative (magnitude: 1× 10–3) and usually
highly localized. Even when the temperature is more than 1000 ◦C, type II gratings can
still keep their characteristics [34]. Their fine temperature tolerance makes LPFGs good
candidates in high temperature sensing and high-power fiber laser systems. Square-wave-
modulated type II LPFGs are easy to fabricate, but the insertion loss is relatively higher
than that of type I, and the spectrum is in chaos. Up to now, few studies have interpreted
their characteristics.

In this paper, we investigate the characteristics of square-wave-modulated highly
localized type II LPFGs inscribed by a femtosecond laser in detail. Both theoretical and ex-
perimental studies show that higher-order harmonic resonances coexist with fundamental
frequency resonance in square-wave-modulated type II LPFGs, and the duty cycle of the
square wave affects the amplitude and the number of higher-order harmonic resonances.
With a linear increase in the duty cycle in a series of square wave pulses, resonances induced
by a new LPFG of periods with little differences compared with the setting period occur.
Based on the research results, a method to suppress higher-order harmonic resonances in
type II LPFGs is proposed.

2. Theory

LPFGs could realize the coupling between two different modes (core-guided or
cladding-guided modes) transmitted in the same direction. The resonance wavelength is
decided by a phase-matching condition:

β1 − β2 = m
2π

Λ
. (1)

Here, m is the resonant order, β1 and β2 are the propagating constant of the two
coupling modes, and Λ is the grating period of the LPFG. According to the relation of
β = 2πneff/λ, the resonant wavelength can be given by

λ = (ne f f ,1 − ne f f ,2)
Λ
m

. (2)

Here, neff,1 and neff,2 are the effective RI of the two different modes. For single-mode
operation, the core-guided fundamental mode can only be coupled to cladding modes, and
a bunch of resonant wavelengths appear in the transmission spectrum. Considering the
symmetry, the fundamental mode mainly couples to axisymmetric cladding modes LP0n.
Figure 1 shows the phase-matching condition of the first-order resonance (m = 1) when
the grating period is 560 µm. The horizontal line represents 2π/Λ, and the intersection
points define the resonant wavelengths. Simulation results indicate that LP01 mode couples
to cladding mode LP02 at the wavelength of 1435 nm, to LP03 at 1475 nm, and LP04 at
1560 nm.



Sensors 2021, 21, 3278 3 of 10Sensors 2021, 21, x FOR PEER REVIEW 3 of 11 
 

 

  
Figure 1. Phase-matching condition of the first-order harmonic resonance. 

Except for the resonant points of LPFGs, the RI modulation function is another focus 
that has to be investigated in detail. For most femtosecond-laser-inscribed LPFGs, the RI 
modulation function along the fiber axis is in the form of a square wave within which 
harmonics cannot be ignored, especially for type II LPFGs. Each harmonic represents an 
LPFG with a different period. Moreover, the duty cycle of the square wave shows a great 
impact on the amplitude of harmonics. In practice, square wave modulation cannot be 
infinitely long (provided a finite number of periods). Figure 2a shows a typical square 
wave. Assuming n is the number of periods, Λ is the period, and W is the high period, the 
duty cycle is defined as the ratio of high period to the total period 

.WD =
Λ

 (3)

The expression of finite length square wave can be written as 

1

( 1)
2( ) .

N

n

Dx n
Square x A rect

D=

× Λ − − − × Λ 
= ×  × Λ 

 

  (4)

Here, A is the amplitude of square wave. To study its spatial spectrum characteristics, 
Fourier transform is carried out on this function: 

( ) ( 1)

( 1)
1

( )

(1 ) (1 ) .
(1 )

N n D jkx

n
n

jkD jNk

jk

Square x A e dx

e eA
jk e

− ×Λ+ ×Λ −

− ×Λ
=

− Λ − Λ

− Λ

= ×

− × −= ×
× −


 (5)

where k is the symbol of spatial frequency. Except k = 0, pole points of this function occur 
at k = 2πm/Λ (m = 1, 2, 3, 4, …), and the extremum of this function can also be found at 
these points. Figure 2b demonstrates the spatial spectrum of the square wave with differ-
ent duty cycles when the number of the period is 72. It is obvious that not all harmonics 
coexist under any duty cycle, but it is not just fundamental harmonic that matters. For 
example, when the duty cycle is 50%, only odd-order harmonics can be excited, and the 
amplitude of even harmonics is zero. The amplitude of each harmonic varies with the 
duty cycle. At least we can say that in square-wave-modulated LPFGs, higher-order har-
monic RI modulation can also impact the transmission spectrum. 

Figure 1. Phase-matching condition of the first-order harmonic resonance.

Except for the resonant points of LPFGs, the RI modulation function is another focus
that has to be investigated in detail. For most femtosecond-laser-inscribed LPFGs, the RI
modulation function along the fiber axis is in the form of a square wave within which
harmonics cannot be ignored, especially for type II LPFGs. Each harmonic represents an
LPFG with a different period. Moreover, the duty cycle of the square wave shows a great
impact on the amplitude of harmonics. In practice, square wave modulation cannot be
infinitely long (provided a finite number of periods). Figure 2a shows a typical square
wave. Assuming n is the number of periods, Λ is the period, and W is the high period, the
duty cycle is defined as the ratio of high period to the total period

D =
W
Λ

. (3)
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The expression of finite length square wave can be written as

Square(x) = A×
N

∑
n=1

rect

(
x− D×Λ

2 − (n− 1)×Λ
D×Λ

)
. (4)

Here, A is the amplitude of square wave. To study its spatial spectrum characteristics,
Fourier transform is carried out on this function:

F (Square(x)) = A×
N
∑

n=1

∫ (n−1)×Λ+D×Λ
(n−1)×Λ e−jkxdx

= A× (1−e−jkDΛ)×(1−e−jNkΛ)

jk×(1−e−jkΛ)
.

(5)

where k is the symbol of spatial frequency. Except k = 0, pole points of this function occur
at k = 2πm/Λ (m = 1, 2, 3, 4, . . . ), and the extremum of this function can also be found at
these points. Figure 2b demonstrates the spatial spectrum of the square wave with different
duty cycles when the number of the period is 72. It is obvious that not all harmonics
coexist under any duty cycle, but it is not just fundamental harmonic that matters. For
example, when the duty cycle is 50%, only odd-order harmonics can be excited, and the
amplitude of even harmonics is zero. The amplitude of each harmonic varies with the duty
cycle. At least we can say that in square-wave-modulated LPFGs, higher-order harmonic
RI modulation can also impact the transmission spectrum.

Figure 3 shows the normalized amplitude of different harmonics versus the number
of periods when the duty cycle is 50%. The amplitude of each harmonic increases linearly
with the number of periods. The higher the order of the harmonic, the lower the amplitude.
We can predict that in LPFG fabrication, the fundamental harmonic occurs even when
the length of the LPFG is very short, but higher-order harmonics occur when the LPFG
stretches to a certain length.
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Considering the situation where the duty cycle is no longer a constant in any part of a
square wave sequence, the characteristics of the spatial spectrum show a large difference.
For instance, the duty cycle grows linearly from 10% to 88.5% with the length of the square
wave shown in Figure 4a (the total number of periods is 72):

Squarel(x) = A×
N

∑
n=1

rect

(
x− Dn×Λ

2 − (n− 1)×Λ
Dn ×Λ

)
. (6)

Dn = 0.1 + 0.011(n− 1). (7)
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Here, Dn is the duty cycle of the nth square wave pulse (n = 1, 2, . . . , 72). The Fourier
transform of Equation (4) can be written as:

F (Squarel(x)) = A×
N
∑

n=1

∫ (n−1)×Λ+Dn×Λ
(n−1)×Λ e−jkxdx

= A× (1−e−j1.011kΛ)×(1−e−jNkΛ)−e−j0.1kΛ×(1−e−jkΛ)×(1−e−j1.011NkΛ)

jk×(1−e−jkΛ)×(1−e−j1.011kΛ)
.

(8)

In Equation (6), there are two series of pole points except k = 0. The first pole points
series is represented as k = 2πm/Λ, and the second is k = 2πm/1.011Λ (m = 1, 2, 3, . . . ). The
spatial spectrum characteristics are demonstrated in Figure 4b. When the number of periods
is 72 (full length), two series of harmonics occur in the spatial spectrum, and as the order of
harmonics increases, the frequency difference also grows. Only two fundamental harmonic
frequencies overlap with each other for the reason of small frequency differences. However,
if the number of the period is half (36 periods), although two series of resonance frequencies
are still obvious in higher-order harmonics, the spatial frequency difference is extremely
small in the first- and second-order resonance region. In practical LPFG inscription, if
the duty cycle increases with the length of the LPFG, one possible phenomenon we can
observe is that another comb of dips grows up near the original second harmonic resonance
wavelengths, and the bandwidth expands consequently.

3. Experiment

A schematic inscription diagram for square-wave-modulated LPFGs is shown in
Figure 5a. A femtosecond laser (Pharos Light Conversion) with 190 fs pulses, a central
wavelength of 515 nm, and a repetition rate of 1 kHz s focused with an oil-free microscope
objective (Mitutoyo) with a magnification of 100×. The pulse energy after the objective is
about 150 nJ. An SMF (the core diameter is 8.2 µm, and the numerical aperture is 0.14) is
fixed on a high-precision three-axis linear translation stage. During LPFGs fabrication, the
horizontal speed v is set as 1000 µm/s, and the spacing between two successive points is
1 µm in theory. However, the cylindrical lens effect of fiber cannot be ignored in an oil-free
inscription environment, the RI modulation generated by a pulse takes on an ellipsoid
with its major axis aligning in the horizontal direction of fiber, as shown in Figure 5b. The
length of the major axis is more than 3 µm when the pulse energy is 150 nJ; thus, the RI
modulation generated by two successive pulses overlaps with each other, as shown in
Figure 5c. Because the LPFG is highly localized, and if the refractive index modulation
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generated by a femtosecond laser is not high enough, the spectrum will not appear. We tried
to place our LPFGs in a high-temperature (500 ◦C) furnace for more than 8 h. The spectra
after cooling showed little difference compared to the spectra before high-temperature
annealing. Thus, we confirm the LPFGs are type II.
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Figure 5. (a) Schematic of LPFG fabrication. (b) RI modulation generated point-by-point (magnifica-
tion: 100×). (c) Microscope image of a square-wave-modulated LPFG (magnification: 100×).

The growth process of an LPFG is illustrated in Figure 6. The period is 560 µm, and
the total length is 40,320 µm. The spectra of five different lengths are recorded in our
experiment. As we discussed in Figure 3, only the LPFG stretches a certain length can
higher-order harmonic resonance of the grating occur. In our experiment, when the length
of the LPFG is longer than 20,160 µm, the higher-order harmonic resonance of the grating
becomes discernible. With the increase in the LPFG length, the insertion loss goes up, as
scattering loss induced by a femtosecond laser grows up in this process. The coupling
between the fundamental mode and higher-order cladding mode (LP04) saturates prior
to the lower-order cladding mode (such as LP03 and LP02). Because the LPFG does not
strictly localize in the center of the core, the cross-RI profile takes on an axisymmetric
rather than a circularly symmetric form; thus, birefringence becomes obvious when the
LPFG is long. In the LPFG fabrication process, mode coupling is a dynamic process, for
which energy in cladding modes may convert back to the fundamental mode when the
grating reaches a certain length (this process is named overcoupling). As shown in Figure 6,
after the overcoupling process, the resonance re-enhances, and birefringence occurs in
the meantime.

Figure 6. Spectrum evolution during LPFG fabrication (period: 560 µm; duty cycle: 50%. Insertion
loss from 1200 to 1350 nm increases with the grating length).
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Figure 7 illustrates the transmission spectra of LPFGs with different duty cycles. The
length of LPFGs is fixed as 40,320 µm, and the period of LPFGs is 560 µm. Thus, the
number of periods is 72. Except for the first-order resonance, where the fundamental mode
couples to the LP02, LP03, and LP04 cladding mode at around 1425, 1480, and 1550 nm,
respectively, which is close to the theoretical analysis in Figure 1, and the error mainly
comes from the neglect of material dispersion, the higher-order harmonic resonance of
the grating is also visible. The occurrence of higher-order harmonic resonance creates
chaos over the transmission spectrum of the LPFG. What has to be pointed out is that
the higher-order resonance generated by the LPFG with a duty cycle of 50% is weaker
than the other two LPFGs, which can be explained by what we discussed in Figure 2 that
the harmonic number of square waves with a duty cycle of 50% is less than the other
duty cycle.
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Figure 7. Transmission spectra of LPFGs with different duty cycles (insertion loss of the LPFG with a
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Figure 8 demonstrates the transmission spectra of different-order resonances. The
periods of the LPFGs are 560, 1120, and 1680 µm, which, respectively, correspond to the
first-, second-, and third-order harmonic resonances generated by grating in the focusing
wavelength band. The grating length is 40,320 µm regardless of the period. When the duty
cycle is 50%, the second-order harmonic resonance of the grating disappears as the blue
line in Figure 8 shows, but the second-order harmonic resonance of the grating is evident
if the duty cycle is 25% (red line in Figure 8). The pink line performs the transmission
spectrum when the period is 1680 µm and the duty cycle is 50%. The resonant intensity
is relatively weak compared to the other situation, as the amplitude of the third-order
harmonic resonance is only one-third of what it is in the first-order resonance.

To testify the inference in Figure 4, an LPFG with different duty cycles (linearly
increasing from 10% to 90%) in different periods is fabricated. Because the frequency
difference is relatively small in the first-order resonance region, the period of the grating is
set as 1120 µm to realize the second-order harmonic resonance of the grating in the focusing
wavelength band, and the total length of the LPFG is 80,640 µm. Figure 9 illustrates the
transmission spectrum of the LPFG during our fabricating process. When the grating
length is 40,320 µm (half of the total length), the spectrum is similar to that depicted in
Figure 6, where the second-order harmonic resonance of the grating takes up the majority,
and the higher-order harmonic resonance of the grating shows up as well. However, the
spectrum of the full-length LPFG is much more different. Except for the former resonant
points, another series of dips (marked as blue points) appear. Meanwhile, the birefringence
(marked as green points) also presents for the reason of the long grating length. These
phenomena agree well with the aforementioned theoretical analysis. A derived LPFG
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that possesses different periods compared with the setting one is fabricated by linearly
increasing the duty cycle of the time series pulse. The method shows the potential in
bandwidth widening.
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The coupling characteristics of square-wave-modulated type II LPFGs are much more
complex compared to those of type I, which provides more choices for the fiber sensing
system. However, the existence of higher-order harmonic resonance of the grating disturbs
the transmission spectrum and creates undesirable insertion loss, which forbids type II
LPFGs as the fiber laser system application. Thus, a method to suppress the higher-order
harmonic resonance of the grating in type II LPFGs is necessary. Considering that a
square wave is composed of several harmonics and higher-order harmonics RI modulation
contributes to higher-order harmonic resonances of the grating, if the RI modulation along
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with the fiber axis takes on a sinusoidal shape, the higher-order harmonic resonance
of the grating cannot occur. To realize our assumption, the repetition frequency of the
femtosecond laser should be high enough to make the RI modulation area generated by
two successive pulses overlap with each other. The pulse energy is a time-varying sine
wave, and the period of the sine wave equals the period of the LPFG. In this way, the
RI modulation along the fiber axis takes on a sine-like shape (RI modulation is based on
the nonlinear multiphoton absorption process, and the RI modulation along the fiber axis
cannot be a strict sine-wave). The higher-order harmonic resonance of the grating may be
largely suppressed by this method.

4. Conclusions

We investigated the coupling characteristics of square-wave-modulated type II LPFGs
fabricated by a femtosecond laser. Both theoretical and experimental results show that
except for the fundamental frequency resonance induced by a square wave, higher-order
harmonic resonances are also significant in such LPFGs. The duty cycle shows a great
effect on the amplitude and number of higher-order harmonic resonances of LPFGs. By
varying the duty cycle in a series of square wave pulses, an LPFG with two different
periods compared to the fabricated period can be derived, by which we can expand the
bandwidth of the LPFG. The research work enhances our comprehension of type II fiber
grating and shows potential in novelty sensor fabrication. A method to fabricate type II
LPFGs with a higher-order harmonic resonance of the grating suppression is proposed. In
the future, we will realize the fabrication of sine-wave-modulated type II LPFGs. In this
way, the higher-order harmonic resonance of the grating can be avoided, and the insertion
loss can be reduced. Type II grating is more suitable for applications of optical fiber sensors
and fiber laser systems.
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