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Abstract: The applicability of sensor-based human activity recognition in sports has been repeatedly
shown for laboratory settings. However, the transferability to real-world scenarios cannot be granted
due to limitations on data and evaluation methods. On the example of football shot and pass detection
against a null class we explore the influence of those factors for real-world event classification
in field sports. For this purpose we compare the performance of an established Support Vector
Machine (SVM) for laboratory settings from literature to the performance in three evaluation scenarios
gradually evolving from laboratory settings to real-world scenarios. In addition, three different
types of neural networks, namely a convolutional neural net (CNN), a long short term memory net
(LSTM) and a convolutional LSTM (convLSTM) are compared. Results indicate that the SVM is not
able to reliably solve the investigated three-class problem. In contrast, all deep learning models
reach high classification scores showing the general feasibility of event detection in real-world sports
scenarios using deep learning. The maximum performance with a weighted f1-score of 0.93 was
reported by the CNN. The study provides valuable insights for sports assessment under practically
relevant conditions. In particular, it shows that (1) the discriminative power of established features
needs to be reevaluated when real-world conditions are assessed, (2) the selection of an appropriate
dataset and evaluation method are both required to evaluate real-world applicability and (3) deep
learning-based methods yield promising results for real-world HAR in sports despite high variations
in the execution of activities.

Keywords: data analysis; activity recognition; sensor-signal-based machine learning; deep learning;
wearable sensors; sport

1. Introduction

In order to surpass oneself, performance monitoring has become a crucial part of
training for athletes of all levels. As more and more commercial devices are available,
wearable trackers based on inertial measurement units (IMUs) are increasingly used for
the assessment of sport-specific movements of recreational athletes in team sports [1,2].
Examples are IMU-based systems such as Babolat Play or Qlipp tennis sensor detecting
stroke and spin types and racket speed in tennis or the Zepp Play Soccer assessing kicks
and sprints in football. However, in literature automatic activity recognition algorithms are
commonly developed and evaluated in laboratory settings lacking proof of transferability
to real-world scenarios [3–5]. Thereby, limitations on two different levels of the processing
pipeline, data acquisition and evaluation, can be observed.

In data acquisitions in laboratory settings, several factors can contribute to restricted
variation in the athletes movements. This implies less representative data and limited gen-
eralizability of the results to real-world scenarios. The sport-specific movements of interest
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are usually performed isolated or combined in predefined exercises. Due to fixed distances
or even positions, the intensities of the movements are restricted. Often, a special technique
or execution is set further limiting variations in the movements. The restriction of limited
variation is intensified by the commonly low number of participants resulting from the
tedious and labour-intensive data recording and labelling process [6]. Consequently, study
populations are rather homogeneous. As every athlete has their own execution pattern
for each activity defined by their weight, height, sex and strength, inter-subject variabil-
ity can increase task complexity and might impact classification performance [7]. Recent
studies showed that deep learning models outperform conventional machine learning
methods as Support Vector Machines (SVMs) in sensor-based human activity recognition
(HAR) in sports [8–10]. In contrast to conventional methods which require hand-crafted,
domain-specific features, deep learning models automatically extract abstract features from
sensor signals [11]. However, the training of neural networks generally requires large la-
belled datasets to achieve satisfactory performance explaining its rare use for sensor-based
performance analysis in field-sports [6,12].

In the evaluation step, the algorithms are commonly tested on segmented samples of
the sensor signal containing the target movements and preselected null class instances [7,13].
Thus, the influence of confounding movements is neglected, although they might produce
similar sensor output as the sport-specific movements under investigation. In an uncon-
trolled, real-world setting a higher number of confounding, unanticipated movements
can be expected. Besides, the distribution of events will change. Training or game data
will include a higher proportion of null class samples corresponding to general activities
as standing, walking, running or jumping. In response, effective methods are needed to
identify those samples prior to classification.

There are several studies tackling individual aspects of the aforementioned limitations,
for instance, by evaluating on competition data or using a moving window approach for
evaluation to consider the final distribution of events [4,14]. However, to the best of our
knowledge a holistic consideration of limitations is not investigated yet. Thus, in this
work we aim to explore the potential of IMU-based activity recognition under real-world
conditions considering both factors, the data acquisition and training step on the example
of football, the most popular sport in many regions of the world [15]. In football, the
number of shots and passes is an important discriminating factor between winning and
loosing teams in the UEFA Champions League [16]. Previous work already showed the
feasibility to classify full-instep kicks and side-foot kicks in laboratory settings applying a
SVM classifier. However, the number of participants was limited to eleven male amateur
players, data was recorded during controlled exercises, performance was evaluated on
segmented samples and the null class was limited to dribbling instances [13].

Building on the findings of Schuldhaus et al. [13] our research contributes in the
following ways: First, we evaluated the applicability of the reported features and SVM
classifier for shot and pass detection versus a null class in real-world scenarios. Second, we
analysed the potential of improving classification performance by using and comparing
different deep learning architecture types. In contrast to previous approaches, we classified
general shot and pass activities regardless of the kicking technique allowing more variations
of movements. Hence, the classification task gains complexity but seems to be more
relevant for match analysis. To cover variations in kick and pass movements and provide
sufficient data for the development of deep learning algorithms, we acquired a large dataset
containing laboratory as well as real world instances from training and competition of over
800 football players. The algorithms are compared in different scenarios gradually evolving
from laboratory settings with various restrictions to the real-world case. Finer-grained ball
contact labels are used to gain additional insights into confounding factors.

2. Related Work

In HAR external sensors are used to detect and analyse various human movements
as, amongst others, walking, running, sleeping, cooking or driving [17–20]. Thereby ap-
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plication areas are manifold covering amongst others healthcare monitoring [21], sports
performance evaluation [13,22], smart home [23,24] and autonomous driving [20,25]. De-
pending on the external sensor source, video-based and sensor-based HAR systems are
distinguished. Due to their low price, light weight and small size IMUs have exten-
sively been used in the field of sensor-based HAR in the past years [26]. For our study,
we identified two relevant directions of research in the field of sensor-based HAR. First,
HAR in field sports considering real-world applicability. Second, the development of
deep learning models in HAR in sports. The following paragraphs shortly summarize
recent achievements.

2.1. Towards Real-World Sensor-Based Activity Recognition in Field Sports

In general, a trend towards in-field use of wearable IMUs can be observed. After
Camomilla et al. [27], already 62% of considered studies were conducted on training or sim-
ulated training data, 7% on competition data and only 28% in laboratory settings. However,
included work was neither restricted to field sports, nor on activity recognition. Instead,
assessment of motor capacity, technique analysis and physical demand was covered [27].
In contrast to the findings for IMU-based analysis in sports in general, sensor-based activity
recognition in team sports mainly takes place in laboratory settings. However, publica-
tions considering real-world data for training and/or evaluation can be found and are
summarized below.

McNamara et al. [14] detected bowling activities in cricket training and competition
using a commercially available sensor comprising an IMU and global positioning system
(GPS) fixed at the upper back of twelve highly skilled players. High sensitivity and
specificity values of 99.0% and 74.0%, respectively, were reported for the competition
scenario [14]. Similarly, Kelly et al. [28] integrate an accelerometer and GPS receiver
between the shoulder blades of rugby players for the identification of tackles and collisions
combining SVM and hidden conditional random field by AdaBoost. For three players,
classification was tested on predefined, segmented match data achieving high recall (93%)
and precision rates (96%). In [29], the bowling activity in cricket is analysed using various
action profiles derived from IMU data. Conventional machine learning algorithms as SVM,
k-nearest neighbor, Naïve Bayes and Random Forest (RF) as well as a feed-forward neural
net were trained on statistical features extracted from the activity profiles to distinguish
legal and illegal bowling actions. For the complex dataset, the RF achieved the best
performance with an F-measure of 0.74. Again, testing was performed on segmented
samples of the bowling motion [29].

In contrast to the studies listed above, several publication propose hierarchical systems
that deal with the data distribution in real-world scenarios but use laboratory data for
evaluation [3–5]. Rawashdeh et al. [3] detect overhead motions in a first step. Then
they distinguish baseball throws from volleyball serves with an accuracy of 94.04% in the
second step in order to count straining motions for shoulder and elbow overuse injury
prevention [3]. In [4], different sensor combinations and locations are analysed for HAR in
field hockey. The best set up with 4 sensors results in a classification accuracy of around 97%.
Within the approach, a moving window is applied for evaluation purposes considering the
final distribution of samples. However, data collection is restricted to specific field hockey
activities of 11 players in a controlled environment. Another hierarchical approach was
introduced by Nguyen et al. [5], who recorded nine different movements using IMUs and
a pressure sensor at the feet of basketball players. In a first step they differentiate standing
and moving activities. Afterwards time- and frequency domain features are extracted and
basketball activities are classified by a SVM [5].

For the classification task tackled within our study, namely the recognition and analy-
sis of shots and passes in football, several related studies were identified. Mitchell et al. [7]
extract features from smartphone accelerometers using Discrete Wavelet Transform. They
compare different classification methods on segmented samples of soccer and field-hockey
activities extracted from game data. They propose a fusion of different classifiers achieving
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an average maximum F-measure of 87% [7]. Chawla et al. [30] used supervised machine
learning to classify passes in soccer matches regarding their quality based on positional
data with an accuracy of 90.2%. The identification of shots was not covered in their
work [30]. Schuldhaus et al. [13] developed a hierarchical pipeline based on IMU data for
the detection of full-instep and side-foot kicks. For full-instep kicks, a mean sensitivity of
95.6% is reported. In addition, the corresponding ball speed was estimated and highlight
videos were generated. Data was recorded during controlled exercises and only considered
dribbling as null class instances [13]. Kim and Kim [31] propose the computation of an
impact measurement function from the acceleration signal and detect leg swings from
angular velocity for the recognition of kicks. The evaluation was performed on 5 subjects
during a kicking exercise. Confounding ball contacts were not part of the session [31].
In [32], the direction of penalty shots was classified from accelerometer data using tradi-
tional machine learning models as well as a convolutional neural net (CNN). The proposed
CNN architecture outperformed the traditional methods reaching an accuracy of 53%. The
dataset consisted of a real-life penalty shoot out of 4 players [32]. To the extent of our
knowledge, there is no work investigating the sensor-based classification of different kick
types under real-world conditions.

2.2. Deep Learning for Sensor-Based Human Activity Recognition in Sports

Recently, a shift towards the application of deep learning methods can be observed in
many fields [33]. A major advantage thriving this development is that this subgroup of
machine learning methods does not require time-consuming manual feature extraction [34].
Moreover, deep learning approaches outperform conventional machine learning methods
in many fields, for example in vision-based HAR [6]. However, in the field of sensor-based
HAR in sports, the application of deep learning methods is not as frequent as in other fields
due to high data demands [6,35]. Kautz et al. [8] trained a CNN on activity recognition in
beach volleyball and compared it to various other shallow classifiers in combination with
generic feature extraction. Thereby, the CNN exceeds the accuracy of other classifiers by
16.0% [8]. CNNs are also applied for error classification in ski jumping. A comparison to
a SVM and a Hidden Markov model showed superior performance, especially for noisy
and biased sensor data [9]. Jiao et al. [10] adapt a vanillaCNN, VGG, Inception and ResNet
architecture for golf swing classification and compared it to a SVM, showing that CNN
based models can appropriately solve the classification task and achieve higher scores
than the SVM. Besides CNNs, recurrent neural nets (RNNs) and long short-term memory
nets (LSTMs) in particular are used to model long term dependencies. Rassem et al. [36]
compare a CNN, LSTM and standard multilayer perceptron for the classification of cross-
country skiing movements. The lowest classification error (1.6%) was reported for the
LSTM [36]. For swing sports as tennis, badminton and golf, shot classification is a well
known HAR problem. Anand et la. [37] compared a feature-based classifier, a CNN and a
Bi-directional LSTM (BLSTM) network detecting and classifying shots in tennis, badminton
and squash. Again, the deep learning-based models outperformed the shallow architecture.
For tennis, the CNN resulted in a slightly higher f1-score of 93.8% compared to the LSTM,
whereas for badminton and squash peak performance was reached by the BLSTM model
achieving 78.9% and 94.6%, respectively [37]. In [38], a SVM with Radial Basis Function, a
LSTM and a 2-Dimensional CNN are compared for forehand stroke classification in table
tennis. Both deep learning models outperformed the SVM, whereas best performance with
an f1-score of 99.02% was achieved by the LSTM model [38]. To the best of our knowledge,
activity recognition in football was not address with deep learning-based models yet.

3. Materials and Methods

In the following section an overview of the proposed methods is provided. The data
acquisition and the adaptation of the SVM from [13] is described. Consecutively, the devel-
opment, implementation and optimization of the proposed deep-learning architectures, as
well as the evaluation procedures are explained.
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3.1. Dataset

The dataset for this study was recorded using an IMU containing a triple-axis ac-
celerometer (±16 g) and triple-axis gyroscope (±2000°/s). Each player was equipped with
two sensors, one for each foot. The sensor is inserted in the insole of the regular football
shoe of the player. Due to the stiff material of the insole and the cavity design, the sensor
position is fixed without disturbing the players movements. Sensor and insole setup are
shown in Figure 1a. Data was recorded with a sampling rate of 200 Hz. For labelling
purposes, all session were recorded with at least one video camera.

There were two main requirements for the dataset of our study. First, the amount of
data needs to be reasonably high for the training of neural networks. Second, we need
real-world data from the pitch for evaluation. As the acquisition of real-world data is
complex and time-consuming, we recorded both, laboratory data following controlled
protocols and real world data consisting of training and game scenarios. By this dual
approach we achieve a high volume of data and are able to compare our algorithms on data
with various complexity levels. The acquisitions in the lab contained controlled exercises,
e.g., shooting ten penalty kicks and semi-controlled exercises as passing the ball to a team
mate, receiving it back and then shooting onto the goal. In the following, we will call
those recordings lab sessions. For the real-world acquisitions, hereinafter referred to as
field sessions, we are not following a fixed protocol. Instead, football teams were recorded
during regular training or games. A typical real-world data recording session is depicted
in Figure 1b.

(a) (b)

Figure 1. Hardware set up and example of in-field data acquisition. (a) Schematic representation of the position of the IMU
sensor in the insole of a conventional football boot and the sensor coordinate system. (b) Example of a typical real-world
data recording during a regular training session. The image shows the camera view used for labelling.

In total, we recorded 181 sessions (38 field sessions/143 lab sessions) with 836 play-
ers (97% male/3% female) including youth players starting from German age division
U12 to grown up players. The experience of participants ranged from novice players
(3%) and amateurs (38%) to semi professional players (50%). For the remaining 9% of
players, the skill level was unknown. Due to hardware failure, data of only one foot was
recorded in 292 cases. The dataset includes 93,846 labelled ball contacts (8424 shots/24,254
passes/61,168 null). The mean duration of a lab session is 35 min (SD = 17), whereas the
mean duration of a field session is 73 min (SD = 38). The mean number of players of a
lab session is 4 (SD = 3). For field sessions, the mean number of players is 8 (SD = 4). The
maximum number of players in a recording session was 17.

3.2. Labelling

The ball contacts were labelled by trained experts. For the classification task, the labels
shot, pass and null were annotated. Hereby, a shot was defined as a kick directed towards
the goal, a pass as a kick towards a team mate. Any other ball contact, e.g., dribbling, is part
of the null class. In real world scenarios we can observe a high variation of the execution
of the labelled activities, for example due to differing kicking techniques (e.g., medial
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versus full instep kick) or distances (long versus short pass). Thus, we used finer grained
labelling of ball contacts for further analysis of the classification performance. All ball
contact types, a short description and the corresponding label for the classification task are
given in Table 1.

Table 1. Overview of the ball contact types, their definitions and their class affiliation for the three-class problem shot versus
pass versus null.

Ball Contact Type Description Class

none no ball contact, player is for example running or sprinting null
light contact small contact while player is not moving or during dribbling null
strong contact strong ball contact, e.g., bringing the ball forward during dribbling null

short pass medial short pass with the medial part of the foot pass
short pass other pass with another part of the foot than medial pass
long pass pass over longer distance pass

shot kick directed towards the goal shot

unknown player not visible in video excluded

3.3. Data Preprocessing

For synchronization of IMUs and video data, a characteristic synchronization move-
ment was performed with all sensors of one session simultaneously at the beginning and
the end of each data recording session. In addition, the whole session including the syn-
chronization movement was recorded by video. To perform the synchronization movement
all sensors were fixed to a rod. Consecutively, the rod was clapped to the ground three
times in a row inducing three clearly visible peaks in all accelerometer axes. A CNN
model was trained to detect the characteristic synchronization pattern of three consecutive
peaks based on the accelerometer signal. Details on the model architecture and model
parameters are given in Appendix A. If automatic synchronization failed, the distinctive
synchronization pattern was detected manually in the sensor signal. The corresponding
moment of the first clap in the video recordings was identified by visual inspection. The
time axis of the sensor data was interpolated. For this purpose, the sampling frequency
was estimated using the number of samples between the detected synchronization peaks
and the recording duration extracted from the videos. The result of the synchronization
was manually checked for all recordings by examination of the IMU signal at labelled shot
events. Subsequent to synchronization, all IMU signals were scaled between −1 and 1.

3.4. Segmentation

First, the data was split into a training and test set. The training set consists of 161 ses-
sions with 697 players, 1171 sensors and 81,165 labelled ball contacts (7362 shots/20,060
passes/53,743 null). For 223 players only data of one foot was recorded due to hardware
failure. The test set contains 20 sessions of 139 players, 209 sensors and 12,681 labelled
ball contacts with a class distribution comparable to the training set (1062 shots/4194
passes/7425 null class). For 69 players sensor data of only one foot is available because of
malfunctions of the sensor. Further, the test set can be divided into 10 sessions acquired
in a laboratory setting (lab data) and 10 sessions depicting real world samples recorded
during training or games (field data). For training the SVM and neural networks, windows
of fixed length were segmented around labelled ball contact events. Banos et al. [17] found
that the window size for HAR tasks should be at most 2 s. In Schuldhaus et al. [13], a
window size of 1 s was used. Thus, for training the SVM we used 1 s windows. For the
neural networks we compared training results for three different window lengths: 1 s, 1.5 s
and 2 s. As results were barely differing (see Appendix B), we chose 2 s windows in order
to retain information about previous motions.

Figure 2 depicts exemplary IMU data of all three classes. The examples illustrate that
ball contacts are clearly visible as peaks in the accelerometer and gyroscope signals. For the
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shot class example, sensor saturation is reached in the accelerometer data due to the strong
impact during ball contact. The last zero crossing of the gyroscope x-axis before ball contact
indicates the start of the leg acceleration phase of the kick [39]. For both, shot and pass,
the high acceleration of the leg in the sagittal plane is visible. The null class sample shows
a dribbling instance. As the distance between adjacent ball contacts can be in the range
of milliseconds, a window may contain multiple ball contacts. In the gyroscope data of
the null class example window, a gait pattern comparable to those explored in recent work
regarding gait analysis as [40] is noticeable. For training, only null class samples containing
labelled ball contacts were used. Hence, training did not comprise any general activities as
running, jumping or standing. This enables the classifier to learn the split between relevant,
hard to distinguish samples as ball contacts during dribbling versus passes.
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Figure 2. Exemplary IMU data for each class. Each ball contact (bc) is indicated by a vertical gray line. Sensor orientation is
shown in Figure 1a.

3.5. Adaptation, Optimization and Training of the SVM

For the comparison of the deep learning-based shot and pass classification to literature,
the SVM algorithm of [13] was implemented and trained on our dataset. The algorithm
comprises a peak detection algorithm, event leg classification, kick phase segmentation
and feature extraction step. As we perform the kick and pass detection on both legs sep-
arately, the identification of the event leg was neglected in our study. For classification,
Schuldhaus et al. [13] implemented a hierarchical architecture. In a first step, null class
dribbling instances are identified by peak detection. In the second step, a linear SVM classi-
fier is trained to distinguish shots and passes. Additional ball contact types as dribbling
contacts are not present in this processing step. In comparison to Schuldhaus et al. [13],
our real-world dataset contains a variety of different ball contact types belonging to the
null class. In real-world games we expect dribbling instances with higher speed. Those
ball contacts can have a high impact characterized by a peak in the sensor signal similar to
kicks. Thus, in our case a peak detection is not sufficient for the recognition of null class
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samples. As a consequence, we train the SVM algorithm on the three class problem shot
versus pass versus null class ball contacts. Kick phase segmentation and feature extraction
were performed as described in [13]. Following a biomechanically-driven definition, the
kick phase starts with the acceleration of the event leg and ends with the ball contact. To
identify the ball contact event, the maximum angular acceleration in the sagittal plane was
computed [41]. Afterwards, the last zero-crossing of the angular velocity in the sagittal
plane prior to ball contact was determined indicating the start of the leg acceleration [39].
For each accelerometer and gyroscope axis, the absolute sum of the signal during the
kick phase from the start of the leg acceleration to the ball contact was computed. The
resulting six features were utilized as input of the classifier [13]. Figure 3 shows histograms
and scatter plots for two exemplary features. The plot is constructed using shots, medial
passes and light ball contacts of two randomly selected lab sessions. The plots indicate
separability for samples characterized by equally high values for both features. In contrast,
the class affiliation of samples characterized by very low values for both features will be
hard to define based on the depicted features. Random under-sampling of the minority
classes was used to train on a balanced dataset. For the optimization of the cost parameter
C of the linear SVM, a 5-fold cross-validation was applied, where each data recording
session was either part of the training or validation set. For each fold, a grid search with
C ∈ {2N}, N ∈ {−10, . . . , 10} was conducted. The model achieving the best weighted
mean f1-score over all folds was selected (C = 32) and trained on the whole training dataset.
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Figure 3. Histograms and scatter plots for two exemplary features: The absolute sum of the accelerometer x-axis during the
kick phase (f1) and the absolute sum of the accelerometer y-axis during the kick phase (f2). Only shots, medial passes and
light ball contacts from 2 random laboratory training sessions are considered. The histograms are constructed with 25 bins
and show frequency density. In addition, the sum of the bars of each histogram is normalized and bars for different classes
are stacked.

3.6. Deep Learning Architectures

In the field of sensor-based HAR, deep learning methods recently gained a lot of
attention. According to Baloch et al. [42], the most common neural network architectures
for sensor based activity recognition are CNNs (40%), Recurrent Neural Nets (RNNs)
including LSTMs (30%) and hybrid models as convolutional LSTM models (15%) For
each of this network types we implemented a basic architecture for the shot and pass



Sensors 2021, 21, 3071 9 of 23

classification in football. From the kinetic and kinematic analysis of side-foot and instep
kicks in football we know that the two kicking techniques differ in foot speed and foot
rotation. In addition, a complex series of rotations is necessary to perform a side-foot
kick [39,43]. Thus, we use the segmented event windows including all 3 accelerometer
and all 3 gyroscope axes as input to the neural nets. To cope with the data imbalance, we
use random under-sampling of the majority classes (null and passes) during training. For
hyperparameter optimization, the optuna framework [44] was used applying Bayesian
optimization. Unpromising trials were pruned. Within each optimization trial, a 5-fold
cross-validation was applied. Samples of one session where either part of the training or
validation split. During model training, the batch-wise test f1-score is monitored. The
f1-score is an evaluation metric commonly applied for imbalanced data and is computed
as the harmonic mean of precision and recall as follows:

f1 = 2 · precision · recall
precision + recall

(1)

As commonly done for multiclass classification problems in HAR to account for class
imbalances, we report the weighted average of the f1-scores of all classes:

f̂1 =
∑c

i=1 wi f i
1

∑c
i=1 wi

, (2)

where c depicts the number of classes and wi the number of instances of class i. We
optimized for 500 trials. The objective function aims to maximize the mean of the weighted
f1-scores over all folds. The models were trained for 100 epochs using a batch size of 64.
In addition, we used early stopping with patience 40 and reduced the learning rate by a
factor of 0.2 if no improvement is seen over the last 20 epochs. The SGD optimizer was
used for all models.

3.6.1. 1d Convolutional Neural Net

First proposed in [45] in 1982, CNNs were frequently applied in the field of HAR today
due to their scale invariance and their ability to capture local dependencies [46]. A typical
CNN architecture consists of one or multiple convolutional layers using learnable filters
and nonlinear activation functions such as rectified linear units (ReLUs) for the extraction
of increasingly complex features. The manual feature engineering step as known from the
development of shallow algorithms is superseded [47]. After each convolution, pooling
layers are applied for down sampling of feature maps resulting in local translation invari-
ance [48]. Our proposed CNN consists of three convolutional blocks with ReLU activation
functions and max-pooling followed by a fully-connected layer and a softmax [49] output
for classification. An overview of all layers and corresponding model parameters is given
in Table 2. The search spaces for parameter optimization are summarized in Table 3.

Table 2. Overview of all layers and model parameters of the proposed CNN architecture. The output
shape is given for one batch.

Layer Type Hyperparameter Output Shape # of Parameters

1D Convolution filter1: 256, kernelsize: 3 (398, 256) 4864
Max-pooling poolsize: 2 (199, 256) 0
1D Convolution filter2 : 128, kernelsize: 3 (197, 128) 98,432
Dropout dropout1: 0.30228 (197, 128) 0
Max-pooling poolsize: 2 (98, 128) 0
1D Convolution filter3 : 16 , kernelsize: 3 (96, 16) 6160
Dropout dropout2: 0.03576 (96, 16) 0
Max-pooling poolsize: 2 (48, 16) 0
Fully-connected (768) 0
Dropout dropout3 : 0.43372 (768) 0
Dense (3) 2307
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Table 3. Hyperparameter, search space and optimization results for the CNN model.

Hyperparameter Sampling Search Space Result

filter1 categorical 2N , N ∈ {6, . . . , 9} 256
filter2 categorical 2N , N ∈ {4, . . . , 8} 128
filter3 categorical 2N , N ∈ {4, . . . , 8} 16
poolsize categorical ∈ {2, 3, 4, 5} 2
kernelsize categorical ∈ {2, 3, 4} 3
dropout1 log uniform distribution ∈ [0.01, 1) 0.30228
dropout2 log uniform distribution ∈ [0.01, 1) 0.03577
dropout3 log uniform distribution ∈ [0.01, 1) 0.43372
learning rate log uniform distribution ∈ [0.001, 0.1) 0.09996

3.6.2. Long Short Term Memory Network

LSTMs are a widely used type of RNNs. RNNs were developed to model sequential
data. Due to the vanishing and exploding gradient problem, this property is limited
to a short time [34]. To store and output information over longer time periods, LSTMs
were developed in 1997 having multiple memory cells with proprietary states [50]. The
most popular variant, the vanilla LSTM, consists of three gates, namely the input, forget
and output gate regulating to keep or reset the cell state [51]. Thus, general features
are identified while preserving temporal dependencies [52]. For LSTMs, the number of
trainable parameters is high compared to other deep learning architectures. As a result,
the tuning of LSTM parameters can be challenging [53]. We propose an architecture
with a single LSTM layer. Batch normalization was applied to improve convergence [54].
A dense layer with soft-max output was used for classification. Thereby, L1 and L2
kernel regularization was utilized. Table 4 shows all layers and the corresponding model
parameters of the lstm model. The optimized hyperparameters are summarized in Table 5.

Table 4. Overview and details of the LSTM architecture.The output shape is given for one batch.

Layer Type Hyperparameter Output Shape # of Parameters

LSTM units: 64 (64) 18,432
BatchNorm (64) 256
Dense (3) 195

Table 5. Hyperparameters, search space and optimization results for the LSTM model.

Hyperparameter Sampling Search Space Result

units categorical 2N , N ∈ {6, . . . , 9} 64
L1 regularizer log uniform distribution ∈ [0.0001, 0.1) 0.00013
L2 regularizer log uniform distribution ∈ [0.0001, 0.1) 0.00111
clipvalue log uniform distribution ∈ [0.1, 0.8) 0.19517
learning rate log uniform distribution ∈ [0.001, 0.1) 0.06955

3.6.3. Convolutional Lstm

To combine the advantages of both, convolutional and LSTM layers, hybrid models
were developed. The convolutional layers act as feature extractors. The received abstract
representation of the input raw signal is consecutively modelled by recurrent layers [55].
This combination outperformed previous results in video-based HAR [56]. Instead of using
a time-distributed convolutional layer prior to the LSTM layer, Shi et al. [57] developed the
convLSTM, where convolutions are applied in state-to-state and input-to-state transitions.
For the shot and pass classification by a convLSTM model, each sample is split into seg-
ments. Thereby, the number of segments was optimized within the optuna framework [44].
We added dropout prior to a fully-connected layer. An output soft-max layer was used for
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classification. All layers and model parameters of the convLSTM model are depicted in
Table 6. A summary of all tuned model hyperparameters is given in Table 7.

Table 6. Overview and details of the convLSTM architecture.The output shape is given for one batch.

Layer Type Hyperparameter Output Shape # of Parameters

convLSTM2D filter1: 128, kernelsize: 3 (1, 48, 128) 206,336
Dropout dropout: 0.22620 (1, 48, 128) 0
Fully-connected (6144) 0
Dense (3) 18,435

Table 7. Model parameters and hyperparameters, search space and optimization results for the
convLSTM model.

Hyperparameter Sampling Search Space Result

filter categorical 2N , N ∈ {4, . . . , 8} 128
kernelsize categorical ∈ {2, 3, 4} 3
dropout log uniform distribution ∈ [0.01, 1) 0.22620
num segments categorical ∈ {2, 4, 5, 8, 10} 8
learning rate log uniform distribution ∈ [0.001, 0.1) 0.09403

3.7. Evaluation Methods

For model evaluation, the SVM and the optimized neural networks were tested on
the test dataset consisting of 10 laboratory and 10 field sessions. Regarding the real world
applicability, we evaluated three different scenarios. Thereby, the scenarios differ by testing
method (segmented samples versus moving window) and data type (lab data versus field
data). Our first evaluation scenario used segmented 2 s windows around labelled ball
contacts of the lab test data. Hereafter we will refer to this approach as segmented_lab.
In comparison to the first approach, the evaluation of the second and third approach was
performed on the whole data stream. For this purpose, a moving window with a length
of 2 s and an overlap of 25% was implemented. To reduce the number of windows to be
classified, low activity windows are rejected in a previous peak detection step adapted from
Schuldhaus et al. [13]. Therefore, the gyroscope signal was processed by a Butterworth
high-pass filter with an order of 2 and a cutoff frequency of 20Hz. Then, the signal
magnitude vector (smv) of all filtered gyroscope axes is computed and peaks were detected
using the peakUtils library [58,59]. The minimum distance between peaks was set to
300 samples (1.5 s) and the threshold was defined as 0.3 ∗max(smv) with max(smv) being
the absolute maximum of the smv in the respective window. Thereby, the Butterworth filter
parameters and peak detection parameters were optimized via grid search on 20 randomly
selected data recordings from the training dataset by maximizing the specificity with a
fixed sensitivity of 100%. For shot and pass candidates, a window of 2 s around the peak
was segmented and the raw accelerometer and gyroscope data was used as an input for
the classifiers. In order to deal with closely successive ball contacts of the same player,
the ground truth label was given by the label of a 1 s window around the detected peak.
As the event is located in the center of a segmented window and an overlap of 25% is
used, the closest distance of detectable ball contact events is 0.5 s. Within the fastest 5%
of consecutive dribbling and pass or shot activities, the mean distance of events is 0.75 s.
Smaller distances of around 0.3 s can be observed between dribbling ball contacts. As we do
not differentiate dribbling ball contacts from different null class samples, the identification
of all ball contacts during dribbling is not necessary. If the label of a window is unobserved,
the window was excluded from the evaluation. The described moving window procedure
was applied to the lab data for the second evaluation approach (window_lab) and to the
field data for the third evaluation approach (window_field).
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For the comparison between the SVM performance for full-instep and side-foot kick
detection from Schuldhaus et al. [13] and the general shot and pass detection in our
approach, the sensitivity of the three classes measuring the proportion of correctly identified
samples is computed. The sensitivity of class c is given as:

sensitivityc =
TPc

TPc + FNc
, (3)

where the true positives of class c (TPc) are the number of correctly identified samples
belonging to class c and the false negatives of class c (FNc) denote the number of samples
erroneously predicted as class c. As a performance measure for the comparison of the SVM
to the deep learning models we compute the weighted f1-score as given in Equation (2).
To get deeper insights into the confounding factors of the shot and pass detection for lab
and field data for the moving window evaluation, we consider the finer grained labels
summarized in Table 1. We use an adaptation of the confusion matrix usually showing
predictions and true class labels. In our case, we give the finer grained true ball contact
along with the true class label. Furthermore, we normalize the columns (true ball contacts)
of the confusion matrix. A schematic overview of this visualization is given in Table 8.
There are two main reasons for merging different ball contact types into the classes null and
pass instead of considering a finer-grained classification problem. First, some ball contact
types such as long passes are rare. Thus, a class affiliation based on ball contact types will
amplify the imbalance of the problem. Second, the differentiation between different ball
contact types was rule-based. A measurable differentiation should be explored in future
work. As we did not assess the intra-labeller agreement for ball contact types, the easier
distinguishable class labels were used for classification.

Table 8. Example of our adaptation of the normalized confusion matrix to show classification
performance for detailed ball contact labels (bcs). Pc,b denotes predictions of class c of instances of
the true ball contact b. For orientation, we give the true class on the bottom. Light color represents
low values, dark color represents high values. For an optimal classifier PA,1, PA,2, PB,3 and PC,4 are
one and all other cells contain zeros.

True ball contact
bc 1 bc 2 bc 3 bc 4

Pr
ed

ic
ti

on class A PA,1 PA,2 PA,3 PA,4
class B PB,1 PB,2 PB,3 PB,4
class C PC,1 PC,2 PC,3 PC,4

class A class B class c
True class

4. Results

In total, the segmented_lab approach evaluated 3503 labelled ball contacts. For the
window_lab evaluation, 104,660 windows were already rejected by the peak detection based
candidate selection algorithm. 6883 windows (around 6%) were identified as candidates
and further processed by the classification models. No shots or passes were missed by
the peak detection algorithm. The identified candidates contained 1777 labelled ball
contacts. Roughly half of the labelled null class ball contacts were filtered out by the peak
detection algorithm. In the window_field evaluation approach, 38,877 peaks were detected
(around 7%), whereas the remaining 501,868 windows were rejected. Event candidates
contained 3454 from the 9178 labelled ball contact instances. Again, all labelled shots and
passes were identified as candidates by the peak detection.

Table 9 shows the sensitivity for each class achieved by the SVM classifier for our three
evaluation approaches. In addition, the results reported by Schuldhaus et al. [13] are given
for comparison.
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Table 9. Comparison of the classification result from Schuldhaus et al. [13] and our own evaluation approaches seg-
mented_lab, window_lab and window_field for the SVM classifier. Schuldhaus et al. [13] classified full-instep versus
side-foot kicks (marked with *) on segmented laboratory data, whereas our approaches classify shots and passes in general.
In segmented_lab , segmented events extracted from lab data are used for evaluation. window_lab and window_field apply
moving windows, peak detection for candidate selection and classification to laboratory and field data, respectively. In
accordance with Schuldhaus et al. [13] we reported the class specific sensitivity scores.

Class Label Schuldhaus et al. [13] Segmented_Low Window_Low Window_High

Null - 93.3% 91.7% 83.2%
Pass (Side-Foot *) 97.9% 21.7% 23.5% 20.9%
Shot (Full-Instep *) 95.6% 38.8% 37.9% 36.0%

A summary of the performance of the neural nets and the SVM for all evaluation
approaches is given in Table 10. The weighted f1-scores for training, segmented_lab,
window_lab and window_field are reported. The CNN architecture achieves the highest
f1-score throughout all experiments with a peak weighted f1-score of 0.928 in the win-
dow_field evaluation. In all experiments, the deep learning approaches outperform the
SVM classifier. The training score value depicts the mean weighted f1-score over all cross-
validation folds and thus can not be directly compared to the evaluation results. Due to the
changed distribution of classes in the moving window scenarios compared to training and
the segmented_lab evaluation, the f1-scores of the testing scenarios are frequently higher
than the training scores.

Table 10. Results of the shot and pass classification. The table reports the weighted f1-score for all
architectures for training and three evaluation methods. segmented_lab uses segmented windows
of laboratory data for evaluation. In window_lab and window_field, a moving window is used
for segmentation. For each window a peak detection algorithm identifies event candidates. Only
identified event candidates are used for the consecutive classification of shots and passes. window_lab
uses low complexity laboratory data, whereas window_field evaluated on high complexity data from
training and competition. The best f1-score of each experiment is highlighted in bold.

Training Segmented_Lab Window_Lab Window_Field

SVM 0.648 0.656 0.807 0.815
CNN 0.887 0.923 0.912 0.928
LSTM 0.830 0.890 0.840 0.777
convLSTM 0.857 0.910 0.897 0.869

To illustrate the classification performance, Figure 4 shows the classification result
of all models on an example signal. The 20 s excerpt was recorded during a laboratory
session. It includes two passes, a shot and standing as well as running sequences. The peak
detection identified 6 event candidates and rejected around 10 s of the sequence. The CNN
and convLSTM model could correctly detect both passes and the shot. In contrast, the LSTM
missed the second pass and the SVM missed both passes detecting only the shot event.

To understand the influence of different ball contacts on the classification performance,
confusion matrices as explained in Section 3.7 for the window_lab and window_field
evaluation are depicted in Figures 5 and 6, respectively. In contrast to classical confusion
matrices, we subdivide the true classes into labelled ball contacts. For both depicted
evaluation methods, the SVM shows a tendency to predict the null class in the majority
of windows of all classes. For the deep learning methods, for most instances the highest
proportion of a ball contact is predicted to be in its true class. Exceptions are long passes for
the LSTM model for both evaluation methods, short passes ambiguous for the LSTM in the
window_lab evaluation and shots for the CNN classifier in the window_field evaluation.
In general, a small proportion of null class samples is predicted to be a pass but almost no
null class instances are confused with a shot. From the different ball contacts belonging
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to the null class, strong contacts are most likely confounded with a pass. Altogether, the
CNN shows superior performance for the classification of shots and passes. For long and
ambiguous range passes, especially in the window_field evaluation, convLSTM and LSTM
tend to predict a shot instead of a pass. In exchange, they confound less shots with a pass
compared to the CNN. In general, the classification performance of shots is significantly
smaller for the window_field evaluation than for the window_lab evaluation approach.
The worst performance of shot classification in the window_field evaluation is reported for
the CNN, where 48% of the shots are correctly identified.

−1

0

1

L
in

ea
r

a
cc

el
er

a
ti

o
n

(s
ca

le
d

)

−1

0

1

A
n

g
u

la
r

v
el

o
ci

ty
(s

ca
le

d
)

x-axis y-axis z-axis

null
pass
shot

T
ru

e

435 440 445 450 455

null
pass
shot

C
N

N

435 440 445 450 455

null
pass
shot

co
n
v
L

S
T

M

435 440 445 450 455

null
pass
shot

L
S

T
M

435 440 445 450 455

Time in seconds

null
pass
shot

S
V

M

Figure 4. Exemplary accelerometer and gyroscope data excerpt from a laboratory session. The upper two plots show the
accelerometer and gyroscope data. Below, the true class label and the predictions by the respective model are shown. At the
beginning of the exercise sequence, the player is standing. He passes the ball (second 436) and sprints towards the goal.
After receiving the ball back from another player (second 439), he dribbles towards the goal and shots (second 440.5). He
runs to a cone, where he is standing until second 451. Then, he sprints towards the ball and passes it to another player at
second 453. The peak detection algorithm identified 6 event candidates.
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Figure 5. Classification performance of all models for the window_lab evaluation using a moving
window and candidate selection on laboratory data. A detailed explanation of the way of presentation
can be found in Section 3.7. True and predicted classes are given on the bottom and left, respectively.
Finer grained true ball contacts are shown on top. The given values are normalized over the true ball
contact labels. Thus, the greatest possible value is one, the smallest possible value is zero.
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Figure 6. Classification performance of all models for the window_field evaluation using a moving
window and candidate selection on laboratory data. A detailed explanation of the way of presentation
can be found in Section 3.7. True and predicted classes are given on the bottom and left, respectively.
Finer grained true ball contacts are shown on top. The given values are normalized over the true
ball contact labels resulting in the greatest possible value being one and the smallest possible value
being zero.

5. Discussion
5.1. Peak Detection for Candidate Selection

We proposed a candidate selection method adapted from [13] in order to minimize
the computational time by reducing the number of null class samples that need to be
classified. For both evaluation methods a considerable amount of windows, namely 94%
for the evaluation with laboratory data (window_lab) and 93% for the evaluation with
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real-world data (window_field), could be rejected prior to classification. The remaining
windows contain 25.8% and 8.9% labelled ball contacts, respectively. In our study, the
main proportion of windows corresponds to unlabelled actions as running or jumping.
The classification of those samples is expected to be easy to distinguish from passes and
shots as they are not characterized by a ball contact. We adapted the peak detection
parameters using the training dataset to assure that, no pass or shot is missed. In practice,
it could be intentional to reject passes and shots with very low impact assuming they
indicate unintentional activities. The peak detection parameters can easily be adapted
accordingly. Even though a more sophisticated candidate selection could be developed, the
peak detection worked very well for shot and pass detection. In [8], a similar approach was
successfully used for impact detection in beach volleyball indicating the applicability of the
proposed method for disciplines as tennis, badminton or squash, where the sport-specific
movements are evenly characterized by high impact events.

5.2. Svm Performance from Laboratory to Real-World Scenarios

In order to compare the performance of a common shallow classifier established for
laboratory settings, we adapted the SVM from Schuldhaus et al. [13]. In the original
publication, side-foot kicks and full-instep kicks were classified. The model was trained on
segmented data from controlled exercises recorded in a laboratory setting. A hierarchical
approach was implemented. All null class samples were rejected via peak detection. Thus,
a two-class classification problem was evaluated. The SVM achieved high sensitivities of
97.9% and 95.6% for side-foot kicks and full-instep kicks, respectively [13]. We assumed
that the majority of passes in real-world scenarios resembles the side-foot kicks, whereas
shots are commonly carried out with the instep. Hence, we used the same features for
classification of shots and passes in general. As we included a bigger variety of null class
samples, peak detection was not sufficient to reject all null class instances. In consequence,
a more complex three class problem needs to be solved. To ensure comparability to [13],
in the segmented_lab evaluation we evaluate on segmented samples of laboratory data.
Whereas a high sensitivity of 93.3% is reported for the null class, very poor sensitivity
is observed for shots and passes (38.8% and 21.7%, respectively). Similar results are
reported for the window_lab and window_field evaluation approaches with slightly worse
performance for window_field. The adaptations of the confusion matrices for window_lab
and window_field show that despite the training with balanced class distributions, the
SVM predicts a null class sample over proportionally often. Even for the short pass medial,
the ball contact label closest to side-foot kicks with regards to technique and contact point
of ball and foot, only 26% of samples in case of window_lab and 21% of samples in case of
window_field are correctly identified as pass. The chosen features are not discriminative
for the given three-class problem, highlighting the importance of domain-knowledge for
feature-based approaches. In the scope of this study we did not assess discriminatory
power of different features. The applicability on real-world data for the original two-class
problem is not evaluated in the present study.

5.3. Deep Learning-Based Classification in Real-World Scenarios

In the following paragraph, the potential of different neural network types for real-
world activity recognition in sports is discussed. In comparison to the SVM, the achieved
f1-scores show the general feasibility of the classification task. Overall, the best performance
is reported for the CNN architecture. Uncommonly, the reported f1-scores for all three
evaluation scenarios are higher than for the model training. This can be explained by the
changed distribution of null class samples, especially in the window_lab and window_field
case, where additional unlabelled null class samples are included. Moreover, the weighted
f1-score takes class imbalances into account assigning a higher weight to the null class
samples. Thus, it is important to examine the results from Figures 5 and 6 to gain insights
into the classification performance for the shot and pass classes. The overall distribution
confirms the general ability of all deep learning models to correctly identify shots and
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passes. Thereby, the strength of the impact caused by the ball contact seems to play an
important role. This would explain the low number of shot predictions for null class
samples and the difficulty to correctly assign long passes to the pass class while still
achieving a high sensitivity for the shots.

We inspected the corresponding video footage for a randomly selected subset of
wrongly classified instances. We observed that a high proportion of the underlying actions
of misclassified null class samples can be described as agile containing sudden changes
of direction or speed, defensive cutting movements or tackling situations with contact to
another player. Those movements are expected to be more common in real-world scenarios
than controlled exercises. For shots we can observe a significant drop in sensitivity between
the window_lab and and window_field evaluation from 75% to only 45% for the CNN
architecture. The manual inspection of the videos showed that especially short distance
shots, low intensity shots, medial kicks directed towards the goal and volleys are prune
to classification errors. We conclude that such instances are more likely to appear in the
uncontrolled environment of real-world acquisitions. Future studies should investigate the
influence of agile movements without ball contacts in greater detail. In this context, sensor
information with regards to upper body movement is particularly interesting. Furthermore,
the deep learning-based models are incapable of identifying long passes as pass and
simultaneously distinguishing low intensity shots from passes reliably. The division of
long and short passes during labelling was not based on a specific distance, but rather
motivated by different kicking techniques. Still, a clear division of classes was difficult.
Measuring the labelling agreement between multiple annotators gives valuable insights,
but was outside the scope of this study.

All experiments conducted in this study were performed off-line. However, real-
time performance assessment can be important in training and game scenarios. In this
work, we showed that the integration of a peak detection-based candidate selection can
be successfully applied to further reduce computational complexity. Furthermore, we
limited the depth of the models to keep computational effort manageable. For the CNN,
3 convolutional layers were used. The LSTM and convLSTM architecture consist of a
single LSTM or convLSTM layer. Comparable architectures were already adopted on
mobile devices and used for real-time predictions indicating the feasibility of executing our
trained models on wearable devices [35,60]. However, further work is needed to enable
incremental online learning [61]. Thereby, the challenge of unsupervised HAR including
the recognition of unseen activities needs to be addressed in future work [62].

5.4. General Aspects for Activity Recognition in Real-World Scenarios

In literature, the general feasibility of sensor-based activity recognition in the field
of sports was shown in various areas for laboratory environments. However, our study
indicates that the shift to real-world scenarios is not trivial and needs to be performed
carefully. A slight change of the task definition adapted to real-world needs can lead to
undiscriminating features. Due to high variations in technique, intensity, distances and
the influence of opponents the task gains additional complexity. This already played a
role in laboratory environments when kicking technique was not specified for otherwise
controlled exercises. In our study, different age groups from kids over adolescents to
grown ups were considered. Only a small number of female players are included. The
influence of age, weight, height, gender or skills on classification performance should be
investigated in future work. Moreover, the personalization of the models for age groups or
even individuals is an interesting direction for future work. In contrast to existing studies,
we used a large database for the training of the deep neural networks. This enables the
exploration of transfer learning in the field of activity recognition in sports in future work.
By transfer learning techniques, models trained in one domain can be fine-tuned to operate
on data of similar domains leading to high classification accuracies while simultaneously
reducing training time. In other application areas, transfer learning for activity recognition
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is already a vivid field of research [62]. In addition, it was recently applied to develop
personalized HAR models [12].

6. Conclusions

In this study we investigated the potential of an SVM model from literature established
in a laboratory setting for the detection of shots and passes under real-world conditions.
Instead of the published full-instep and side-kick classification, we aimed to identify shots
and passes regardless their kicking technique. Moreover, we developed different types of
deep learning models, namely a CNN, a convLSTM and a LSTM model to explore their po-
tential for shot and pass detection in real-world conditions. For this purpose, we recorded
IMU data from over 800 football players in laboratory and real-world settings. For model
evaluation, we consider three different scenarios to model different stages of complexity.
We evaluated the models on segmented samples of ball contact instances from laboratory
data (segmented_lab). For the second and third approach, we introduced a sliding window
approach and adapted a peak detection method from literature as candidate selection prior
to classification. This was applied on laboratory data (window_lab) and real-world data
(window_field). The results demonstrate that the shallow SVM architecture is not able to
distinguish passes and shots in all three evaluation scenarios. This shows that the features
are not discriminative for the classification of shots, passes and other ball contacts. All
deep learning models outperformed the SVM model and show the feasibility of real-world
activity recognition in sports for tasks of practical relevance. Thereby, the best perfor-
mance could be achieved by the CNN model with a mean f1-score of 92.8% in training and
game scenarios. Our study reveals important considerations for the assessment of existing
laboratory studies regarding their transferability to real world scenarios. In particular, it
highlights the importance of reevaluating the discriminative power of shallow features
developed under laboratory conditions for real-world activity recognition. It shows that
scientists who aim to set up studies with relevance for real-world applications should care-
fully select an appropriate dataset and evaluation approach. Moreover, we illustrated that
in contrast to feature-based methods, deep neural nets can learn high-level representations
of complex activities with variations in execution. Thus, deep-learning-based methods for
real-world HAR in sports should be explored in more detail in future work.
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Abbreviations

The following abbreviations are used in this manuscript:
SVM Support Vector Machine
CNN Convolutional Neural Network
LSTM Long Short Term Memory
BLSTM Bi-directional LSTM
convLSTM convolutional LSTM
IMU Inertial Measurement Unit
HAR Human Activity Recognition
GPS Global Positioning System
RF Random Forest
RNN Recurrent Neural Network
ReLU Rectified Linear Unit
smv signal magnitude vector

Appendix A. CNN Architecture for Synchronization

Table A1. Overview of all layers and model parameters of the proposed CNN architecture for sensor
and video data synchronization. The output shape is given for one batch.

Layer Type Hyperparameter Output Shape # of Parameters

1D Convolution filters: 50, kernelsize: 6 (39,550) 950
Max-pooling poolsize: 3, strides: 3 (13,150) 0
Fully-connected (6550) 0
Dense (60) 393,060
Dropout dropout: 0.2 (60) 0
Dense (2) 122

Appendix B. Window Size Experiment

Table A2. Training results for different deep learning architectures and varying window sizes
between one and two seconds. All models were trained and optimized as described in Section 3.

Windowsize in Samples
Architecture 200 300 400

CNN 0.884 0.893 0.887
LSTM 0.867 0.860 0.830
convLSTM 0.852 0.853 0.857

References
1. Kelly, H. Smart Sports Equipment Turns Phones into Coaches. Available online: https://edition.cnn.com/2014/11/28/tech/

innovation/smart-sports-equipment/index.html (accessed on 22 January 2021).
2. Aroganam, G.; Manivannan, N.; Harrison, D. Review on Wearable Technology Sensors Used in Consumer Sport Applications.

Sensors 2019, 19, 1983. [CrossRef]
3. Rawashdeh, S.A.; Rafeldt, D.A.; Uhl, T.L. Wearable IMU for shoulder injury prevention in overhead sports. Sensors 2016, 16, 1847.

[CrossRef] [PubMed]
4. Shahar, N.; Ghazali, N.F.; As’Ari, M.A.; Swee, T.T. Wearable Inertial Sensor for Human Activity Recognition in Field Hockey:

Influence of Sensor Combination and Sensor Location. J. Phys. Conf. Ser. 2020, 1529, 022015. [CrossRef]
5. Nguyen, L.N.N.; Rodríguez-Martín, D.; Català, A.; Pérez-López, C.; Samà, A.; Cavallaro, A. Basketball activity recognition using

wearable inertial measurement units. In Proceedings of the 16th International Conference on Human Computer Interaction,
Vilanova i la Geltru, Spain, 7–9 September 2015. [CrossRef]

6. Cust, E.E.; Sweeting, A.J.; Ball, K.; Robertson, S. Machine and deep learning for sport-specific movement recognition: A systematic
review of model development and performance. J. Sport. Sci. 2019, 37, 568–600. [CrossRef] [PubMed]

7. Mitchell, E.; Monaghan, D.; O’Connor, N.E. Classification of sporting activities using smartphone accelerometers. Sensors 2013,
13, 5317–5337. [CrossRef] [PubMed]

https://edition.cnn.com/2014/11/28/tech/innovation/smart-sports-equipment/index.html
https://edition.cnn.com/2014/11/28/tech/innovation/smart-sports-equipment/index.html
http://doi.org/10.3390/s19091983
http://dx.doi.org/10.3390/s16111847
http://www.ncbi.nlm.nih.gov/pubmed/27827880
http://dx.doi.org/10.1088/1742-6596/1529/2/022015
http://dx.doi.org/10.1145/2829875.2829930
http://dx.doi.org/10.1080/02640414.2018.1521769
http://www.ncbi.nlm.nih.gov/pubmed/30307362
http://dx.doi.org/10.3390/s130405317
http://www.ncbi.nlm.nih.gov/pubmed/23604031


Sensors 2021, 21, 3071 21 of 23

8. Kautz, T.; Groh, B.H.; Hannink, J.; Jensen, U.; Strubberg, H.; Eskofier, B.M. Activity recognition in beach volleyball using a
Deep Convolutional Neural Network: Leveraging the potential of Deep Learning in sports. Data Min. Knowl. Discov. 2017,
31, 1678–1705. [CrossRef]

9. Brock, H.; Ohgi, Y.; Lee, J. Learning to judge like a human: Convolutional networks for classification of ski jumping errors. In
Proceedings of the 2017 ACM International Symposium on Wearable Computers; Association for Computing Machinery: Maui, Hawaii,
2017; pp. 106–113. [CrossRef]

10. Jiao, L.; Bie, R.; Wu, H.; Wei, Y.; Ma, J.; Umek, A.; Kos, A. Golf swing classification with multiple deep convolutional neural
networks. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718802186. [CrossRef]

11. Minh Dang, L.; Min, K.; Wang, H.; Jalil Piran, M.; Hee Lee, C.; Moon, H. Sensor-based and vision-based human activity
recognition: A comprehensive survey. Pattern Recognit. 2020, 108, 107561. [CrossRef]

12. Fu, Z.; He, X.; Wang, E.; Huo, J.; Huang, J.; Wu, D. Personalized Human Activity Recognition Based on Integrated Wearable
Sensor and Transfer Learning. Sensors 2021, 21, 885. [CrossRef]

13. Schuldhaus, D.; Jakob, C.; Zwick, C.; Koerger, H.; Eskofier, B.M. Your personal movie producer: Generating highlight videos in
soccer using wearables. In Proceedings of the 2016 ACM International Symposium on Wearable Computers; Association for Computing
Machinery: Heidelberg, Germany, 2016; pp. 80–83. [CrossRef]

14. McNamara, D.J.; Gabbett, T.J.; Chapman, P.; Naughton, G.; Farhart, P. The validity of microsensors to automatically detect
bowling events and counts in cricket fast bowlers. Int. J. Sport. Physiol. Perform. 2015, 10, 71–75. [CrossRef]

15. Palacios-Huerta, I. Structural changes during a century of the world’s most popular sport. Stat. Methods Appl. 2004, 13, 241–258.
[CrossRef]

16. Lago-Peñas, C.; Lago-Ballesteros, J.; Rey, E. Differences in performance indicators between winning and losing teams in the UEFA
Champions League. J. Hum. Kinet. 2011, 27, 135–146. [CrossRef]

17. Banos, O.; Galvez, J.M.; Damas, M.; Pomares, H.; Rojas, I. Window size impact in human activity recognition. Sensors 2014,
14, 6474–6499. [CrossRef] [PubMed]

18. Kalkbrenner, C.; Stark, P.; Kouemou, G.; Algorri, M.; Brucher, R. Sleep monitoring using body sounds and motion tracking.
In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
Chicago, IL, USA, 26–30 August 2014; pp. 6941–6944. [CrossRef]

19. Haescher, M.; Trimpop, J.; Matthies, D.J.C.; Bieber, G.; Urban, B.; Kirste, T. aHead: Considering the Head Position in a Multi-
sensory Setup of Wearables to Recognize Everyday Activities with Intelligent Sensor Fusions. In Human-Computer Interaction:
Interaction Technologies; Kurosu, M., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 741–752.

20. Braunagel, C.; Kasneci, E.; Stolzmann, W.; Rosenstiel, W. Driver-Activity Recognition in the Context of Conditionally Autonomous
Driving. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Canary Islands,
Spain, 15–18 September 2015; pp. 1652–1657. [CrossRef]

21. Mukherjee, D.; Mondal, R.; Singh, P.K.; Sarkar, R.; Bhattacharjee, D. EnsemConvNet: A deep learning approach for human
activity recognition using smartphone sensors for healthcare applications. Multimed. Tools Appl. 2020, 79, 31663–31690. [CrossRef]

22. Hsu, Y.L.; Yang, S.C.; Chang, H.C.; Lai, H.C. Human Daily and Sport Activity Recognition Using a Wearable Inertial Sensor
Network. IEEE Access 2018, 6, 31715–31728. [CrossRef]

23. Bianchi, V.; Bassoli, M.; Lombardo, G.; Fornacciari, P.; Mordonini, M.; De Munari, I. IoT Wearable Sensor and Deep Learning: An
Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment. IEEE Internet Things J. 2019,
6, 8553–8562. [CrossRef]

24. Du, Y.; Lim, Y.; Tan, Y. A novel human activity recognition and prediction in smart home based on interaction. Sensors 2019,
19, 4474. [CrossRef] [PubMed]

25. Xing, Y.; Lv, C.; Wang, H.; Cao, D.; Velenis, E.; Wang, F.Y. Driver activity recognition for intelligent vehicles: A deep learning
approach. IEEE Trans. Veh. Technol. 2019, 68, 5379–5390. [CrossRef]

26. Altun, K.; Barshan, B.; Tunçel, O. Comparative study on classifying human activities with miniature inertial and magnetic sensors.
Pattern Recognit. 2010, 43, 3605–3620. [CrossRef]

27. Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends supporting the in-field use of wearable inertial sensors for sport
performance evaluation: A systematic review. Sensors 2018, 18, 873. [CrossRef] [PubMed]

28. Kelly, D.; Coughlan, G.F.; Green, B.S.; Caulfield, B. Automatic detection of collisions in elite level rugby union using a wearable
sensing device. Sport. Eng. 2012, 15, 81–92. [CrossRef]

29. Salman, M.; Qaisar, S.; Qamar, A.M. Classification and legality analysis of bowling action in the game of cricket. Data Min.
Knowl. Discov. 2017, 31, 1706–1734. [CrossRef]

30. Chawla, S.; Estephan, J.; Gudmundsson, J.; Horton, M. Classification of passes in football matches using spatiotemporal data.
ACM Trans. Spat. Algorithms Syst. 2017, 3. [CrossRef]

31. Kim, W.; Kim, M. Soccer kick detection using a wearable sensor. In Proceedings of the International Conference on Information
and Communication Technology Convergence, Jeju Island, Korea, 19–21 October 2016; pp. 1207–1209. [CrossRef]

32. Chakma, A.; Md Faridee, A.Z.; Roy, N.; Hossain, H.M.S. Shoot Like Ronaldo: Predict Soccer Penalty Outcome with Wearables.
In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), Austin, TX, USA, 23–27 March 2020; pp. 1–6. [CrossRef]

http://dx.doi.org/10.1007/s10618-017-0495-0
http://dx.doi.org/10.1145/3123021.3123038
http://dx.doi.org/10.1177/1550147718802186
http://dx.doi.org/10.1016/j.patcog.2020.107561
http://dx.doi.org/10.3390/s21030885
http://dx.doi.org/10.1145/2971763.2971772
http://dx.doi.org/10.1123/ijspp.2014-0062
http://dx.doi.org/10.1007/s10260-004-0093-3
http://dx.doi.org/10.2478/v10078-011-0011-3
http://dx.doi.org/10.3390/s140406474
http://www.ncbi.nlm.nih.gov/pubmed/24721766
http://dx.doi.org/10.1109/EMBC.2014.6945224
http://dx.doi.org/10.1109/ITSC.2015.268
http://dx.doi.org/10.1007/s11042-020-09537-7
http://dx.doi.org/10.1109/ACCESS.2018.2839766
http://dx.doi.org/10.1109/JIOT.2019.2920283
http://dx.doi.org/10.3390/s19204474
http://www.ncbi.nlm.nih.gov/pubmed/31619005
http://dx.doi.org/10.1109/TVT.2019.2908425
http://dx.doi.org/10.1016/j.patcog.2010.04.019
http://dx.doi.org/10.3390/s18030873
http://www.ncbi.nlm.nih.gov/pubmed/29543747
http://dx.doi.org/10.1007/s12283-012-0088-5
http://dx.doi.org/10.1007/s10618-017-0511-4
http://dx.doi.org/10.1145/3105576
http://dx.doi.org/10.1109/ICTC.2016.7763408
http://dx.doi.org/10.1109/percomworkshops48775.2020.9156244


Sensors 2021, 21, 3071 22 of 23

33. Hao, K. We Analyzed 16,625 Papers to Figure out Where AI is Headed Next. Available online: https://www.technologyreview.
com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/ (accessed on 25 January 2021).

34. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
35. Lane, N.D.; Georgiev, P. Can Deep Learning Revolutionize Mobile Sensing? In Proceedings of the 16th International Workshop

on Mobile Computing Systems and Applications; Association for Computing Machinery: New York, NY, USA, 2015; pp. 117–122.
[CrossRef]

36. Rassem, A.; El-Beltagy, M.; Saleh, M. Cross-Country Skiing Gears Classification Using Deep Learning. Available online:
https://arxiv.org/abs/1706.08924 (accessed on 27 April 2021).

37. Anand, A.; Sharma, M.; Srivastava, R.; Kaligounder, L.; Prakash, D. Wearable motion sensor based analysis of swing sports.
In Proceedings of the 16th IEEE International Conference on Machine Learning and Applications (ICML); Chen, X., Luo, B., Luo, F.,
Palade, V., Wani, M.A., Eds.; IEEE: Cancun, Mexico, 2017; pp. 261–267. [CrossRef]

38. Tabrizi, S.S.; Pashazadeh, S.; Javani, V. Comparative Study of Table Tennis Forehand Strokes Classification Using Deep Learning
and SVM. IEEE Sens. J. 2020, 20, 13552–13561. [CrossRef]

39. Nunome, H.; Asai, T.; Ikegami, Y.; Sakurai, S. Three-dimensional kinetic analysis of side-foot and instep soccer kicks. Med. Sci.
Sport. Exerc. 2002, 34, 2028–2036. [CrossRef] [PubMed]

40. Nguyen, A.; Roth, N.; Ghassemi, N.H.; Hannink, J.; Seel, T.; Klucken, J.; Gassner, H.; Eskofier, B.M. Development and clinical
validation of inertial sensor-based gait-clustering methods in Parkinson’s disease. J. Neuroeng. Rehabil. 2019, 16, 77. [CrossRef]

41. Nunome, H.; Lake, M.; Georgakis, A.; Stergioulas, L.K. Impact phase kinematics of instep kicking in soccer. J. Sport. Sci. 2006,
24, 11–22. [CrossRef]

42. Baloch, Z.; Shaikh, F.K.; Unar, M.A. Deep Architectures for Human Activity Recognition using Sensors. 3C Tecnol. Glosas
Innovación Apl. Pyme 2019, 14–35. [CrossRef]

43. Levanon, J.; Dapena, J. Comparison of the kinematics of the full-instep and pass kicks in soccer. Med. Sci. Sport. Exerc. 1998,
30, 917–927.

44. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK,
USA, 3–7 August 2019; pp. 2623–2631. [CrossRef]

45. Fukushima, K.; Miyake, S. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recogni-
tion. Competition and Cooperation in Neural Nets; Amari, S.i., Arbib, M.A., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg,
Germany, 1982; pp. 267–285.

46. Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional Neural Networks for Human Activity
Recognition Using Multi-location Wearable Sensors. In Proceedings of the 6th International Conference on Mobile Computing,
Applications and Services, Austin, TX, USA, 6–7 November 2014; pp. 197–205. [CrossRef]

47. Ronao, C.A.; Cho, S.B. Deep convolutional neural networks for human activity recognition with smartphone sensors.
Neural Inf. Process. 2015, 46–53. [CrossRef]

48. Boureau, Y.L.; Ponce, J.; LeCun, Y. A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th
International Conference on Machine Learning; Omnipress: Haifa, Israel, 2010; pp. 111–118.

49. Bridle, J.S. Probabilistic Interpretation of Feedforward Classification Network Outputs, with Relationships to Statistical Pattern
Recognition. In Neurocomputing; Soulié, F.F., Hérault, J., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 1990;
pp. 227–236.

50. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
51. Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural

Networks Learn. Syst. 2017, 28, 2222–2232. [CrossRef]
52. Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-Term Recurrent

Convolutional Networks for Visual Recognition and Description. In Proceedings of the 28th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

53. Ashry, S.; Elbasiony, R.; Gomaa, W. An LSTM-based Descriptor for Human Activities Recognition using IMU Sensors. In
Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, Porto, Portugal, 29–31 July
2018; Volume 1, pp. 494–501. [CrossRef]

54. Laurent, C.; Pereyra, G.; Brakel, P.; Zhang, Y.; Bengio, Y. Batch normalized recurrent neural networks. In Proceedings of the
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016;
pp. 2657–2661. [CrossRef]

55. Ordóñez, F.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity
Recognition. Sensors 2016, 16, 115. [CrossRef]

56. Donahue, J.; Hendricks, L.A.; Rohrbach, M.; Venugopalan, S.; Guadarrama, S.; Saenko, K.; Darrell, T. Long-term recurrent
convolutional networks for visual recognition and description. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 677–691.
[CrossRef]

https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
https://www.technologyreview.com/2019/01/25/1436/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1145/2699343.2699349
https://arxiv.org/abs/1706.08924
http://dx.doi.org/10.1109/ICMLA.2017.0-149
http://dx.doi.org/10.1109/JSEN.2020.3005443
http://dx.doi.org/10.1097/00005768-200212000-00025
http://www.ncbi.nlm.nih.gov/pubmed/12471312
http://dx.doi.org/10.1186/s12984-019-0548-2
http://dx.doi.org/10.1080/02640410400021450
http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.14-35
http://dx.doi.org/10.1145/3292500.3330701
http://dx.doi.org/10.4108/icst.mobicase.2014.257786
http://dx.doi.org/10.1007/978-3-319-26561-2_6
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.5220/0006902405040511
http://dx.doi.org/10.1109/ICASSP.2016.7472159
http://dx.doi.org/10.3390/s16010115
http://dx.doi.org/10.1109/TPAMI.2016.2599174


Sensors 2021, 21, 3071 23 of 23

57. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.k.; Woo, W.c. Convolutional LSTM Network: A Machine Learning Approach
for Precipitation Nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume
1; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Montreal, QC, Canada, 2015;
Volume 28, pp. 802–810. [CrossRef]

58. Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human movement
classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 156–167. [CrossRef]

59. Negri, L.H. PeakUtils. 2018. Available online: https://pypi.python.org/pypi/PeakUtils (accessed on 20 July 2016)
60. Ye, J.; Li, X.; Zhang, X.; Zhang, Q.; Chen, W. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian

Navigation. Sensors 2020, 20, 2574. [CrossRef]
61. Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep Learning for Sensor-based Human Activity Recognition: Overview,

Challenges and Opportunities. arXiv 2021, arXiv:cs.HC/2001.07416.
62. Wang, J.; Zheng, V.W.; Chen, Y.; Huang, M. Deep Transfer Learning for Cross-domain Activity Recognition. In Proceedings of the

3rd International Conference on Crowd Science and Engineering; Association for Computing Machinery: Singapore, 2018. [CrossRef]

http://dx.doi.org/10.1155/2018/6184713
http://dx.doi.org/10.1109/TITB.2005.856864
https://pypi. python. org/pypi/PeakUtils
http://dx.doi.org/10.3390/s20092574
http://dx.doi.org/10.1145/3265689.3265705

	Introduction
	Related Work
	Towards Real-World Sensor-Based Activity Recognition in Field Sports
	Deep Learning for Sensor-Based Human Activity Recognition in Sports

	Materials and Methods
	Dataset
	Labelling
	Data Preprocessing
	Segmentation
	Adaptation, Optimization and Training of the SVM
	Deep Learning Architectures
	1d Convolutional Neural Net
	Long Short Term Memory Network
	Convolutional Lstm

	Evaluation Methods

	Results
	Discussion
	Peak Detection for Candidate Selection
	Svm Performance from Laboratory to Real-World Scenarios
	Deep Learning-Based Classification in Real-World Scenarios
	General Aspects for Activity Recognition in Real-World Scenarios

	Conclusions
	CNN Architecture for Synchronization
	Window Size Experiment
	References

