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Abstract: In this paper, a method for states, parameters, and fractional order estimation is presented.
The proposed method is an extension of the traditional dual estimation method and uses three blocks
of filters with appropriate data interconnections. As the main part of the estimation algorithm, the
Fractional Unscented Kalman Filter was used. The proposed Triple Estimation algorithm might
be treated as a convenient tool for estimation and analysis of a wide range of dynamical systems
with fractional constants or variable order nature, especially when knowledge about the identified
system is very restricted and both order and system parameters are unknown. In order to show the
performance of the proposed algorithm, sets of numerical results are presented.

Keywords: fractional calculus; fractional Kalman filter; estimation of fractional order systems

1. Introduction

Fractional calculus is a generalization of traditional differential calculus for cases
where orders of differentiation and integration are real or even complex numbers. The the-
oretical background for this calculus can be found in [1–4].

Fractional order calculus is widely used for modelling in many areas of applications,
especially in diffusion processes. In [5], the results of successful modelling for a heat
transfer process in solid material were presented. Moreover, in [6], similar results for heat
transfer in heterogeneous materials, described by anomalous diffusion using a fractional
order partial differential equation, were shown. Other authors dealt with the idea of the
heat diffusion process in non-homogeneous fractal media (e.g., [7,8]) or even the diffusion
of information in social networks [9].

Fractional order calculus was also found to be an efficient tool in signal process-
ing [4,10]. Specifically, the Kalman Filter algorithm was generalized for many classes of
fractional order systems [11–13]. One of the highly promising areas is to use these algo-
rithms for noise estimation with fractional order dynamics (coloured noises) [14,15]. In [16],
a fractional Kalman Filter algorithm was used to estimate the bias of MEMS. A survey of
algorithms in the area of fractional order sensing and filtering techniques was presented
in [17].

In real applications (particularly in modelling of sensor noise), very often, the order
of the system is unknown, which makes the identification problem much more complex
and therefore complicated. Specifically, when the rest of the system’s parameters are
also unknown, it is caused by the highly nonlinear relation for achieving fractional order.
For example, in [18], an advanced numerical optimization algorithm was used to obtain the
value of the fractional order, and in [11], the dual estimation method was used to estimate
the fractional order of the system. To deal with such a complex problem, we propose a new
estimation algorithm for the simultaneous estimation of state variables, system parameters,
and fractional order. Such an algorithm will be formulated for one type of variable order
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definition. It is based on a modification (enlargement) of the classical dual estimation
algorithm, which contains two estimation actions (one for states variables and another
for system parameters). This approach has been extended to fractional order estimation,
finally giving the Triple Estimation algorithm.

The estimation of an unknown fractional order leads to variable order differential
equations. The variable-order case is much more complicated and less intuitive than the
constant order case. There exist at least six different types of variable-order derivative
definitions [19–21], but only four of them correspond to clearly defined switching schemes,
namely input-reductive, input-additive, output-reductive and output-additive ([22–24]).
Their equivalent switching schemes allow us to better understand the behaviour of orders
varying with each definition.

Due to the possibility of a system’s order varying with time, the fractional variable
order definition with the most clear interpretation of its nature in the form of a switching
scheme will be applied. In [25,26], the authors showed three switching strategies corre-
sponding to appropriate fractional order derivatives. Moreover, analog models based on
proposed switching schemes and its experimental validation were presented in [25–27].
This paper is organized as follows. Section 2 recalls a Fractional Variable Order State-Space
System. In Section 3, the main result from the Triple Estimation algorithm is introduced,
and in Section 4, numerical examples of applications of the proposed Triple Estimation
algorithm are presented.

2. Discrete Variable Fractional Order State-Space System

We can distinguish a few fractional variable-order definitions by considering only
the miscellaneous relation between their orders and samples. In this paper, we take
into account an extension of the Grünwald–Letnikov definition, where past samples are
calculated with binomial coefficients of the current order, and it is formulated as follows:

Definition 1. The A-type of fractional variable order difference is defined as follows:

A
0 ∆αk

k fk =
1

hαk

k

∑
r=0

(−1)r
(

αk
r

)
fk−r. (1)

Based on this definition, let us consider a linear Discrete Fractional Variable Order
State-Space (DFVOSS) A-type system [28]:

A
0 ∆Υk+1

k+1 xk+1 = Axk + Buk , (2)

xk+1 = hΥk+1A
0 ∆Υk+1

k+1 xk+1

−
k+1

∑
j=1

(−1)jΥj,k+1xk−j+1 , (3)

yk = Cxk , (4)

where

Υj,k = diag
[
(

α1,k
j ) . . . (

αN,k
j )

]
, (5)

A∆Υk+1 xk+1 =


A∆α1,k+1 x1,k+1

...
A∆αN,k+1 xN,k+1

 (6)

hΥk+1 = diag
[

hα1,k+1 . . . hαN,k+1
]

(7)

and αi,k ∈ R is the i-th fractional variable order of the system; uk ∈ Rd is a system input;
yk ∈ Rp is a system output; A ∈ RN×N , B ∈ RN×d, and C ∈ Rp×N are the state system,
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input, and output matrices, respectively; xk ∈ RN is a state vector; N is a number of state
equations; and h is a time sampling.

3. Triple Estimation Algorithm Based on UFKF Filter

For simplicity, let us take into consideration one state variable constant order model:

0∆α
k+1xk+1 = f xk + uk + ωk , (8)

xk+1 = hα
0∆α

k+1xk+1

−
k+1

∑
j=1

(−1)jΥj,k+1xk−j+1 , (9)

yk = xk + νk , (10)

where α is a fractional system order; f is a parameter of the system; ωk and νk are system
and output noises, respectively; and Qk and Rk are covariance matrices of these two noises.

The estimation problem, which is considered in this paper, is used to estimate un-
known state variable xk, system parameter f , and system order α together.

If only the estimation of the state variable and system parameter is required, joint
or dual estimation can be used [29,30]. In joint estimation, the state vector is augmented
with the desired parameter, with the dynamics of the parameter assumed to be changing
(usually assumed to be constant). For our problem, the system of equations is rewritten in
the following form: [

0∆α
k+1xk+1

0∆1
k+1 fk+1

]
=

[
fkxk + uk + ωk

0

]
, (11)

which, of course, provides a nonlinear system due to the multiplication of two state
variables fkxk and implies the use of nonlinear estimation algorithms. Such a method, even
for integer order systems, for more complicated problems is not effective. That is why for
more complicated problems, the dual estimation algorithm is used [29].

3.1. Dual Estimation Scheme

The fundamental behaviour of a dual estimation algorithm—separation of parameters
and state variables processes—can be reflected in the two main blocks presented in Figure 1.
One of them, denoted as KFx, is responsible for state variable vector estimation x̂k, and the
second one, denoted as KFw, is responsible for estimation of the parameter vector ŵk.
As can be noticed, both the KFx and KFw filters together estimate the state vector x̂k
and parameters vectors ŵk, directly based on the input, the output, and appropriate data
interconnections. Therefore, the KFx filter estimates the state vector based on the current
output yk, the past input uk−1, the past state vector estimate x̂k−1, and the past estimated
value of parameters vector ŵk−1 obtained from the KFw filter. The next filter, the so-called
KFw, estimates the parameters vector based on the current output yk, the past input uk−1,
the past parameter vector estimate ŵk−1, and the past estimated value of state vector x̂k−1
obtained from the KFx filter.

As presented in [11], it is possible to identify a fractional order by dual estimation,
but as was recognized during many simulations, it is hard to estimate both the unknown
fractional order and system parameters at the same time.

Exemplary results are presented in Figures 2 and 3. For obtaining these results, the
dual estimation algorithm was used when the parameter filter was organized for joint
estimation of the order and system parameter. The parameters of the estimated system are
given as follows:

A = −0.5, B = 1, C = 1, αk = 0.6 (12)
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They are the same as for Example 2, and the same parameters as those of the UKF
filter was used. It was tested for different values of parameter δ (0.1, 0.5, 0.9), and similar,
non-acceptable results were obtained.

- KFx -

z−1

KFw- -

z−1

6
?

yk, uk−1

ŵk−1

x̂k−1

ŵk

x̂k

Figure 1. Dual estimation scheme.

Figure 2. Original and estimated order obtained using the dual estimation algorithm.

Figure 3. Original and estimated parameter obtained using the dual estimation algorithm.
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That is why it could be worth separating the estimation of fractional orders and system
parameters in the algorithm. In this paper, the concept of dual estimation is extended
in the form of the Triple Estimation algorithm for estimating parameters, the order, and
state variables.

3.2. Triple Estimation Scheme—The Main Result

The main idea of dual estimation is to separate the state and parameter estimation
processes in order to obtain a better control effect for these two processes. However, when
the estimation of parameters and order is required, in dual estimation, the estimation action
of parameters and order is connected, and there is a problem in obtaining a good enough
control effect for these processes (as it was shown in the previous section). In this section,
we introduce the Triple Estimation algorithm, which is a generalization of dual estimation
algorithm for fractional order estimation presented in [11].

In general, the introduced Triple Estimation algorithm can be treated as an efficient
method for states, parameters, and order estimation of fractional order dynamic, simulta-
neously. Additionally, separation of the order and system parameter estimation processes
also allows for better algorithm parameters tuning because we can separately tune the
parameters for order and system parameter filters.

In the Triple Estimation process, the fractional variable order, state variables, and
parameter estimation are divided into three estimation actions (filters). The first filter esti-
mates the state variable vector x̂k, the second one estimates the vector of system parameters
ŵk, and the third filter estimates the fractional variable order. The scheme of this type of
estimation is given in Figure 4, where KFx, KFw, and KFo are filters responsible for the
state vectors, parameters, and order estimation, respectively.

The filter KFx is based on the past estimated value of parameter vector estimates
ŵk−1, data uk−1 and yk, and past value of estimated order α̂k−1 obtained from filter KFo to
evaluate state estimate x̂k. On the other hand, filter FKw uses past estimates obtained by
the KFx filter, past value of estimated order α̂k−1 obtained from filter KFo and data uk−1
and yk to obtain its own state vector and output prediction χ̃w

k and Yw
k to extract the next

estimate of parameter vector ŵk. The filter KFo is based on estimates from filters KFw
and KFx.

-
KFo -

z−1r

-r

-

- KFx -

z−1

-

-

r

KFw- -

z−1

-r

-

r
6
?

yk, uk−1 r

-

α̂k−1

ŵk−1

x̂k−1

α̂k

ŵk

x̂k

Figure 4. Triple Estimation scheme.

3.2.1. Order Estimation Filter KFo

Due to the highly nonlinear problem of order estimation, as the KFo filter, the Un-
scented Fractional Variable Order Kalman Filter (similar to the one used in the Dual
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Estimation algorithm in [11]) was used. The dynamics of order changing was assumed to
be constant:

αk+1 = αk + ωo
k , (13)

where ωo
k is a noise with variance given by matrix Qo

k and represents our knowledge about
variability of the order and allow us to set the algorithm for bigger or fewer changes of the
estimate during the order estimation sub-process.

The KFo algorithm equations are formulated in the following proposition:

Proposition 1. The Unscented Fractional Variable Order Kalman Filter for the order estimation
process (called KFo) in the Triple Estimation algorithm is given by the following set of equations:

α̃k = α̂k−1, (14)

P̃o
k = P̂o

k−1 + Qo
k−1, (15)

α̃ααk =
[

α̃k α̃k ±
(√

(L + λ)P̃o
k

)
i

]
, (16)

∆α̃ααk,i χ̃o
k,i = A(ŵk−1)x̂k−1 + Buk−1, (17)

χ̃o
k,i = hα̃ααk,i ∆α̃ααk,i χ̃o

k,i −
k

∑
j=1

(−1)j
(

α̃ααk,i
j

)
x̂k−j, (18)

Ỹo
k,i = Cχ̃o

k,i, (19)

ỹo
k =

2L

∑
i=0

W(m)Ỹk,i, (20)

Po
ykyk

=
2L

∑
i=1

W(c)
i [Ỹi,k − ỹk][Ỹi,k − ỹk]

T + Ro, (21)

Po
αkyk

=
2L

∑
i=1

W(c)
i [α̃ααi,k − α̃k][Ỹi,k − ỹk]

T , (22)

Ko
k = Po

αkyk
(Po

ykyk
)−1, (23)

α̂k = α̃k +Ko
k(yk − ỹo

k), (24)

Po
k = P̂o

k −K
o
k Po

ykyk
Ko

k , (25)

Qo
k = (1− δo)Qo

k−1 + δo(Ko
k)(yk − ỹo

k)(yk − ỹo
k)

T(Ko
k)

T , (26)

where (
√
(L + λ)Pk)i is the i-th column of the matrix square root (e.g., Cholesky factorization),

and coefficients of Unscented transformation W are equal to

W(m)
0 = λ/(L + λ), (27)

W(c)
0 = λ/(L + λ) + (1−A2 +B), (28)

W(m)
i = W(c)

i = 1/(2(L + λ)), (29)

where λ = A2(L + κ)− L, A is a coefficient describing the width of point expansion during the
transformation (in the literature, it is obtained in the range 1 ≤ A ≤ 10−4, usually denoted as
α, but in this article, using an order α, this notation has been changed), κ is an additional scaling
coefficient usually chosen as 3-L, B is a coefficient that corresponds with our knowledge about type
of noise, and that for Gaussian noise is chosen as B = 2 (in the literature, it is usually denoted as β).
The δ coefficient is a “forgetting factor” according to the Robbins–Monro stochastic approximation
scheme for estimating the innovations (see [31] page 240). The initial values of matrix Po

0 represents
our a priori knowledge about error in choosing the initial value of order α0 (we assume that the initial
value is different from the original).



Sensors 2021, 21, 8159 7 of 15

3.2.2. State Estimation Filter KFx

Due to the linear problem of state vector estimation (KFx Filter), the Fractional Variable
Order Kalman Filter, given below, is used.

Proposition 2. The Fractional Variable Order Kalman Filter algorithm for state variable estimation
process (called KFx) in the Triple Estimation algorithm is given by the following set of equations:

A
0 ∆α̂k

k+1 x̃k+1 = A(ŵk−1)x̂k + Buk, (30)

x̃k+1 = hα̂kA
0 ∆α̂k

k+1 x̃k+1 −
k+1

∑
j=1

(−1)jα̂j,k+1 x̂k+1−j, (31)

P̃k =
(

hα̂k A(ŵk−1) + α̂k

)
Pk−1

(
hα̂k A(ŵk−1) + α̂k

)T
(32)

+ Qk−1 +
k

∑
j=2

α̂k−jPk−jα̂
T
k−j, (33)

Kk = P̃kCT(CP̃kCT + Rk)
−1, (34)

x̂k = x̃k + Kk(yk − Cx̃k), (35)

Pk = (I − KkC)P̃k, (36)

where the initial conditions are

x0 ∈ RN , P0 = E[(x̃0 − x0)(x̃0 − x0)
T ], (37)

and νk and ωk are assumed to be independent with zero expected value.

3.2.3. Parameters Estimation Filter KFw

The problem of parameter estimation is nonlinear, and the Unscented Fractional
Variable Order Kalman Filter or Extended Fractional Variable Order Kalman Filter can
be used. As we can expect that the Unscented Fractional Variable Order Kalman Filter
will give more accurate results, we chose such an algorithm for our filtering process. The
dynamics of parameter change was assumed to be constant:

wk+1 = wk + ωw
k , (38)

where ωo
w is a noise with variance given by matrix Qw

k and represents our knowledge about
variability of the parameter. Manipulating matrices Qw

k and Qo
k allows us to decide if the

system parameter or the order will be more sensitive for estimation error. Thus, the filter
KFw is given as follows:

Proposition 3. The Unscented Fractional Variable Order Kalman Filter for the parameter esti-
mation process (called KFw) in the Triple Estimation algorithm is given by the following set of
equations:
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w̃k = ŵk−1, (39)

P̃w
k = P̂w

k−1 + Qw
k−1, (40)

W̃k =
[

w̃k w̃k ±
(√

(L + λ)P̃w
k

)
i

]
, (41)

∆α̂k−1 χ̃w
k,i = A(W̃k,i)x̂k−1 + Buk−1, (42)

χ̃w
k,i = hα̂k−1 ∆α̂k−1 χ̃w

k,i −
k

∑
j=1

(−1)j
(

α̂k−1
j

)
x̂k−j, (43)

Ỹw
k,i = Cχ̃w

k,i, (44)

ỹw
k =

2L

∑
i=0

W(m)Ỹk,i, (45)

Pw
ykyk

=
2L

∑
i=1

W(c)
i [Ỹi,k − ỹk][Ỹi,k − ỹk]

T + Rw, (46)

Pw
wkyk

=
2L

∑
i=1

W(c)
i [W̃i,k − w̃k][Ỹi,k − ỹk]

T , (47)

Kw
k = Pw

wkyk
(Pw

ykyk
)−1, (48)

α̂k = α̃k +Kw
k (yk − ỹw

k ), (49)

Pw
k = P̂w

k −K
w
k Pw

ykyk
Kw

k , (50)

Qw
k = (1− δw)Qw

k−1 + δw(Kw
k )(yk − ỹw

k )(yk − ỹw
k )

T(Kw
k )

T , (51)

where the parameters of an unscented transformation are defined in the same way as in the KFo filter.

4. Numerical Results

This section contains sets of numerical examples applying the Triple Estimation algo-
rithm. The configuration parameters dedicated to state, parameters, and order estimation
blocks, of course, have a significant impact on the estimation results. Having separate
sets of configuration parameters for each block allows us to influence the appropriate
filter and to raise the effectiveness and robustness of the proposed method. However, this
task is not straightforward due to the uncertainties appearing in real cases and should
be adjusted individually for each fractional order system during analysis. The structure
of the simulation models and their sampling time used in the examples correspond to
analogue models of fractional order systems validated, e.g., in [11,32,33]. Based on these
and considering the clarity of the given results, we decided to use a single input and single
output fractional order system as a primary pattern for tests.

All tests were conducted in a Matlab/Simulink environment based on the Fractional
Variable-Order Toolkit [34], which was used to simulate the fractional order systems.
To highlight the behaviour of the proposed estimation algorithm and its possibilities
during an analysis of fractional order systems, all numerical examples were conducted
under the following, in common, predefined values:

• noises parameters

E[ωωT ] = 2.5× 10−5, (52)

E[ννT ] = 10−4, (53)

• Parameters of the KFx filter

P0 =
[

1
]
, Q0 =

[
2.5× 10−5 ], (54)

x0 = [0], R = [10−4], (55)
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• Parameters of the KFo filter

Po
0 =

[
0.01

]
, Qo

0 =
[

0.001
]
, (56)

α0 = [1], Ro = [1.25× 10−4],A = 1,B = 2, δo = 0.5. (57)

• Parameters of the KFw filter

Pw
0 =

[
0.01

]
, Qw

0 =
[

0.001
]
, (58)

w0 = [0], Rw = [1.25× 10−4],A = 1,B = 2, δw = 0.5. (59)

Additionally, the simulation data were collected with sampling time h = 0.001 s and
input signal u(t) is the square wave with amplitude equals 1 and frequency equals 1 Hz.
To validate the Triple Estimation algorithm, the spread between system order α and system
parameter w was different in each example. The Examples 1–3, given below, contain a
description of the simulated fractional order system and correspond to appropriate plots
of state, order, and system parameter estimation based on the proposed algorithm.

Example 1. Let us consider the linear Discrete Fractional Variable Order State-Space (DFVOSS)
A-type system given by Equations (2), (3) and (4), where

A = −0.7, B = 1, C = 1, αk = 0.4 (60)

The estimation problem is defined as the estimation of an unknown parameter in matrix A,
defined as wk, unknown system order αk, and state variable xk, which is measured with some
measurement noise. In this example, the results of state, order, and parameter estimation are
presented in Figures 5–7, respectively. As it can be seen in Figure 5, the state variable is accurately
achieved as soon as the algorithm starts. However, looking at Figures 6 and 7, it can be noticed that
the order and parameter estimation accurately correspond to the simulation ones after 2 s.

Figure 5. Original and estimated state variables from Example 1.
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Figure 6. Original and estimated order from Example 1.

Figure 7. Original and estimated parameters from Example 1.

Example 2. This time, let us consider the linear Discrete Fractional Variable Order State-Space
(DFVOSS) A-type system given by Equations (2), (3) and (4), where

A = −0.5, B = 1, C = 1, αk = 0.6 (61)

The results of the state, order, and parameter estimation are presented in Figures 8–10,
respectively. Similarly to Example 2, the estimation of state variable corresponds to the system
variable beginning with a simulation start point. Despite close values of order and parameter, their
simulation values were achieved approximately at 2 s as well.
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Figure 8. Original and estimated state variables from Example 2.

Figure 9. Original and estimated order from Example 2.
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Figure 10. Original and estimated parameters from Example 2.

Example 3. Now, let us take the next linear Discrete Fractional Variable Order State-Space
(DFVOSS) A-type system given by Equations (2), (3) and (4), where

A = −0.8, B = 1, C = 1, αk = 0.3 (62)

In this case, the results of state, order, and parameter estimation are presented in
Figures 11–13, respectively. Analysing these results, it should be noticed that both order and
system parameters were less than those in the previous examples. However, as was shown in
Figure 13, the parameter and order estimations correspond to a constant system value with a small
discrepancy but starting with 0.5 s.

Figure 11. Original and estimated state variables from Example 3.
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Figure 12. Original and estimated order from Example 3.

Figure 13. Original and estimated parameters from Example 3.

It should be strongly highlighted that, in all distinguished examples, the proposed Triple
Estimation algorithm was successfully used to determine the state, order, and parameter values of a
simulated fractional order system with system and measurement noises.

5. Conclusions

In this paper, the Triple Estimation algorithm was presented. Its main area of use is to
simultaneously estimate the fractional systems’ states variables, parameters, and orders.
Moreover, its accuracy was validated on sets of numerical examples under common,
predefined algorithm configuration parameters. It should be mentioned that the results
can strictly depend on parameters of estimators, especially parameters of Unscented
Fractional Kalman Filter in the order estimation. The proposed Triple Estimation algorithm
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is composed of three Kalman Filter blocks with appropriate data interconnections between
each other. The next huge advantage of the proposed algorithm comes out directly from
its fractional variable-order behaviour, which means that it can be adapted to estimate the
fractional variable-order systems with non-stationary parameters. This means that such an
algorithm can be treated as a convenient tool for estimation, identification, and analysis
of a wide range of fractional constant and variable order systems. For simplicity, in this
paper, the estimation of a system with one state variable was considered. However, there
are no restrictions on using the algorithm in more complicated systems with many state
variables and many inputs and outputs. Obviously, the problem of the robustness of the
algorithm parameters can be more noticeable, but it still gives more tuning possibilities
than joint and dual estimation algorithms.

A further area of use for the proposed algorithm can be found in the analyses of
fractional noises, derived from different sources. (e.g., inertial measurement units (IMU) or
temperature sensors). Potentially, when the temperature and heat flux impact appear in the
sensors’ measurements, the fractional order character can be pointed out and estimation
algorithms such as Triple Estimation will be necessary.
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