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Abstract: Current Internet of Things (IoT) stacks are frequently focused on handling an increasing
volume of data that require a sophisticated interpretation through analytics to improve decision
making and thus generate business value. In this paper, a cognitive IoT architecture based on
FIWARE IoT principles is presented. The architecture incorporates a new cognitive component that
enables the incorporation of intelligent services to the FIWARE framework, allowing to modernize
IoT infrastructures with Artificial Intelligence (AI) technologies. This allows to extend the effective
life of the legacy system, using existing assets and reducing costs. Using the architecture, a cognitive
service capable of predicting with high accuracy the vessel port arrival is developed and integrated
in a legacy sea traffic management solution. The cognitive service uses automatic identification
system (AIS) and maritime oceanographic data to predict time of arrival of ships. The validation has
been carried out using the port of Valencia. The results indicate that the incorporation of AI into the
legacy system allows to predict the arrival time with higher accuracy, thus improving the efficiency
of port operations. Moreover, the architecture is generic, allowing an easy integration of the cognitive
services in other domains.

Keywords: maritime logistics; automatic identification system; artificial intelligence; internet of
things; artificial intelligence of things

1. Introduction

Maritime transport is one of the main pillars of world trade and economy [1,2]. It
is a complex environment where logistic planning has a fundamental role to ensure an
efficient use of resources [3]. The maritime community is composed of a large number of
actors responsible for different activities related to port management; port authorities need
open and neutral platforms that connect multiple systems, and these are known as port
community systems [4]. They allow safe and intelligent exchange of information between
different organizations that comprise the whole maritime community. This exchange
enables the optimization, management, and automation of logistics and port processes [5],
thereby improving the efficiency and thus the competitiveness of port communities. These
shared and organized platforms are used both by public and private stakeholders [6] such
as shipping agents, customs, freight forwarders, and terminal operators.

Seaport terminals can be considered one of the most important parts of the logistics
network, because they are located in the center of the supply chain [6,7] connecting the land-
side and seaside, as well as the export and import sides of the supply chain. Therefore, it is
of great importance to guarantee a fluid operation of the terminal to ensure the efficiency
of the entire supply chain [8]. To this end, the calculation of an accurate estimated time
of arrival (ETA) of ships at ports is a key aspect to optimize time, resources, and costs
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of maritime operations [9]. The operations to be carried out by the different actors in
the chain when a vessel arrives at a port are planned based on this date/time, so any
deviation between the estimation and the reality can generate delays, thus affecting the
rest of the chain. Such deviations may result in contracted services along the logistics chain
not being available as planned, causing delays in the logistics chain and consequently
increasing financial costs. Examples of this impact are the scheduled quay not being
available because the terminal is operating another vessel or the vessel not being able to
dock due to coincidence with the maneuvers of another vessel.

Another important system of this logistic chain is the automatic identification system
(AIS) [10]. It is a mandatory international navigation safety communications system,
under the provisions of the Safety Of Life At Sea (SOLAS) conventions endorsed by the
International Maritime Organization (IMO). AIS emerged with the intention of preventing
collisions at sea, complementing other existing solutions such as radar and other regulated
means in the Convention on the International Regulations for Preventing Collisions at
Sea (COLREG). This system allows a vessel to be identified by a unique identifier, MMSI
(maritime mobile service identity), and is mandatory for all vessels exceeding 300 gross
tonnage. AIS provides information about vessels, such as the vessel name, MMSI, current
position and destination, ETA, course, or speed.

The ETA is calculated by a maritime operator using limited sources of information
and a very basic estimation technique based on simple arithmetics [11], and it is unable to
provide high accuracy [12] or to include other relevant factors beyond the start travel time
and distance to port. The estimated ETA is manually inputted into the AIS communication
system from where the port obtains the ETA. These data generally differ considerably
from the actual time of arrival (ATA), becoming thus a rough estimation [13]. Examples
of these setbacks are changes in vessel speed or adverse weather conditions, which are
not considered in the calculation. A deviation between the ETA and the ATA implies high
economic cost, as it leads to underutilization of resources or not having the necessary ones
at the required time. These issues could be avoided with a more accurate arrival prediction.

The last few years have seen accelerated growth in the field of artificial intelli-
gence [14,15]. More specifically, the application of AI techniques for maritime process
improvement has grown considerably. Several studies [16,17] show that it is possible
to use AIS data as historical maritime traffic data patterns. These patterns enable us to
convert the raw data into decision-supporting information to allow maritime anomaly
detection and vessel route prediction. Moreover, estimating the vessel arrival time in port
areas by exploiting historical vessel tracking data is a popular topic that has motivated a
lot of research [18–23]. However, very few port solutions currently incorporate these AI
techniques. Most of them are deterministic in nature, providing recommendations based
on predetermined rules that take action based upon the occurrence of a specific event. The
validation of these models in real systems remains an underexplored field.

On the other hand, in order to automate and provide better solutions for decision
making, the integration of machine learning is becoming essential for companies. Conse-
quently, the platforms and frameworks that provide this type of service have been evolving,
providing more sophisticated ML services. The most relevant are IBM Watson [24], Google
AI [25], Microsoft Azure [26,27], and Amazon AWS AI [28]. These platforms provide
design automation tools and predefined modules, as well as testing and implementation
of automatic learning services, which makes them ideal environments for companies that
do not have sufficient resources or the necessary experience. Nevertheless, they present
limitations regarding interoperability, extensibility, and cost. Moreover, it is important to
highlight that there are not open source platforms that incorporates jointly IoT and AI.

This work has been designed around the following research questions:

• RQ1. How to extend an IoT architecture to integrate in it cognitive services?
• RQ2. Is it possible to create and integrate in a commercial legacy system a reliable

cognitive service based on ML algorithms that gives an accurate prediction of a vessel’s
ETA using IoT data sources?
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• RQ3. Which IoT data sources provide the greatest feature importance?

To answer these questions, this paper proposes an artificial intelligence Internet
of Things (AIoT)-based open-source architecture that will enable the incorporation of
cognitive services into legacy IoT systems that lacks of these capabilities. The manuscript
not only proposes the AIoT-based architecture but also subsequently implements it and
validates it over a FIWARE-based legacy sea traffic management IoT platform. The vertical
specific solution is capable of producing reliable ETA predictions for vessel transport. For
this purpose, several ETA algorithms and models proposed in the research literature have
been analysed in order to identify which provides the best results in this specific scenario,
and allows us to further improve the decision support offered by the legacy solution.

The starting point is a legacy real-time vessel activity monitoring system that allows a
port to manage and optimize maritime activities related to the flow of vessels. The port
service includes a graphical user interface (GUI) that displays information of vessels located
within range of an AIS antenna located in the vicinity of the port. Following the current
tendency of combining AI and IoT to enable IoT cognitive networks and systems [29], it
is intended to demonstrate that it is possible to integrate a predictive model within the
commercial system and thus further improve with machine learning (ML) the current
estimations of the port service offering a better decision support. Using the data of the
system, gathered by means of Internet of Things (IoT) technology, the cognitive service
should be able to interpret and evaluate the status of the whole IoT system in near real
time and in an automatic way, thus making accurate ETA predictions that allow managing
port resources more efficiently. These data sources will be handled by a European cloud
IoT platform created by the European Commission called FIWARE. The cognitive service
will be incorporated in the legacy system using the proposed AIoT architecture. To support
advance AIoT data interpretation, the architecture will incorporate a FIWARE cognitive
component. The introduction of this cognitive service will allow to extend the lifetime of
the legacy solution.

The remainder of the paper is structured as follows. The proposed AIoT system
architecture is presented in Section 2. Section 3 includes a discussion of the results obtained.
Finally, concluding remarks are given in Section 4.

Research Contributions

This work provides a first open source AIoT approach that enables the extension of
IoT-based applications to incorporate AI, ensuring compliance with FIWARE guidelines
and standards. The modular approach together with standardization and open source will
allow developers to add new cognitive services to the platform according to their needs.

The paper describes the design and implementation process of the proposed archi-
tecture in a commercial marine legacy system. Marine professionals can use the steps
followed in this paper to incorporate a cognitive service with similar characteristics into
their legacy IoT systems, avoiding the migration of commercial AIoT systems available in
the market (e.g., IBM Watson, Google AI, or AWS AI). Other professionals can benefit from
a novel generic approach to embedding cognitive services in an open-source IoT platform
and use this approach in any type of industrial domain.

The objective of this work is not to advance the state of the art of the vessel ETA
models, but rather to apply and validate them in a real port management solution, jointly
using AI and IoT. According to previous work, it is considered that AIS and maritime
oceanographic data are sufficient for the system to provide reliable forecasts. Thus, the
predictive algorithm contained in the cognitive service will be trained using both data
sources, AIS data and oceanographic data. On the one hand, this will permit us to analyse
whether these data sources are sufficient to build with it a reliable prediction system in a
port environment, and on the other hand, whether the two data sources have the same
weight in the prediction of the vessel ETA in this concrete scenario.

The major contribution of the proposed architecture is the design, development,
integration, and validation of a cognitive component responsible for the inclusion of
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cognitive services in the FIWARE ecosystem. Thanks to the combination of AI and IoT,
the cognitive service is expected to be able to interpret and evaluate the state of the entire
system in near real time and automatically. To the best of the author’s knowledge, this
study presents the first component of the FIWARE IoT platform that allows the creation
of solutions based on AI for the ecosystem, while ensuring that FIWARE guidelines and
standards are met.

2. Materials and Methods
2.1. Methodology

This work has been carried out in collaboration with a private company and there-
fore seeks to achieve an operational result. The methodology followed uses the Volere
requirements specifications [30] while applying the DSR method [31] following the Hevner
guidelines [32]. The methodology used to define, implement, and validate the system
comprises the following phases: problem identification and work objectives establish-
ment, requirements elicitation, system architecture design, development process, system
component integration, and system validation.

2.1.1. Problem Identification and Work Objectives Establishment

The research questions presented above are key to identifying the problems to be
solved and establishing the objectives of this study. Before the COSIBAS project started
the problems and limitations of the current port management solutions were identified
and the main objectives of the work were established to respond to the identified research
questions (Section 1).

2.1.2. Requirements Elicitation

First, functional and non-functional requirements were identified. To this end, the
different needs of the actors who interact with the system—the administrators and the
end users—were taken into account. Volere [30] templates have been used to define the
requirements. Functional requirements were collected from the analysis of the different
use cases of the system. Among the requirements defined, one of the most remarkable is
the scalability of the architecture. It should allow the introduction of as many cognitive
services as desired without making significant changes to the system.

2.1.3. System Architecture Design

In terms of design, a study of the state of the art and limitations of the different IoT
architecture, frameworks, as well as AI solutions was carried out. After a deep analysis,
FIWARE was selected as the IoT platform of the system. This choice was motivated by the
multiple benefits of the platform such as high scalability, interoperability, and robustness,
since its architecture is based on micro-services. Moreover, FIWARE is an open source
platform with a strong and active community.

After the selection of the platform, components, guidelines, and FIWARE, standards
were examined in order to design a compliant system architecture (Section 2.2). The
conceptualization of the AIoT architecture included the design of the general workflow
(Section 2.2.2) and data model of the messages to be exchanged between the system
components. This design included the internal messages to be exchanged in the cognitive
component, defining how it communicates with the rest of the system’s components
following a decoupled approach.

2.1.4. Development

After the design of the architecture, its components were developed. The cognitive
component was developed ensuring that FIWARE NGSI standards for interoperability were
met. It was developed in Python 3 and subsequently containerized using Docker [33], the
packaging method used by FIWARE, ensuring a single deployment of the entire solution.
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The development of the predictive model was the last step of development, as initially,
no training dataset was available. In order to train the algorithm used for the cognitive
service, two datasets were created. The first dataset consists of 700,614 records of AIS data
from an AIS antenna located close to the port of Valencia. It includes information from
the routes followed by 271 vessels to reach the port in a time range between 11 May and
24 June 2021. The second dataset includes marine weather information corresponding to
the geolocation of the vessels during this period. The dataset has been constructed using
the provider World Weather Online [34] and includes 1548 records.

During the cognitive service exploratory data analysis, all records that contain missing
or incorrect data have been removed. Furthermore, the value of some of the AIS features
also had to be standardised. Since AIS data do not provide the vessel’s ATA, the value
needed to train the algorithm included in the cognitive service, it has been calculated by
storing the timestamp of the vessels when they cross a certain area of the port of Valencia.

The most relevant features have been identified to be used for model building. It is
important to note that irrelevant and redundant features can confuse a learning algorithm
by making it difficult to distribute the small set of truly relevant features [35]. Therefore, it is
of great importance to identify which features provide the most information for prediction
and only include these in the model. The data have been divided into training and
validation sets. This is not done randomly, but each dataset includes complete vessel routes.
In this way, the algorithm is trained using a subset of the routes and is validated using
different ones. This ensures correct validation of the model. Finally, the ETA prediction
model has been created by training several regression algorithms (such as decision tree,
support vector regression, random forest, or K-nearest neighbors) with the objective of
predicting the minutes remaining for the vessel to arrive at its destination.

2.1.5. Integration

During the integration, data sources needed to feed the cognitive service were intro-
duced in the system. In parallel, the developed prediction model was serialized using
the Python pickle library [36] to allow its integration with the cognitive service. Finally,
the communications of the components of the architecture were established using their
REST APIs.

2.1.6. Validation

The system has been validated considering the environment of the port of Valencia,
where the commercial sea traffic management software Posidonia Operations [37] has been
integrated with the proposed architecture. Posidonia Operations is an integrated port
operations management system that enables a port to optimise maritime activities related
to the flow of vessels within the port’s service area, integrating all stakeholders and all
relevant information systems. Posidonia has its own GUI, so the cognitive service has been
validated using this solution together with its interface.

The validation of the architecture components was performed as the components
were developed. The validation of the integration between the different components of the
system was carried out through integration tests using the API REST of the components.
Once all the communications between the different components were established, the
interface of the legacy solution was modified to link it with the cognitive service. Once this
was achieved, the system was validated together with the interface.

The validation of the developed cognitive service has been performed using the
mean absolute error (MAE). MAE illustrates the average magnitude of error between the
predicted and measured vessel time of arrival. The definition of MAE and is given by:

MAE =

n

∑
i=1
|yi − xi|

n
, (1)
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where xi are the actual values and yi the predicted ones from the n records considered. The
results of the validation are included in Section 3.

2.2. System Architecture

Existing FIWARE components do not allow to create and integrate a vessel ETA
cognitive service in the port service. A new element, the cognitive component, has been
defined and incorporated for this purpose, ensuring that FIWARE standards are complied
with. The six functional blocks of the proposed system architecture (Figure 1) are briefly
described below:

• The port service is a real-time vessel activity monitoring system that detects multiple
events in the life cycle of a vessel in port and allows us to automate actions and assist
a port operator in controlling the vessel’s visit to the port.

• AIS and Weather NGSI adapters have been developed to insert in the system the AIS
data gathered by the antenna and the weather conditions.

• Orion Context Broker (OCB) works as an aggregator of context data and, at the same
time, is an interface between the components of the architecture. Hence, the other
elements of a FIWARE system can publish or consume data without having specific
knowledge about the rest of the system.

• A specific context adapter has been developed for this scenario. It is responsible for
ensuring that data coming from the port service are transformed to be compliant
with the FIWARE NGSI standard. It handles redirected requests (updateContext) and
notification requests (notify) sent by the OCB, transforming them into requests to the
web interface.

• The cognitive component offers services based on the use of cognitive algorithms.
This element retrieves data from a variety of sources and is able to send the results and
decisions to other FIWARE components. ML algorithm-based models are embedded
in this component to give rise to an AIoT system.

• A complex event processor (CEP) analyzes event data in real-time, detecting patterns
in the incoming events. The CEP can receive events from different event producers
of the FIWARE platform. In this case, the CEP analyzes the difference between the
planned ETA and the calculated ETA. Depending on the degree of deviation between
both values, it will send a notification, warning, or alarm to the port service.

Figure 1. Simplified system architecture.

For the implementation of the proposed architecture, FIWARE guidelines and stan-
dards have been followed. The introduction of a new component is complying with the
component-based nature of FIWARE pillars. Moreover, its integration is simplified, since
all components comply to the FIWARE NGSI standard interface.
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2.2.1. Cognitive Component

The cognitive component (mark in red in Figure 1) has been designed to support
the evolution from large-scale heterogeneous IoT-based systems to AIoT systems. The
cognitive component communicates with OCB, the core of the FIWARE platform, using the
standard FIWARE NGSI API that provides the basis for interoperability and portability
with FIWARE. The cognitive component consists of a central element, the cognitive enabler,
and as many cognitive services as desired.

The cognitive enabler is a transversal and common component responsible for manag-
ing communications between different cognitive services and OCB. The cognitive enabler
receives cognitive requests coming from OCB and forwards them to the appropriate cogni-
tive service. In the reverse direction, it receives response messages from cognitive services
that it routes to OCB. Thus, the cognitive enabler decouples the communications performed
between OCB and the cognitive services, allowing an easier scaling of the cognitive services.

Cognitive services are a set of microservices that include previously trained ML
algorithms. Using NGSI data model, they return a prediction to the cognitive enabler,
which is responsible for entering it into OCB. The cognitive request from the cognitive
enabler includes the OCB id entity, or entities that contain the input features needed to
make the predictions. The acquisition of these features, stored in OCB, is handled by the
cognitive enabler. When the features are obtained and entered into the model, a prediction
is obtained, which is stored in OCB via the cognitive enabler.

It is important to note that the presented architecture is generic and scalable. It allows
the incorporation of as many cognitive services as desired, leaving the cognitive enabler to
handle the message flow.

2.2.2. Message Flow

The presented architecture (Figure 2) manages communication between its compo-
nents using the FIWARE asynchronous notification mechanism. Its main benefit is that
it allows us to alleviate network traffic, improving system performance and allowing the
cognitive component to be notified by OCB of changes made in the context. Similarly,
this functionality allows the cognitive component to notify OCB of changes made to the
context information, and this, in turn, to other components, such as the CEP. Therefore, the
cognitive component can act as a publisher/consumer of the context information.

Figure 3 summarizes the architecture message flow. When a user requests to calculate
the ETA of a vessel in the graphic application (port service), the context adapter transforms
the user’s request into an NGSI entity of type VesselETARequest. Before sending this new
entity to OCB, it is checked if there is a subscription associated with this type of entity. If
not, a subscription that notifies the context adapter of this new entity is created.

When the NGSI broker receives a VesselETARequest notification, is forwarded to the
NGSI agents. The AIS NGSI agent uses the maritime mobile service identity (MMSI) field
to query AISHub API to obtain the vessel information. Static vessel information (MMSI,
name, flag, vessel type, among others) is included in a NGSI entity of type vessel, while
dynamic information of the vessel (location, course, speed, ETA, and so on) is included
in a VesselLocation entity. If there was already information about this vessel (identified
by its MMSI) in OCB, its associated entities are updated instead of creating new ones. In
pararell, the weather NGSI agent obtains marine weather information corresponding to the
vessel’s geolocation, creating a weather entity. The NGSI agents are responsible for creating
the NGSI entities, and the broker is in charge of entering them in OCB. Subsequently, the
NGSI broker creates an additional entity of type CognitiveRequest (see Appendix A). It
includes the identifiers of the Vessel, VesselLocation, and weather entities, in addition to a
field that indicates the location of the specific cognitive service to be used. Before inserting
the CognitiveRequest entity in OCB, it is checked whether a subscription for this type of
entity exists in OCB. If it does not exist, a subscription is created to notify the cognitive
enabler every time an entity of type CognitiveRequest is created.
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Figure 2. System architecture and messages.

Figure 3. Message flow.
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When the cognitive enabler receives a notification, the entity contained in the notifi-
cation is examined and extracted. Then, the identifiers of the vessel, VesselLocation, and
weather type entities are forwarded to the vessel ETA cognitive service, which receives
the request through its API. Since the information associated with the received entities is
stored in OCB, the service makes a request to it through the cognitive enabler to obtain
the entities information. After that, the ETA cognitive service extracts from the entities the
necessary features that the model needs and performs the prediction. The last remaining
step in the service consists of sending the predicted ETA back to the cognitive enabler.
The service inserts the predicted ETA into a new NGSI entity, the CognitiveResponse (see
Appendix A), sending it to the cognitive enabler. Before inserting the entity in OCB, the
cognitive enabler checks that there is a subscription of type CognitiveResponse that notifies
the CEP. If it does not exist, it creates this subscription.

When the CEP receives a notification, it makes a request to OCB to obtain the Ves-
selLocation entity of the associated vessel where the planned ETA is included. Then, it
compares the predicted ETA (value included in the received notification) with the planned
ETA. Depending on the difference, a response is created, the type of which can be infor-
mative or warning with a description. This response is packaged in an entity of type
VesselETAResponse, which is, on the one hand, sent to OCB for insertion in OCB, and on
the other hand, sent to the port service.

3. Results and Discussion

The framework has been tested by integrating a vessel ETA cognitive service in
the Posidonia operations [37] legacy system using the port of Valencia. According to
PortEconomics [38], this is the main Spanish port and the fifth in Europe regarding transport
of containers, managing a volume of around 5.4 twenty-foot equivalent unit (TEUs) in 2020.

Figure 4 shows the port service GUI. The icons corresponding to the vessels are dis-
played using the information provided by an AIS Dispatcher, an AIS data-forwarding
utility that receives AIS data via UDP stream or TCP connection. By means of the geograph-
ical information system software integrated in Posidonia operations [37], this component
reads the information received by the AIS antenna and positions the vessels in a map.
The location and direction of the ships are represented by an arrow. Furthermore, if the
information is available in the AIS data, the interface displays the following information
for the selected vessel: MMSI, IMO, call sign, draught, flag, destination, ship type, status,
planned ETA, beam, length, heading, and speed.

Figure 4. Port service user interface.
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When a user selects a vessel, a pop-up window appears (Figure 5). This new window
has been developed to allow the user to request and show the ETA prediction of an specific
vessel. By clicking on the calculate button, the user initializes the message flow described
in Section 2.2. The context adapter is responsible for transforming the user’s request into an
NGSI entity that initiates the flow that triggers the calculation of the ship’s arrival time at
its destination by means of the vessel ETA cognitive service. When the message flow ends,
the interface receives a notification from the CEP and displays the prediction (Figure 6).

Figure 5. Basic vessel information.

Figure 6. Predicted ETA.

In relation to the development of the predictive model of the vessel ETA cognitive
service, the used features and their importance are presented in Table 1. The feature im-
portance analysis revealed that the use of marine weather conditions information did not
improve the predictive performance of the model. The analysis positions the wind speed
as the most significant of all the oceanographic features, but still, its model contribution is
minor compared to the selected features. This is because the weather conditions are already
reflected in the speed over ground (SOG) feature. It is the captain of the vessel who deter-
mines the navigation according to the weather conditions. If the weather is unfavourable,
the ship reduces its speed. So, the oceanographic variables only add redundancy and
unnecessary complexity to the model, which makes its behaviour worse. Consequently,
as oceanographic data is not needed, the costs associated with using the provider World
Weather Online [34] were discarded.

MAE formula (presented in Section 2.1.6) has been used to validate the new function-
ality added to the legacy system. The starting point was a scenario were the MAE of the
ETA provided by AIS data (without using the cognitive service) was 1066 min. After the
development and integration of the cognitive service into the legacy system, a high ETA
estimation was achieved. Of all the regression algorithms used during training, the KNN
regression algorithm presented the best results, with a MAE of 13 min. However, although
the MAE allows us to evaluate the performance of the model, more detail can be obtained
by plotting the error between the predicted value and the actual value in a scatter plot
(Figure 7). The plot shows the desired behaviour. The bell is narrow and centred on zero.
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This indicates that most of the errors that occur are close to zero. The worst, very residual
predictions estimated the ship’s arrival time with an error of 50 min.

Table 1. Features used in the best performing model and their importance.

Feature Importance

Distance 0.188072
Longitude 0.183474
Latitude 0.167127

SOG 0.142248
COG 0.128106

Heading 0.103996
Draught 0.086977

Figure 7. Error distribution.

If more training data were available, it would be possible to further improve. This is
outside the scope of this study, whose main objective is to present an AIoT architecture
that allows the incorporation of a cognitive service in a legacy port management solution
to manage the port terminal’s resources more efficiently. The predictive model developed
and integrated into the architecture through the cognitive enabler significantly improves
the prediction of ship arrivals at the port. Furthermore, the followed component approach
facilitates the integration of the developed predictive model in other systems.

4. Conclusions

This manuscript proposes a reference open artificial intelligence Internet of Things
(AIoT) architecture, which has been designed by being compliant with the state-of-the-art
FIWARE IoT framework specifications. To the extent of the author’s knowledge, although
there are several AIoT commercial systems available in the market (e.g., IBM Watson,
Google AI, or AWS AI), this work represents the first open-source AIoT approach that
allows the creation of solutions based on AI, by ensuring that FIWARE guidelines and
standards are met. To do so, a new component, namely cognitive component, has been
introduced in comparison with a basic IoT FIWARE system. This component would be
responsible of facilitating the incorporation of the cognitive services in the architecture
following FIWARE’s philosophy. By making use of FIWARE’s asynchronous notification
mechanism, any practitioner would be able quickly integrate the proposed cognitive
component into its legacy IoT system.

Moreover, answering RQ1, the proposed AIoT architecture has been prototyped and
validated for a real maritime legacy IoT system. In particular, cognitive capabilities with re-
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gards to the improvement of vessels’ estimated time of arrival (ETA) to any port stakeholder
involved in the logistics supply chain has been incorporated. The results of the validation
of the cognitive service are satisfactory, as they show a significant improvement in the
estimation of vessel arrival times (answering RQ2), as well as confirm previous research
analysis conclusions with respect to the irrelevance of oceanographic data for a proper ETA
estimation. The latter provides an answer to RQ3. The cognitive ETA capabilities will lead
to better planning of port activities, providing a reliable decision support system and thus
managing the resources more efficiently. Marine sector practitioners can find in this work
the procedures to be followed to incorporate a vessel ETA cognitive service using ETA
prediction algorithms, while other professionals can benefit from a novel generic approach
to embedding cognitive services in an open-source IoT platform.

The proposed architecture has been successfully validated in a commercial solution
deployed in the port of Valencia. After this first experiment, it is planned to integrate a
vessel ETA cognitive service in another Spanish port legacy system and possibly in a Euro-
pean port following the approach described. This work does not provide improvements
with respect to the training of the ETA prediction algorithms. Following the current state
of the art, these will have to be retrained specifically for the other ports. Nevertheless, the
cognitive component will facilitate the incorporation of cognitive services, saving time in
development and integration with legacy systems.

Further validation of the proposed architecture in other verticals is needed. It is
important to stress that, although during this work only one cognitive service has been
developed and integrated in a port management solution, the architecture is designed to
incorporate cognitive services from any domain (health, transport, smart cities, etc.) within
the FIWARE ecosystem. However, although the proposed architecture has been designed
to be compatible with any domain, in this specific work, it has not been validated in other
verticals. After that, the proposed FIWARE-based AIoT architecture in conjunction with the
developed cognitive component will make it possible to extend the effective lifetime not
only of legacy port IoT solutions without incurring in significant increase of operational
costs, but also to any industrial domain (e.g., health, transport, smart cities, etc.) within the
FIWARE ecosystem.
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Appendix A

This appendix refers to the data models defined and used in this work in the architec-
ture design.

(i) Example of CognitiveRequest JSON message.
(ii) Example of CognitiveResponse JSON message.
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Figure A1. Cognitive Request message.

Figure A2. Cognitive Response message.
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