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Abstract: Three-dimensional point clouds have been utilized and studied for the classification of
objects at the environmental level. While most existing studies, such as those in the field of computer
vision, have detected object type from the perspective of sensors, this study developed a specialized
strategy for object classification using LiDAR data points on the surface of the object. We propose
a method for generating a spherically stratified point projection (sP2) feature image that can be
applied to existing image-classification networks by performing pointwise classification based on a
3D point cloud using only LiDAR sensors data. The sP2’s main engine performs image generation
through spherical stratification, evidence collection, and channel integration. Spherical stratification
categorizes neighboring points into three layers according to distance ranges. Evidence collection
calculates the occupancy probability based on Bayes’ rule to project 3D points onto a two-dimensional
surface corresponding to each stratified layer. Channel integration generates sP2 RGB images with
three evidence values representing short, medium, and long distances. Finally, the sP2 images are
used as a trainable source for classifying the points into predefined semantic labels. Experimental
results indicated the effectiveness of the proposed sP2 in classifying feature images generated using
the LeNet architecture.

Keywords: spherically stratified point project; feature image; semantic labeling; point cloud

1. Introduction

Object recognition in autonomous navigation relies on various deep-learning methods to
perform tasks such as detection and classification, which are being actively investigated [1,2].
The safety of the path traveled by an autonomous vehicle and its ability to avoid obstacles
depend on the accurate classification of objects surrounding the vehicle [3]. Apart from au-
tonomous driving, object classification is necessary for various applications and represents
the basis for object recognition [4,5].

Owing to the accessibility of data, most object-classification methods use images
collected through vision sensors. A vision sensor, however, is greatly influenced by envi-
ronmental factors such as lighting and weather conditions. Consequently, unstable perfor-
mance may be observed in autonomous vehicles that rely only on image data, leading to
insufficient reliability for deployment in real scenarios [6,7]. Therefore, object recognition
based on LiDAR sensors, which are less sensitive to environmental factors than vision
sensors, must be studied together [8].

Various deep-learning methods have been applied for object classification using
only data from LiDAR sensors. The performance of such methods depends on distance
measurements from LiDAR sensors and the input data used for learning [9,10]. In fact, the
training performance of a deep-learning algorithm varies according to the input data, and
the quality and quantity of the input data can substantially affect the learning results [11].
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Therefore, range measurements from LiDAR sensors should be complemented by an
effective method to generate input data and achieve high-performance object classification
based on deep learning. In object classification using vision sensors, several representative
deep-learning algorithms have been devised to operate only with input images [12,13].
Thus, an available training image dataset can be directly used in existing high-performance
algorithms to perform object classification. In contrast, in the case of object classification
based on LiDAR sensors, it is difficult to generate a large amount of training data by
performing distance measurement in the target environment, and the amount of open
training data is also less than that of the visual image. Furthermore, raw LiDAR data cannot
be used directly in deep-learning algorithms that use visual images. These problems can
be solved by designing network architectures optimized for the sparse three-dimensional
(3D) points provided by LiDAR sensors.

The direct use of LiDAR data for deep-learning methods has been proposed for
object classification. For instance, object classification has been achieved using a 3D
convolutional neural networks (CNNs) that use a 3D point cloud as the input using
a volume representation through an occupancy probability update [14]. However, an
inaccurate volume expression may be obtained owing to sporadicity in 3D point clouds, and
the computational burden is high. Another method clusters the 3D points that remain after
extracting ground data [15]. Although this method provides high segmentation speed and
accuracy, segmentation is only achieved for distant objects, without providing meaningful
classification. In [16], a learning network directly used the x-, y-, and z-axis coordinates
of a randomly distributed 3D point cloud as the input data. The network achieved a high
performance for simple object classification and real room segmentation, and the improved
model [17] extracts feature vectors containing local information to improve accuracy. In
addition, labeled voxels from a 3D point cloud map have been obtained for the training
of a 3D CNN [18,19]. This method aims to classify several types of urban environment
objects and exhibits accurate segmentation. In addition, studies have been conducted to
apply the Hough transform as an image transformation method to the 3D point cloud.
The trunk part of the trees was detected by classifying the point cloud according to the
height and converting it into a binary image [20]. Another study was performed to detect
a plane in a LiDAR point cloud using the Hough transform, which is faster than random
sample consensus (RANSAC) [21]. The point clouds corresponding to the different objects
were simply imaged by the Hough transform and classified by the CNN learning method
[10]. In addition, many researchers have studied the segmentation of point clouds using
the labeled point cloud dataset SemanticKITTI [22]. SPVConv [23] is a lightweight 3D
module specialized for small object recognition to improve the recognition performance of
small objects. In [24], a 3D-point-cloud-representation method called cylinder partition was
designed for the LiDAR point segmentation of autonomous driving scenes and used with a
3D-convolution-based network. The range–point–voxel convergence network (RPVNet) [25]
uses the UNet-based structure to compensate for the shortcomings of the voxel method in
which information loss occurs due to lowering the resolution. In addition, SalsaNext [26,27]
consists of an encoder-to-decoder architecture with a ResNet blockset in the encoder unit
and upsampling in the decoder part in order to perform the semantic segmentation in an
uncertainty-aware environment. Various other classification and segmentation methods for
3D point clouds have been proposed [28–31]. However, directly using LiDAR point cloud
data in deep-learning methods remains challenging.

The above-mentioned reports proposed a unique learning network mainly for the
classification of 3D point clouds. Even if a dedicated network is designed, the learning
performance cannot be guaranteed according to the change of the input data. It is dif-
ficult to classify the individual points because learning is mainly performed in units of
scenes. Overall, given the infeasibility of directly adopting state-of-the-art image-based
deep-learning architectures, the use of LiDAR data is limited with regard to algorithm
development. Even if a dedicated network is designed, the learning performance can-
not be guaranteed for variations in the input data. Overall, deep learning using LiDAR
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data is limited regarding algorithm development given the infeasibility to directly adopt
demonstrated deep-learning architectures that use images.

In this paper, we propose a spherically stratified point projection (sP2) method to
generate feature images for processing 3D point clouds using existing deep-learning
architectures. The proposed sP2 method can generate feature images for all 3D points
by analyzing the distribution of surrounding points in a 3D point cloud. Thereafter, the
generated feature image can be classified using an existing deep-learning method for
two-dimensional (2D) images, thus achieving the pointwise classification of point clouds.

The sP2 feature images can provide unique geometric descriptions in terms of individ-
ual points from 3D data. Object classification using a general 3D point cloud differs from
labeling through the clustering of points contained in an object. In addition, unlike existing
independent networks, the sP2 feature images can be directly applied to architectures
such as LeNet [32], GoogleNet [33], and AlexNet [34], which are widely used for image
classification. To validate the proposed sP2, we conducted an experiment to classify urban
structures using data collected from the Kongju National University (KNU) campus using
a Velodyne 16-channel LiDAR (the KNU dataset) and the KITTI [35] dataset.

Our main contributions are summarized as follows:

• We propose a feature-image descriptor, which includes geometric information, based
on only 3D points collected through a LiDAR sensor;

• The generated feature images include distribution information such as the location,
distance, and density of surrounding points near a target point;

• The proposed feature-image-generation method is applicable to all 3D point clouds
and enables pointwise classification through the popular image classifiers such as the
CNN model;

• The proposed sP2 method was validated through learning based on the feature-image-
generation method, and image-classification networks are evaluated on the KNU and
KITTI datasets.

The remainder of this paper is organized as follows: Section 2 describes the proposed
sP2 method to capture feature images that can be used as the learning input data obtained
from a 3D point cloud. In Section 3, we experimentally evaluate the effectiveness of the
proposed sP2 method. Finally, we draw conclusions and discuss further works in Section 4.

2. Spherically Stratified Point Projection

Vision sensor data, which are the most common type of data in image classification,
provide information on the color of an object. This is advantageous for image learning
because color data convey more information on each pixel within a fixed neighborhood
of pixels. However, data collected using LiDAR sensors may represent object information
pertaining to its surface, rather than its color. For example, the walls of a building can be
represented as flat surfaces, while tree trunks can be represented as cylinders. Based on
these advantages of LiDAR sensors, we propose a feature-image-generation method to
define the attributes of the point unit using the point cloud distribution and the surface
information of the object. The sP2 uses the point cloud data measured by LiDAR as the
input, and it generates the feature images that can be used directly in the object classifier.
The CNN model as the image classification can output the resulting classified points
corresponding to the objects using the sP2 feature images.

2.1. Image Descriptor

The sP2 image descriptor uses the distribution of surrounding points to define the
features of each and every point in a 3D point cloud. The surrounding points are centered
on the origin and are selected by referring to a three-layer imaginary sphere consisting of a
triangular grid. Since the spherical space is divided into triangular grids, the space can be
represented by many triangulation grids through splitting a regular sphere into a geodesic
sphere. Basically, the sphere space cannot be divided only with other different shapes
such as hexagonal grids or pentagons. For instance, the patches of a soccer ball should be
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composed of a combination of hexagons and pentagons. To define the surrounding points,
the straight-line distance Pst is transformed by the distance between the origin Pi from
which the image will be created and all input points P1:n into a straight-line distance as in:

Pd(x,y,z) = P1:n − Pi, Pst = ||Pd(x,y,z)||; Pst < r, P ∈ PN , (1)

where the straight-line distance Pst is less than the radius r of the sphere and the point P
should be included in the neighboring point group PN . As shown in Figure 1, the selected
neighboring points are projected onto the nearest triangular grid of the virtual sphere, and
the distribution characteristics of neighboring points with respect to the origin are updated
by calculating the occupancy probability of the projected triangular grid. Each grid has
an occupancy probability that is updated by the parameters such as the distance between
the points and the number of points in the grid. In the triangulation grid, the occupancy
probability can arithmetically extract the surface characteristic of the objects from the 3D
point cloud. After that, one feature image is generated by matching the updated occupancy
probability to each image pixel.

Figure 1. Geodesic tessellation of spherical surface and projection of neighboring points onto the
corresponding grid. The large red dot in the middle of the sphere indicates the target 3D point to be
classified into a semantic label. The blue dots indicate neighboring 3D points, which are projected
onto the geodesic grid (small red dots).

2.2. Occupancy Grid Update

Let Pt represent a point cloud at time step t and τi be the target point to be classified.
Pt moves with τi being the origin, as shown in:

X(P̃t,i) = X(Pt)− X(τi), i ∈ n(Pt), (2)

where P̃t,i represents the group of points moved when τi is the origin and X represents
the Cartesian coordinates (x, y, z) of the corresponding point. By applying the Bayesian
model [36], each grid of the geodesic sphere centered near an arbitrary origin can update
its occupancy accumulation as follows:

p(M|P̃t,i) =
N

∏
n=1

p(mn|P̃(n)
t,i ), (3)

where M represents the grids segmented from the N grids constituting the geodesic sphere
and P̃(n)

t,i denotes a partial point cloud included in the bearing angle boundary condition
satisfying the nth patch mn. The occupancy probability of mn can be expressed using Bayes’
rule as follows:

p(mn|P̃(n)
1:j )j=1:J =

p(τ̃(n)
j |mn)p(mn|P̃(n)

1:j−1)

p(τ̃(n)
j |P̃

(n)
1:j−1)

, (4)
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where j denotes the index of every point belonging to P̃(n)
t,i from the J points and P̃(n)

t,i

should be reduced to P̃(n). Let P̃(n) from one to j be denoted as P̃(n)
1:j . When deriving the

probability that the opposite case of (4) will occur, some probability terms that are difficult
to calculate by dividing (4) are deleted, and finally, this probability is expressed as follows:

p(mn|P̃(n)
1:j )

p(mn|P̃(n)
1:j )

=
p(mn|τ̃(n)

j )p(mn|P̃(n)
1:j−1)p(mn)

p(mn|τ̃(n)
j )p(mn|P̃(n)

1:j−1)p(mn)
. (5)

The log odds ratio for (4) is defined as follows:

lj(mn) =log
p(mn|τ̃(n)

j )

1− p(mn|τ̃(n)
j )

+ log
p(mn|P̃(n)

1:j−1)

1− p(mn|P̃(n)
1:j−1)

− log
p(mn)

1− p(mn)
, (6)

where the first term on the right-hand side of the equation represents the point projection
model, which indicates the grid occupancy probability update according to the distance
between grid mn and point τ̃

(n)
j . The second term represents the occupancy probability

update before calculating the current occupancy probability update with point τ̃
(n)
j . The

third term is determined by the prior probability of the lattice as a log odds ratio. We set
p(mn) to a large constant because p(mn) is considered to be zero.

The function-point-projection model implements probability function p(mn|τ̃(n)
j ) in

the log odds form. This model is applied to all points within the bearing region of each grid.
Each point contributes towards updating the occupancy probability of the corresponding
grid according to distance as follows:

p(mn|τ̃(n)
j ) = 1.0− 0.5

1.0 + e−α(rj−µ)
, (7)

where rj denotes the distance of τ̃
(n)
j projected onto the corresponding grid surface, α

denotes the slope of the sigmoid function, and µ is a parameter to control the allowed
distance between points participating in the occupancy probability update. Figure 2 is an
illustration of an example of updating the occupancy probability in (7), where p(mn|τ̃(1,2,3))
is (0.986, 0.75, 0.508) with α = 4, µ = 1.5 m, and r(1,2,3) = (0.6, 1.5, 2.5) m for τ̃j. The
point projection model function in the form of the log odds ratio in (6) becomes (1.848,
0.477, 0.014). When the lattice surface of the updated geodesic sphere is two-dimensionally
flattened, a unique image containing the shape correction characteristics of the center is
obtained.
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Figure 2. Example of updating the occupancy probability for α = 4, µ = 1.5 m, and r(1,2,3) =

(0.6, 1.5, 2.5) m for τ̃j in (7). The resulting p(mn|τ̃(1,2,3)) is (1.848, 0.477, 0.014).

2.3. Image Generation

The overall flowchart is shown in Figure 3 according to the sequences from LiDAR
points to classified points as the input and output, respectively. This process includes the
method to extract sP2 feature images that can be directly applied to the CNN classification.
In Algorithm 1, we set up several parameters, which include the radius values and the
number of occupied triangulation grids. First, the radius values on the spherical domain
were determined by considering the LiDAR specification and the classified objects. The
experimental data were collected by using 16-channel LiDAR and setting humans as the
smallest object to classify. According to these experimental conditions, the radius values of
r1, r2, and r3 were determined as 0.25, 0.5, and 0.75, respectively. In addition, the number
of triangulation occupied grids was derived by the spherical resolution in the geodesic
domain. We executed dividing the spherical region into one-degree resolution considering
the distribution of LiDAR points, and the space could consist of 180 triangulation occupied
grids. Then, a feature input image was constructed of 14 × 14 in size by adding 16 empty
grids to the 180 occupied grids. It first generates a three-layer virtual sphere consisting of a
triangular lattice and centered at the target point to generate a feature image, as shown in
Figure 3. All points collected by LiDAR can be candidates of target points. Normally, the
target points are assigned according to the order of the input points. If only one virtual
sphere is considered, the contained points are projected equidistantly on the surface of the
sphere, and the surface information of the object may be lost; therefore, we expressed the
unique surface information of the object in the form of an imaginary, three-layer sphere
centered at the origin, as shown in Figure 4. Based on their linear distance from the origin,
points around it were then divided into three layers. The spheres marked as layerB, layerG,
and layerR contained points within a radius of r1 units, r1 to r2 units, and r2 to r3 units,
respectively, to update the distribution information for points close to the origin, midway
from the origin, and far away from the origin, in that order. The layered point was used as
an input to calculate the occupancy probability of the belonging layer. Namely, the values
of layerB, layerG, and layerR are a different concept from the B, G, and R context channel
data of a normal image because they contain the object outlines according to the region of
the physical distances. An image of the point cloud projection and occupancy update for
each layer is shown in Figure 4. The points divided according to the distance are projected
on the triangular grid of the nearest sphere, and the occupancy probability of the triangle
grid is finally updated to a value between zero and one according to the distance between
the points and the center of the triangle grid. Consequently, a unique image including
surface information is generated by encoding RGB values of color images to the unique
images from the outermost to the innermost images. An image generated using sP2 is
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shown in Figure 5. Because a feature image is generated by developing an imaginary
sphere based on a triangular grid, the pixel position corresponding to the triangular grid
indicates the direction of the surrounding points from the origin. In addition, the saturation
of a pixel represents the probability of occupancy of each triangular grid of an imaginary
sphere. Finally, because the RGB channel is defined by three layers of virtual spheres, it
represents the distance from the origin.

Figure 3. System flowchart the of LiDAR-point-cloud-based object classification method using the sP2 feature images.

Figure 4. The outer sphere projects points far from the target point, and the points are assigned to
red values in a color image. The middle sphere projects points are located midway from the target
point, and the points are assigned to green values in a color image. The inner sphere projects points
close to the target point, and the points are assignment to blue values in a color image.
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Algorithm 1 sP2 image generation.
Input: P1:n(x, y, z), gridR, gridG, gridB . P1:n(x, y, z) represents the coordinates of n point clouds collected from LiDAR

. gridR, gridG, and gridB are the grid information corresponding to layers R, G, and B
Output: sP2 image with dimensions of W×H corresponding to Pi(x, y, z)
Parameters: r1 = 0.25, r2 = 0.5, r3 = 0.75 . r1, r2, and r3 are the spherical radii demarcating the three layers

1: for i = 1→ n do
2: Calculate the distance from the origin to all the points: Pd(x,y,z)=P1:n − Pi
3: Convert the Cartesian coordinates to linear distances: Pst = ||Pd(x,y,z)||
4: for j = 1→ n do // Comparison of Pst and r
5: if Pst < r1 then
6: add Pst to layerB
7: else if r1 ≤ Pst < r2 then
8: add Pst to layerG
9: else if r2 ≤ Pst < r3 then

10: add Pst to layerR
11: end if
12: end for
13: Find the closest grid by comparing the x, y, z values included in layerB,G,R with the center coordinate gridB,G,R
14: for k = 1→ 180 do
15: Update the occupancy probability for 180 grids of gridB,G,R using the number of points and Pst included in the grid
16: end for
17: Add 16 blank grids after each grid to resize the image to dimensions of W×H
18: Generate a three-channel image for each Pi by applying the values of gridR, gridG, and gridB to the RGB layers
19: end for

(a) (b) (c)

(d) (e)

Figure 5. Example of a random sP2 image generated for various labels: (a) person, (b) car, (c) tree,
(d) wall, and (e) floor.

3. Experimental Evaluation

We conducted an experiment that was divided into three stages. First, we trained a
neural network using the generated sP2 images. Second, the classification performance
was quantitatively evaluated using the sP2 images generated from 3D points based on
the manually written ground truth. Third, we segmented point clouds based on the
classification results using sP2 images generated from raw data without using ground truths.
Two datasets were used to quantitatively validate the sP2 image generation regarding
classification and segmentation.

3.1. Datasets and Training Setup

Experimental data were collected in two ways. The first was the KNU dataset. This is a
collection of 3D point clouds scanned by a LiDAR scanner and the dead-reckoning position
measured by an inertial measurement unit (IMU) on a mobile robot platform. It contains
the labeled 3D point cloud data corresponding to various objects on the campus site to
research self-driving technologies, such as mapping, localization, object classification, path
planning, etc. Another dataset was extracted from the KITTI raw dataset. Considering
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the information collected for an urban environment, we aimed to classify the 3D points
according to the following class: person, car, tree, building, and floor. The datasets have
different point densities and reflect various environments. The KNU dataset was collected
at various locations and angles within the campus to cover various situations, and its point
density is low because the LiDAR sensor has 16 channels. The KITTI dataset has not been
collected in various environments, but it has a high point density given the 64-channel
LiDAR sensor used for its collection, thereby rendering it suitable to distinguish objects far
from the origin. Some differences between the two datasets are illustrated in Figure 6. In
addition, the labeling work was performed manually using the raw 3D points collected by
LiDAR since the trained model used not only the public KITTI dataset, but also our own
KNU dataset.

(a) (b)

Figure 6. Raw data labeled by points of interest. Purple indicates persons, green cars, blue trees,
sky blue buildings, and yellow floors. Samples from (a) the KNU dataset using 16-channel LiDAR
acquisition and (b) the KITTI dataset using 64-channel LiDAR acquisition.

We performed labeling to generate sP2 images using the collected 3D point clouds.
We only labeled items that exhibited the characteristics of the objects. For the KNU dataset,
45,000 images were obtained, with 9000 images per class, and for the KITTI raw dataset,
15,000 images per class were generated, yielding a total of 75,000 images for training.
We trained the network using these datasets. Each sP2 image generated for training has
14× 14× 3 pixels. The feature images were employed for training LeNet, which has one
of the simplest CNN structures and is suitable for confirming the pure effectiveness of
sP2, and the learning network was constructed using NVIDIA-DIGITS. In addition, in
comparison with LeNet, we can expect to achieve a higher level of accuracy by using
complex and sophisticated architectures such as GoogleNet or AlexNet.

3.2. Classification Performance

The classification performance from existing methods is listed in Table 1, and that
obtained from the proposed sP2 method for the two datasets is listed in Table 2. The
spherical signature descriptor (SSD) [37] and the modified spherical signature descriptor
(MSSD) [38] were tested on 2000 images per class using data similar to those from the
KNU dataset. The proposed sP2 was tested on 500 images per class of the KNU dataset.
Compared to the MSSD, the accuracy using the proposed method improved by 11% for a
person, 12.15% for a car, 3.65% for a tree, and 12.05% for a building.

Table 1. Classification accuracy of previous studies using the KNU dataset.

Method Person Car Tree Building Floor

SSD [37] - 90.1% 83.6% 91.7% 95.1%

MSSD [38] 88.2% 82.25% 90.65% 86.15% -

sP2 99.2% 94.4% 94.6% 98.2% 99.2%
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Table 2. Classification performance according to learning using sP2 images for two datasets.

Dataset Label Person Car Tree Building Floor Accuracy

Person 496 2 2 0 0 99.2%
Car 0 472 23 1 4 94.4%

KNU Tree 5 10 473 10 2 94.6%
Building 1 1 7 491 0 98.2%

Floor 0 2 2 0 496 99.2%

Person 996 0 4 0 0 99.6%
Car 1 986 10 3 0 98.6%

KITTI Tree 3 2 992 2 1 99.2%
Building 0 2 5 993 0 99.3%

Floor 0 1 1 0 998 99.8%

In addition, the proposed sP2 was tested on 1000 images per class of the KITTI dataset.
Compared with the KNU dataset, the accuracy improved by 0.4% for a person, 4.2% for a
car, 4.6% for a tree, 1.1% for a building, and 0.6% for a floor. The results indicated that the
accuracy of sP2 is higher than that of the MSSD, which does not use the surface features
of the object. Considering the two datasets, we conclude that the density of point clouds
obtained from the LiDAR sensors influences the accuracy of the sP2 method, achieving a
higher accuracy on the KITTI dataset with high point density.

3.3. Raw 3D Point Cloud Classification

The classification results of raw 3D point clouds are shown in Figures 7 and 8. The
classification result showed a pattern similar to the semantic segmentation result because
the classification was performed based on each point. The classes for objects are represented
in different colors, such as purple for people, green for cars, blue for trees, sky blue for
buildings, and yellow for floors. Table 3 summarizes the results of a KITTI data 3D point
group segmentation network proposed in a previous report, whereas Table 4 summarizes
the results of KITTI data 3D point group classification using the sP2. In the previous
study, various objects were classified using Semantic KITTI, but this study performed an
experiment to classify the five types of objects in order to use the KNU dataset specialized
for the urban environment. Here, pedestrians and cyclists were grouped into a class known
as person. In the case of person, lower intersection over union (IoU) results were obtained
compared to previous studies. Pedestrians and cyclists were classified into the same class,
and many misclassifications occurred for the trunks of trees. For cars, the results were
lower than those of previous studies, and the classification results of trees revealed the
lowest performance. By analyzing the classification results, we found that points included
in objects having a cylindrical shape such as signposts were classified as trees or people.
In addition, cars and trees entailed a low classification performance owing to confusion
regarding the similar distribution shape of point clouds of leaves and cars. The classification
results of buildings and floors exhibited substantially high performance compared to the
classification results of other objects. This is the difference in performance when using
the sP2 method, which generates a feature image using the distribution characteristics of
neighboring points for each point. In the case of buildings and floors, it can be verified
that characteristics such as planarity and verticality were well classified, resulting in high
performance. In addition, it was verified that our experimental method, which attempted
to classify all 3D points into five classes, exhibited lower classification performance for cars
and trees. For the scene-segmentation experiment, we used only points including a radius
of 30 m from the LiDAR to reduce the computational burden. Nevertheless, the processing
time to generate the sP2 image was below 1 Hz with an AMD Ryzen 5 hexa-core. This
confirmed that the real-time performance cannot be guaranteed without the use of GPU
parallel processing. It is necessary to calculate five-hundred forty occupancy probabilities
of three layers and one-hundred eighty grids to generate the sP2 image. At this time, as the
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number of points increases, the amount of ancillary calculations increases as well according
to Algorithm 1. This means that it is hard to accomplish the real-time performance with
only the CPU.

(a) (b)

(c)

Figure 7. Segmentation evaluation on (a) the KITTI image and (b) the KITTI raw point cloud. (c) Point
cloud segmented using the generated sP2 image.

(a) (b)

Figure 8. Segmentation of images from (a) the KNU dataset (16-channel LiDAR data) and (b) the
KITTI dataset (64-channel LiDAR data).

Table 3. Evaluation of the classification performance of previous studies.
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PointNet [16] 14.6 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7

SqueezeSegV3 [39] 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9

SalsaNext [26] 59.5 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1

Cylinder3D [24] 67.8 97.1 67.6 64.0 59.0 58.6 73.9 67.9 36.0 91.4 65.1 75.5 32.3 91.0 66.5 85.4 71.8 68.5 62.6 65.6

SPVNAS [23] 67.0 97.2 50.6 50.4 56.6 58.0 67.4 67.1 50.3 90.2 67.6 75.4 21.8 91.6 66.9 86.1 73.4 71.0 64.3 67.3

RPVNet [25] 70.3 97.6 68.4 68.7 44.2 61.1 75.9 74.4 73.4 93.4 70.3 80.7 33.3 93.5 72.1 86.5 75.1 71.7 64.8 61.4
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Table 4. Classification performance evaluation of the sP2.

mIoU
Person

(Pedestrian+Cyclist)
Car

(Car+truck)
Tree

(Pole+Trunk+Vegetation)
Building

(Wall)
Floor

(Road)

PrecisionRecall IoU PrecisionRecall IoU PrecisionRecall IoU PrecisionRecall IoU PrecisionRecall IoU

sP2 50.2 35.7 98.4 35.5 49.7 81.2 44.6 15.7 53.1 13.8 88.1 68.6 62.8 99.1 95.2 94.4

4. Conclusions and Further Works

We proposed the sP2 to produce training images from point clouds rather than de-
signing a dedicated network for point cloud classification, thereby establishing a novel
paradigm for 3D point cloud classification. Our approach differs from that of previous
studies in that it classifies all point clouds and uses an already designed image classification
network. The sP2 feature images provide information about the surface of an object and
the distribution of surrounding points. To verify the performance of the proposed sP2

method, we conducted experiments on the existing KITTI and KNU datasets collected from
Kongju National University. In the training stage, the classification performance was high,
as shown in Table 2, but the actual scene segmentation was low. The experimental method
classified only five types of objects and did not consider the various objects in the real
world. This resulted in low precision, especially decreasing the mIoU value. However, even
with a simple LeNet architecture, we could achieve the high recall values of 98.4, 81.2, 53.1,
68.6, and 95.2 for the five target objects, person, car, tree, building, and floor, respectively.
This result shows the robust classification performance with the simple network by using
sP2 feature images.

As further works, we expect to achieve high segmentation performance by diversifying
classification objects and using deeper classifier networks. In addition, we will adopt the
advanced technical methods to generate sP2 images using parallel processing in order to
satisfy the real-time performance.
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