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Abstract: Human activity recognition plays a prominent role in numerous applications like smart
homes, elderly healthcare and ambient intelligence. The complexity of human behavior leads to the
difficulty of developing an accurate activity recognizer, especially in situations where different activi-
ties have similar sensor readings. Accordingly, how to measure the relationships among activities
and construct an activity recognizer for better distinguishing the confusing activities remains critical.
To this end, we in this study propose a clustering guided hierarchical framework to discriminate
on-going human activities. Specifically, we first introduce a clustering-based activity confusion
index and exploit it to automatically and quantitatively measure the confusion between activities
in a data-driven way instead of relying on the prior domain knowledge. Afterwards, we design a
hierarchical activity recognition framework under the guidance of the confusion relationships to
reduce the recognition errors between similar activities. Finally, the simulations on the benchmark
datasets are evaluated and results show the superiority of the proposed model over its competitors.
In addition, we experimentally evaluate the key components of the framework comprehensively,
which indicates its flexibility and stability.

Keywords: wearable computing; activity recognition; clustering guided

1. Introduction

Benefiting from the rapid development and fusion of sensing technology, pervasive
computing, and artificial intelligence, researchers have designed and implemented a wealth
of Internet of Things (IoTs) systems and applications, such as behavior analysis, sports and
games, the elderly healthcare, chronic disease management, smart buildings, smart homes
and ambient intelligence, etc. [1,2]. From the perspective of system architecture, these appli-
cation services have a typical three-layer architecture of IoTs (sensing layer, network layer,
and application layer) [3,4]. With the complex characteristics of human behavior, it is not
very easy to build an accurate activity recognizer for practical applications [5]. For example,
there exist intra-subject and inter-subject variations of how people perform an activity,
which is difficult to the generalization ability of activity recognizers [6]. Besides performing
activities sequentially, an individual can conduct concurrent and interleaved activities,
and there are activities involved in a specific application having similar sensor signals,
which confuses an activity recognizer to a certain extent [7,8]. Therefore, automatically and
accurately recognizing human activities is still a challenging issue [9,10].

In the literature, many activity recognition models had been proposed. They were
categorized into three types based on the technology, including vision-based, environment
interaction-based, and wearable-based methods [11–13]. Vision-based mechanisms exploit
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the computer vision techniques to analyze and infer the human activities in camera cap-
tured content. The recent years have witnessed enormous growth in their applications
such as video surveillance, games, and security, while their performance is sensitive to
background noise and illumination variation [14]. Moreover, their use often raises privacy
issues and is further limited to the fixed places [11]. For the second type methods, they
analyzed the on-going activities by recording the interaction between the person and
the surroundings via the sensing units placed on household objects. Obviously, they are
usually limited to indoor scenarios [15]. Different from the above two types of methods,
wearable-based methods largely benefit from the communication capabilities of wearable
devices. Typically, they first collected the sensor data when one performed activities and
trained an activity recognizer, which was used for making predictions [16]. That is to
say, a person could wear multiple homogeneous or heterogeneous sensing devices on the
body [17], which was more suitable for both scenarios.

In terms of the activity recognition models, there were many models from the gener-
ative and discriminative models to unsupervised learning, ensemble learning, and deep
learning models [18–20]. Although these models advance the study of human activities,
most of the studies recognized the predefined activities in a one-step, which we called
the flat model for illustration purposes. However, for the activity recognition supported
applications, different activities (even if they have totally different semantics) could have
quite similar sensor signals, which reduced the ability of activity recognizers in distin-
guishing confusing activities and inevitably led to degraded accuracy [7,8]. One feasible
solution is to develop a hierarchical activity recognition model in order to derive a supe-
rior decision between similar activities towards performance improvement, where there
are two key factors that determine its practical use and performance. First, determining
the relationships among activities is a prerequisite for constructing a hierarchical activity
recognizer. Different from the simple and easy case where we can use prior knowledge
to group activities, it is a challenging task for new and under-explored cases with few or
even no domain expert knowledge about the activities available for use. Accordingly, how
to quantitatively measure the confusion among activities largely influences its generaliza-
tion ability across different scenarios. Second, how to effectively utilize the relationship
to build an activity recognizer affected its overall performance in analyzing confusing
activities. This requires us to develop a model to better distinguish different activities
and to maximize the decision distance between confusing activities. To handle the key
issues, we herein propose a clustering guided hierarchical activity recognition framework
that consists of two critical components. Specifically, we first introduce a clustering-based
activity confusion index and use it to quantitatively measure the confusion among activities
in a data-driven way. Afterwards, we develop a hierarchical activity recognition model
under the guidance of the relationships to reduce the recognition errors between similar
activities. The contributions of the proposed study are listed. (1) Instead of depending
on prior knowledge, a data-driven approach, which quantitatively measures the confu-
sion among activities has been proposed. This potentially facilitates the development of
the hierarchical activity recognition model and its extension to new and under-explored
situations that have limited prior domain knowledge. (2) We formalize the problem and
accordingly propose a hierarchical human activity recognition framework guided by the
proposed activity confusion index, which has the capability of connecting any two activ-
ities and returning a superior decision between activities having similar sensor signals.
This is expected to reduce confusion errors. (3) We also experimentally investigate the
power of tri-axial accelerometers and gyroscopes and study the parameter sensitivity of
the components of the framework, which indicates the power of fusing distinct sensors
and the flexibility and stability of the proposed model.

The structure of this paper is shown as follows. Section 2 discusses the related work
on activity recognition models. The proposed clustering guided hierarchical framework is
given in Section 3. Sections 4 and 5 analyze the experimental settings and the performance
results. The conclusion is given in Section 6.
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2. Related Work

Different from image processing and text analysis, the development of activity recog-
nition includes many challenges such as modeling, evaluation, and human behavior, which
is characterized by inherent complexity. To get enhanced performance and generalization
ability across different scenarios, researchers have proposed many activity recognition
models, which can be categorized into two categories: knowledge-driven and data-driven
approaches [6,21,22].

Knowledge-driven approaches utilized domain knowledge for activity specification
and further used it for sensor modeling, context fusion, activity modeling and recog-
nition [23]. Commonly used modeling tools include, but are not limited to, ontology
modeling, evidential theory, and logical modeling [24]. For example, an activity recogni-
tion model based on the ontologies and reasoning is used to infer on-going activities [21].
They implemented the proposed approach in a software system and evaluated it as a
smart home research laboratory and achieved an overall accuracy of 94.44%. Although the
knowledge-driven approaches have advantages of high efficiency, robustness to noise, and
easy interpretation, they usually need domain expert knowledge for activity and context
modeling, which is not a trivial task, especially for a new and underexplored domain.

Data-driven approaches, also called data-centric approaches, aim to learn an activity
recognition model from the collected sensor data [25]. Study [16] used k nearest neighbors
and naïve Bayes to train sensor-based activity recognizers. Another study [26] utilized
the random forest algorithm to recognize activities such as jump, run, static, walking, go-
upstairs, and go-downstairs. There are also researches that use deep learning models to
jointly optimize the feature learning and classifier training [27–29]. Study [30] proposed
a deep convolutional neural network (CNN) based activity recognizer to predict the
activities based on the mobile phone data. Ordóñez and Roggen introduced a convolutional
long short-term memory (LSTM) model, and they experimentally evaluated its power,
demonstrating its superiority over its competitors [17].

Besides, some studies combine knowledge-driven and data-driven approaches. Azkune
et al. proposed a model that uses the data-driven approach to evolving knowledge-driven
approach aiming to obtain knowledge-driven activity recognition models [31]. Sukor et al.
presented a hybrid activity recognition model that first used knowledge-driven reason-
ing to get an initial activity model and then optimized it using a data-driven approach.
They experimentally evaluated the proposed model, which showed significantly higher
recognition rates [32].

To better handle the activities that have similar sensor signals, some studies present
the hierarchical activity recognition models. Different from the flat models that classify
the activities of interest in a single step, hierarchical models usually adopt a coarse-to-
fine scheme to infer the activity label via a multi-stage decision, where they transform
the original problem into a series of classification problems [33]. Study [25] developed a
hierarchical activity recognition model that recognized human gestures and predicted the
final activity. Liu et al. presented an activity recognition model that recognized the actions
and then utilized the temporal patterns of the actions to recognize activities [34]. From
the perspective of the prediction process, we call such a scheme the bottom-up approach.
Instead, some studies work in a top-down scheme, where it first predicts an abstract activity
and then infers the specific label of the activity. Study [35] proposed a two-stage model
that classified activities into dynamic, static, or transition states and then inferred the
specific activity within the activity group. Cho and Yoon proposed an activity recognition
model based on two-stage 1D CNN to first predict the test sample within an abstract
activity group and then make predictions within the group [8]. Wang et al. used prior
domain knowledge of the activities to manually organize them into a tree structure and
proposed a tree-based activity recognizer [7]. Although top-down methods make no
assumption about the temporal relationship and obtain enhanced performance, most of
the studies rely on prior knowledge about the activities to group activities and to build
a hierarchical activity recognizer [7,8,34,36]. This hinders them when handling new and
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complex scenarios of which there is little expert knowledge. Moreover, wrong grouping
can result in degraded accuracy. In addition, one major limitation of the tree-based models
is that they probably induce the accumulation of errors in the hierarchical predictions.
Therefore, the above issues motivate us to explore the data-driven way to automatically
and quantitatively measure the relationships among activities and then build an activity
recognizer for reducing the accumulation of errors. Accordingly, we present a clustering
guided hierarchical activity recognition model. Compared with previously work, our
proposed data-driven model utilizes the clustering theory to identify confusing activities
and quantifies the relationships among activities with the two proposed confusing indices
(i.e., cluster confusion index and activity confusion index). Different from the tree-based
model, our proposed model allows the flexible connections between any two activities,
which helps return a good decision boundary between similar activities. Particularly,
the proposed method is a general framework that can take as its building blocks various
clustering and classification models and even deep learning models.

3. Clustering Guided Activity Recognition Framework

The characteristics of the complex human behavior lead to the difficulty of designing
an activity recognizer, specifically in handling cases where activities with different seman-
tics have similar sensor readings. As a result, this degrades the discriminant capability of
an activity recognizer. For example, we experimentally observe that the sensor readings
between dynamic activities are more similar than the ones between static activity and dy-
namic activity. Hence, training a flat activity recognizer to classify the three activities pays
much attention to the decision boundary between static activity and dynamic activities
and fails to determine a good decision between the two dynamic activities.

One feasible solution is to construct a hierarchical activity recognizer, where we infer
the activity labels in a multi-stage way. Accordingly, the key is how to determine the
relationships among activities and use them to direct the design of an activity recognition
model, especially for the case with little or no prior knowledge. Figure 1 depicts the
proposed clustering guided hierarchical activity recognition model, which consists of two-
level classification. The training data set contains two parts: the sensing data and the label
of activity. Initially, the sensing data will be the input of the designed model, which is the
first level of coarse-grained classification. Since the sensing data of some activities, such
as sitting and lying, are similar, they might fall in the same cluster. This occurs because
their features represented by the sensing data are similar. To further distinguish them in a
way of fine-grained feature extraction, a Confusion Analyzer is designed to assign each
activity with an activity confusion index, which represents the similarity between activities.
The output of the first level coarse-grained classification will further play the role of input
data of the second level fine-grained classification model, aiming to further distinguish
similar activities. According to the assigned activity confusion index, the output of the
first level classification model can be the final decision without feeding into the lower-
level classification, if it does not fall in the same group of other activities. Otherwise, the
output of the first level coarse-grained classification model will be further processed by
applying the fine-grained classification. Herein, the component of Confusion Analyzer
aims to assign each activity with an activity confusion index according to the clustering
results. The coarse-grained classification and fine-grained classification could use the same
machine learning model to design their recognizers. For a specific application, we train
a coarse-grained classification model and selectively train a fine-grained classification
model for each activity. That is, if there exist confusing activities for one activity, we train a
fine-grained model associated with it. Accordingly, the number of classes to be predicted
for coarse-grained classification and fine-grained classification is different, and the coarse-
grained model usually has higher storage and computation complexity. Although the
example given in Figure 1 only depicts the two-level activity recognition. However, the
general model of hierarchical classification, as shown in the block of the left bottom of
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Figure 1, can have multi-level classification models where the number of levels is larger
than two.

The framework contains two core components: determining the confusion among
activities, which is implemented by the Confusion Analyzer, and constructing a hierarchical
model. The idea is to build the hierarchy of the predefined activities under the guidance of
the relationships among activities, which is determined by the Confusion Analyzer. Specif-
ically, we first measure the activity relationships without the reliance on prior knowledge
by introducing a clustering-guided confusion index. Guided by the relationships, we then
design and train a hierarchical activity recognition model. Finally, we apply it to recognize
on-going activities associated with the sensor signals. In the next subsections, we detail the
former two components. For illustration purposes, D denotes the training set, and L states
the predefined activity labels. D = (X, Y) is a labeled dataset, where X is the feature matrix
and Y is the corresponding label of each sample of X. tx is a test sample, and |L| indicates
the number of predefined activities.
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3.1. Measuring the Confusion among Activities

Considering that similar activities tend to generate similar sensor signals from the
view of data distributions, we utilize the idea of clustering techniques to partition the data
points of the predefined activities into multiple groups and analyze the group purities
to quantify the confusion among activities. We herein introduce two definitions before
illustrating the procedure.

Definition 1. (Cluster Confusion Index). Given a cluster C consisting of a subset of samples from
D, the class of C is set as the label Li (1 ≤ i ≤ |L|) that has the maximum data points in C. The
number of samples with label Lj (1 ≤ j ≤ |L|, i 6= j) is defined as the cluster confusion index
between Lj and Li and is referred to as confc(Lj → Li).

Li = max
Lk∈L
{∑

x∈C
I(yx = Lk)}, (1)

where I (a = b) is an indicator function that returns 1 only if a equals b, x is a sample of C, and yx
is the class label of x. The confc(Lj → Li) indicates how many samples of Lj in C are labeled as Li
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and denotes the confusion between Lj and Li in C. We can then measure the overall confusion index
between Lj and Li in D.

Definition 2. (Activity Confusion Index). Given the k clusters obtained by manual assignment or
returned by a clustering algorithm, the activity confusion index conf(Lj → Li) between Lj and Li is
defined as the sum of cluster confusion index of the k clusters, as given in Equation (2).

con f (Lj → Li) =
k

∑
c=1

con fc(Lj → Li) (2)

According to Definitions 1 and 2, we can apply a data-driven or knowledge-driven
approach on D to getting k clusters and further obtaining the confusion index conf (Lj → Li)
between Lj and Li. Due to the advantage of the data-driven approach over the knowledge-
driven approach, we exploit the power of clustering techniques in partitioning D.

Next, when considering each pair of the predefined activities, we can organize the
activity confusion index into a confusion matrix CM, also called the relationship matrix.
Let CM denote a square matrix, and the number of rows equals |L|. The entry CMji of the
j-th row and i-th column is the samples from the j-th activity that is categorized as the i-th
activity. A large value of CMij leads to more confusion between the activities.

After quantifying the relationships among activities, we then detail how to use them
to direct the construction of an activity recognition model in better discriminating confus-
ing activities.

3.2. Hierarchical Activity Recognition Model

The above designed activity confusion matrix indicates that if the predicted label of
a test sample tx is Li, its true label probably comes from Lj. We herein use a confusion
threshold θ to decide whether Lj is a potential confusing activity of Li. Specifically, for the
i-th column, if the ratio η(Lj, Li) of CMji to the sum of the i-th column of CM exceeds θ, Lj is
taken as a confusing activity of Li and a mechanism is expected to distinguish Lj and Li.

η
(

Lj, Li
)
= CMji

/ |L|

∑
j=1

CMji ≥ θ (3)

Particularly, for each activity LA ∈ L, we can find a subset of activities S(LA) that are
the confusing activities of LA. That is, it is necessary to further distinguish between S(LA)
and LA if the predicted activity label is LA in the first step. Accordingly, we propose a
hierarchical human activity recognition framework that works in the following scheme. In
the training phase, initially, a top-level classification model cls_all are trained to differentiate
among all the predefined activities, which takes essentially the same steps of the flat model.
Afterwards, for each activity LA ∈ L, whose S(LA) is not empty, then a second-level classifier
cls_LA is trained to classify LA and S(LA). Note, S(LA) is obtained from the activity confusion
matrix in the previous step. In the prediction stage, given a test sample tx, we first classify
it using cls_all and get the predicted result LA. If S(LA) is not empty, we then apply cls_LA
on tx to return the inferred label; otherwise, report LA.

According to subsections A and B, the proposed framework is shown in Algorithm 1.
The lines 1–2 show the steps of quantifying the confusion among activities, lines 3–5 denote
the classification model training that mainly describes how to build a hierarchical activity
recognizer with the guidance of the activity relationships, and lines 6–8 show the procedure
of obtaining the predicted label of a test sample, which involves two-level classifications.
Particularly, we present the roles of the two core components in Algorithm 1, where
lines 1–2 illustrate the first component and lines 3–5 correspond to the second component,
to state how to integrate them into the proposed framework.
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Algorithm 1: Clustering Guided Hierarchical Activity Recognition Framework.

Input: Training set D and labels L for activities, Threshold θ, test set tx
Output: The prediction of activity with label LA of tx
// TRAINING STAGE
1. Divide D into groups CLU; // Component #1
2. calculate the activity confusion matrix CM of CLU by applying (1) and (2);
3. Construct cls_all to identify all activities; // Component #2
4. for each activity LA of L do

(4.1) S(LA) = { }; // initialization of LA
5. for each activity LA of L do

(5.1) for each activity LB of L do
obtain η(LB, LA) by applying (3);
if LA != LB and η(LB, LA) ≥ θ do

S(LA).add(LB);
(5.2) if not_empty(S(LA)) do

construct a cls_LA to distinguish LA and S(LA);
// PREDICTION STAGE
6. LA = cls_all (tx); // infer the label of tx by applying the top-level classifier
7. if not_empty(S(LA)) do

LA = cls_LA(tx); // infer the label of tx by applying the second-level classifier
8. return LA

4. Experimental Setup
4.1. Experimental Data

This section evaluates the comparative experiments on the UCI-HAR dataset, which
consists of six human activities [37]. The smartphone, which has a 3-axis accelerometer and
a gyroscope, works with a sampling rate of 50 Hz. For illustration purposes, X, Y, and Z
refer to the three axes of the sensing unit, and ‘t’ (‘f’) denotes the time domain information.
The features are associated with raw accelerometer signals tAcc-XYZ and gyroscope signals
tGyto-XYZ. The frequency-domain features are obtained by applying a Fast Fourier Trans-
form on tAcc-XYZ, and we get fBodyAcc-XYZ and fBodyAccJerk-XYZ. Similarly, for the
gyroscope, we extract Jerk signals tBodyGyroJerk-XYZ, tBodyGyroJerkMag, and tBodyGy-
roMag from tGyto-XYZ. We then extract the frequency-domain features fBodyGyro-XYZ,
fBodyGyroMag, and fBodyGyroJerkMag. In summary, 348 and 211 features are extracted
from the accelerometer and gyroscope data. Extra two features are correlated with both the
accelerometer and the gyroscope, so there are 561 features in total. The dataset consists of
7352 and 2947 training and test set samples, respectively. Furthermore, to study the power
of different sensing units in activity recognition, we perform experiments with a single
type of sensing unit (i.e., accelerometer or gyroscope) and two types of sensing units (i.e.,
accelerometer and gyroscope). Table 1 presents the dataset description, where “Acce &
Gyro” refers to the use of both accelerometer and gyroscope.

Table 1. The UCI-HAR dataset description.

Sensing Units
The Number of Features

Time-Domain Frequency-Domain Total

Accelerometer 164 184 348
Gyroscope 106 105 211

Acce & Gyro 272 289 561

4.2. Model Selection and Performance Metrics

As discussed above, the clustering-guided model takes various partitioning techniques
and classification models as its building blocks. As for the data partition, we can do it
manually or utilize a clustering algorithm. Since knowledge-driven methods have rather
limited generalization to new and under-explored cases, we utilize clustering algorithms
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to perform the procedure in a data-driven way. Herein, we adopt the widely used k-
means to partition data. We set the number of clusters returned by k-means to be the
number of predefined activities. In addition, we evaluate the choice of other clustering
algorithms in the next section. As for building the hierarchical activity recognizer, we can
use the same classification model or different classification models. The two schemes are
called homogeneous and heterogeneous schemes. In the study, we evaluate both cases. The
naïve Bayes (NB), k nearest neighbor (KNN), support vector machine (SVM), and decision
tree (DT) algorithms are adopted as the classification models. For KNN, we choose the
nearest neighbor with the Euclidean distance metric. For SVM, the linear kernel is adopted.
The four classification models are widely used in many existing studies [6,16,38]. For
performance metrics, accuracy, precision, recall, and F1 are used to assess the power of an
activity recognizer. F1, the harmonic mean of precision and recall.

5. Results and Analysis
5.1. Hierarchical Activity Recognizer

According to Algorithm 1, we first measure the confusion among activities and then
build a clustering-guided hierarchical activity recognition model. Table 2 shows the activity
confusion index between activities of UCI-HAR, where the column and row indicate the
true activity and confusing labels of the activities. Furthermore, a confusion threshold θ is
used to understand the confusion between similar activities. For example, if θ equals 0.03,
the confusing activities of go upstairs include walking and go downstairs. If we set θ to be
0.005, the confusing activities of go upstairs include walking, go downstairs, sitting, and lying.
Obviously, this makes it easier us not only to quantify the relationships among activities
but also to correct the predictions of the top-level classifier.

Table 2. Class confusion index on UCI-HAR.

Walking Upstairs Downstairs Sitting Standing Lying

Walking 0 629 597 0 0 0
Upstairs 0 822 251 0 0 0

Downstairs 0 137 849 0 0 0
Sitting 0 1 0 0 1236 49

Standing 0 0 0 0 1374 0
Lying 0 10 0 0 164 1233

Figure 2 presents the hierarchical human activity recognizer of UCI-HAR, where we
empirically set the value of θ to be 0.01. As shown in Figure 2, the root node is to distinguish
the six activities, the task of the internal node “going upstairs” is to distinguish the walking, go
upstairs, and go downstairs, and the internal node “standing” aims to classify standing, sitting,
and lying. Similarly, we can get the hierarchical activity recognizers for Gyroscope and
Accelerometer datasets. After building the framework, the distinct classification models are
integrated to train the top-level and second-level classifiers for optimizing a hierarchical
activity recognizer.
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5.2. Recognition Performance

We present experimental results of both the flat model and the hierarchical model,
as shown in Tables 3–5 for three datasets, respectively. For the symbol “P-Q” of “the
classifier” row, it means we use the classifier P at the top level and use the classifier Q
at the second level. For example, NB-KNN indicates that we use NB at the top level,
followed by KNN at the second level. To facilitate comparison, Figure 3 presents the
comparison results of the four different activity recognition models. As shown in Figure 3,
the usage of the accelerometer achieves better performance compared to the usage of the
gyroscope. In addition, using both “Acce & Gyro” improves the accuracy. This indicates the
priority of the Acce over Gyro in activity recognition and the complementary information
shared by the gyroscope and accelerometer data. This is also consistent with previous
studies. Exceptionally, we also observed that fusing gyroscope and accelerometer data
did not guarantee the improved performance for all the cases, particularly for the use of
NB. This is mainly because the redundant information provided by the 3-axis gyroscope
and accelerometer destroys the conditional independence assumption. One possible way
for further optimization is to conduct feature selection with filter, wrapper, or hybrid
methods for filtering out irrelevant and redundant features. Second, we observe that
the flat activity recognizers seldom classify a sample from dynamic activity into static
activity (or vice versa). However, sometimes the wrong predictions are made in each group,
which degraded the discriminant ability of an activity recognizer. This also motivates us
to develop a hierarchical framework to recognize activities in a multi-step way. Third,
except for the case of using NB at the second level, we observe that the proposed activity
recognizer gets enhanced performance in many cases. This occurs because a hierarchical
activity recognizer captures the confusion between types of activities and benefits from
the finer step to classify confusing activities, which indicates the power of the clustering-
guided model in discriminating activities that have similar sensor signals. Particularly, we
have done this in a data-driven way instead of relying on expert knowledge to organize the
activities of interest in a hierarchical structure. For example, NB-SVM obtains the 91.61%
F1, compared with the 81.49% F1 of NB, 81.49% F1 of NB-NB, 83.95% F1 of NB-KNN, and
84.44% F1 of NB-DT in Table 3. On the UCI-HAR dataset, the best accuracy of the flat model
is 96.47% achieved by SVM, and SVM-SVM improves it to 96.53%. This may indicate that
SVM can better discriminate similar classes in finding an optimal separating hyperplane.
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Table 3. Recognition performance on the Accelerometer dataset.

Model NB NB-NB NB-KNN NB-SVM NB-DT KNN KNN-NB KNN-KNN KNN-SVM KNN-DT

Accuracy 81.07 81.07 83.98 91.48 84.56 84.32 81.41 84.32 91.89 85.04
Precision 80.38 80.38 83.72 91.50 84.29 84.03 80.70 84.03 91.88 84.73

Recall 82.63 82.63 84.19 91.72 84.58 84.55 82.85 84.55 92.16 85.08
F1 81.49 81.49 83.95 91.61 84.44 84.29 81.76 84.29 92.02 84.90

Model SVM SVM-NB SVM-KNN SVM-SVM SVM-DT DT DT-NB DT-KNN DT-SVM DT-DT

Accuracy 91.89 81.34 84.32 91.89 84.97 84.93 81.57 84.32 91.96 85.14
Precision 91.87 80.64 84.03 91.88 84.67 84.63 80.87 84.03 91.95 84.82

Recall 92.16 82.77 84.55 92.16 85.01 84.99 83.03 84.58 92.24 85.19
F1 92.02 81.69 84.29 92.02 84.84 84.81 81.94 84.30 92.09 85.01

Table 4. Recognition performance on the Gyroscope dataset.

Model NB NB-NB NB-KNN NB-SVM NB-DT KNN KNN-NB KNN-KNN KNN-SVM KNN-DT

Accuracy 50.80 50.80 54.09 61.55 55.34 65.83 54.29 65.83 75.33 66.75
Precision 51.92 51.92 55.04 62.83 56.34 66.08 55.18 66.08 75.70 66.91

Recall 55.00 55.00 61.76 71.04 62.32 66.41 60.67 66.41 77.97 69.50
F1 53.42 53.42 58.20 66.69 59.18 66.25 57.79 66.25 76.82 68.18

Model SVM SVM-NB SVM-KNN SVM-SVM SVM-DT DT DT-NB DT-KNN DT-SVM DT-DT

Accuracy 81.37 58.43 70.72 81.30 72.18 68.07 55.65 66.54 76.38 68.21
Precision 81.73 59.43 71.04 81.66 72.39 68.17 56.57 66.68 76.61 68.29

Recall 81.64 64.17 72.36 81.60 73.41 68.24 62.09 69.47 78.60 68.34
F1 81.69 61.71 71.70 81.63 72.90 68.20 59.20 68.05 77.59 68.32
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Table 5. Recognition performance on the UCI-HAR dataset.

Model NB NB-NB NB-KNN NB-SVM NB-DT KNN KNN-NB KNN-KNN KNN-SVM KNN-DT

Accuracy 76.99 76.99 78.86 84.83 77.03 87.85 78.72 87.85 92.26 85.31
Precision 76.88 76.88 78.90 85.13 77.08 87.44 78.63 87.44 92.08 84.80

Recall 79.23 79.23 83.48 88.60 81.09 87.96 82.86 87.96 93.06 85.98
F1 78.04 78.04 81.12 86.83 79.03 87.70 80.69 87.7 92.57 85.39

Model SVM SVM-NB SVM-KNN SVM-SVM SVM-DT DT DT-NB DT-KNN DT-SVM DT-DT

Accuracy 96.34 82.32 90.43 96.47 89.79 86.36 77.10 85.88 92.47 86.36
Precision 96.26 82.16 90.01 96.42 89.40 85.99 76.95 85.40 92.38 85.99

Recall 96.52 85.58 90.91 96.65 89.80 86.31 80.78 86.85 93.13 86.31
F1 96.39 83.84 90.46 96.53 89.60 86.15 78.82 86.12 92.75 86.15

In addition, we present the confusion matrix of the activity recognizers to investigate
the performance improvement. Due to the better performance of SVM, we give the results
of NB, KNN, SVM, and DT and the comparative results obtained by using SVM at the
second level. Figure 4 shows the results on UCI-HAR. The columns indicate the predicted
labels and rows represent the actual labels. The used key-value pairs are: {1: walking, 2:
go-upstairs, 3: go-downstairs, 4: sitting, 5: standing, 6: lying}. From Figure 4, we observe
that the proposed hierarchical activity recognizer generally outperforms the flat model.
For example, NB misclassifies 83 go-downstairs test samples into go-upstairs, and NB-SVM
only makes 9 errors. Compared with SVM, SVM-SVM better discriminates between go-
downstairs and go-upstairs. This indicates the superiority of a hierarchical activity recognizer
in handling the activities that have similar sensor readings.
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5.3. Evaluation of Different Confusion Thresholds

The confusion threshold θ is a crucial parameter of the hierarchical activity recognizer,
which decides the confusing activities of an activity. In this subsection, we experimentally
evaluate the effect of varying θ on the performance. Based on our previous work, the
candidates of θ include 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, and 0.5. Figure 5 presents the
experimental results on UCI-HAR. The X-axis gives the candidate values of θ and the
Y-axis shows its accuracy. For Figure 5a, the curves of NB and NB-NB exactly coincide,
and so is the case with KNN and KNN-KNN in Figure 5b. From Figure 5, we see that
the performance of the hierarchical activity recognizer is closely related to θ and 1% is a
reasonable choice that achieves comparable or higher accuracy in most cases. Particularly,
a small value of θ tends to get a densely connected graph, and a larger value of θ could
lead to sparse connections between the activities at the second level, which decreases the
hierarchical model to a flat model. Hence, the accuracy tends to generally decrease with
the increase of θ expect the case of KNN-NB. Actually, we could choose the value of θ in a
broad range such as between 0.01 and 0.05. This greatly relieves us from parameter tuning.
It should be noticed that SVM achieves better performance at the second level.
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5.4. Evaluation of Different Number of Clusters

In this subsection, the impact of the different number of clusters on the performance
of hierarchical activity recognition models is studied. Figure 6 shows the experimental
results on UCI-HAR. The X-axis refers to the number of clusters returned by k-means
and the Y-axis is the accuracy obtained. Particularly, the values of the X-axis denote the
values relative to the number |L| of predefined activities. For example, −1 means that the
number of clusters of k-means equals |L|− 1, 0 indicates that the number of clusters equals
|L|, and 1 means that the number of clusters equals |L| + 1. From Figure 6, we observe
that setting the number of clusters to be the number of predefined activities generally
obtains satisfactory accuracy, although there is no consistent trend between accuracy and
|L|. This is most probable because this value corresponds to the true distribution of the
dataset. Using the value helps relieve users from selecting the hyperparameter values for
model optimization.
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5.5. Evaluation of Different Distance Metrics

The distance metric is an important factor that determines the results of a clustering
algorithm. We herein explore another two metrics (i.e., cosine and correlation) to calculate
the distance between samples and further compare their performance with that of the
Euclidean metric. Table 6 presents the experimental results, where the bold text indicates
the best results. In addition, Figure 7 gives the corresponding F1. We observe that the use
of the three metrics obtains comparable results. For example, in terms of SVM-SVM, the
Euclidean, cosine, and correlation metrics obtain the 96.47%, 96.51%, and 96.51% accuracy,
respectively. For DT-DT, the results are 86.36%, 86.29%, and 86.29% accuracy for the three
metrics. This shows its robustness to the choice of distance metrics. We also observe that
the use of the three metrics gets improved accuracy compared with the flat model. This
demonstrates the effectiveness of the clustering-guided hierarchical model.
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Table 6. Performance of different distance metrics for k-means on UCI-HAR.

Model NB-NB NB-KNN NB-SVM NB-DT KNN-NB KNN-KNN KNN-SVM KNN-DT

Metrics Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Euclidean 76.99 0.780 78.86 0.811 84.83 0.868 77.03 0.790 78.72 0.807 87.85 0.877 92.26 0.926 85.31 0.854

Cosine 76.99 0.780 80.69 0.829 87.72 0.897 78.72 0.807 78.32 0.802 87.85 0.877 94.77 0.950 86.50 0.864
Correlation 76.99 0.780 80.69 0.829 87.72 0.897 78.72 0.807 77.94 0.796 87.85 0.877 94.81 0.950 86.53 0.865

Model SVM-NB SVM-KNN SVM-SVM SVM-DT DT-NB DT-KNN DT-SVM DT-DT

Metrics Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Euclidean 82.32 0.838 90.43 0.905 96.47 0.965 89.79 0.896 77.10 0.788 85.88 0.861 92.47 0.928 86.36 0.862

Cosine 80.69 0.820 90.02 0.899 96.51 0.966 88.57 0.883 78.11 0.798 88.19 0.882 94.98 0.951 86.29 0.861
Correlation 80.18 0.813 90.02 0.899 96.51 0.966 88.57 0.883 77.67 0.792 88.19 0.882 94.98 0.951 86.29 0.861
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5.6. Evaluation of Different Clustering Algorithms

For the proposed framework, different clustering algorithms, besides k-means, can
be integrated into it and function as its first component. In this subsection, we investigate
another two commonly used clustering algorithms (i.e., k-medoids and agglomerative
clustering), where the former chooses data points as the centers, and the latter builds
a hierarchy of clusters. Specifically, according to the previous results, the number of
clusters is set as the number of predefined activities. The Euclidean distance metric is
used for k-means and k-medoids and applies the Ward’s method to calculate linkage of the
agglomerative clustering.
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Table 7 presents the corresponding results on UCI-HAR. In the table, the row “agglom-
erative” refers to the results when agglomerative clustering is used. The bold text indicates
the best F1 of each group. In addition, Figure 8 gives the accuracy. From Table 7 and
Figure 8, we observe that the hierarchical activity recognizer leads to enhanced recognition
rates whichever clustering algorithm is used. We also observe that the use of k-means and
agglomerative clustering obtains comparable performance and that the use of k-medoids
slightly outperforms its competitors. For example, when NB is used as the top-level classi-
fier, the best F1 of k-medoids, agglomerative clustering, and k-means are 0.9029, 0.8666, and
0.8683, respectively. If SVM is chosen as the top-level classifier, the F1 (0.9657) of k-medoids
is higher than the F1 (0.9653) of both k-means and agglomerative clustering. The possible
reason is that k-medoids takes data points rather than the average of the points in a cluster
as the centers. This is consistent with the defined cluster confusion index and activity
confusion index, where we use the majority voting principle to determine the confusing
data points.
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Table 7. F1 of different clustering algorithms on UCI-HAR.

Model NB NB-NB NB-KNN NB-SVM NB-DT KNN KNN-NB KNN-KNN KNN-SVM KNN-DT

k-means 0.7803 0.7803 0.8112 0.8683 0.7903 0.877 0.8069 0.8770 0.9257 0.8538
k-medoids 0.7803 0.7803 0.8350 0.9029 0.8122 0.877 0.8019 0.8770 0.9495 0.8640

agglomerative 0.7803 0.7803 0.7941 0.8666 0.7763 0.877 0.857 0.8770 0.9398 0.8480

Model SVM SVM-NB SVM-KNN SVM-SVM SVM-DT DT DT-NB DT-KNN DT-SVM DT-DT

k-means 0.9639 0.8384 0.9045 0.9653 0.8960 0.8615 0.7882 0.8612 0.9275 0.8615
k-medoids 0.9639 0.8201 0.8986 0.9657 0.8829 0.8615 0.7978 0.8818 0.9509 0.8607

agglomerative 0.9639 0.8732 0.8838 0.9653 0.8731 0.8615 0.8453 0.8574 0.9423 0.8615
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6. Conclusions

Accurately automating the recognition of human activities plays a prominent role
in various applications like elderly care, ambient intelligence, smart homes, and human
computer interactions. Training an activity recognition model poses difficulties in data
training, modeling, and evaluation. Particularly, in the inter-subject and intra-subject
variations, there are activities of interest that have similar sensor signals, which confuses an
activity recognizer and result in degraded accuracy. In this study, a data-driven hierarchical
activity recognition framework is proposed to quantify the confusion among activities
and to build a hierarchical activity recognition model for improving the overall accuracy.
Finally, the comparative analysis on the datasets is conducted, and the results show the
success ratio of the grouping of the predefined activities in a specific application and its
superiority over its competitors. In addition, we experimentally study the role of the two
components within the framework from the aspects of sensitivity analysis of the confusion
threshold, the choice of clustering algorithms and distance metrics, and the number of
used clusters, which indicates its effectiveness.

In instantiating the framework, we can incorporate different clustering algorithms as
well as classification models into it, where there are two hyperparameters (i.e., the number
of clusters and the confusion threshold) that require us to assign their values. Although
experimental results have shown its robustness, it is expected to adaptively set their values
based on the data characteristics. This involves further studies for a comprehensive analysis.
Second, the hierarchical framework brings larger computation costs, so there is a tradeoff
between the recognition accuracy and resource constraints in deploying the model in
edge devices.
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