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Abstract: The technique of active ionospheric sounding by ionosondes requires sophisticated meth-
ods for the recovery of experimental data on ionograms. In this work, we applied an advanced
algorithm of deep learning for the identification and classification of signals from different iono-
spheric layers. We collected a dataset of 6131 manually labeled ionograms acquired from low-latitude
ionosondes in Taiwan. In the ionograms, we distinguished 11 different classes of the signals according
to their ionospheric layers. We developed an artificial neural network, FC-DenseNet24, based on
the FC-DenseNet convolutional neural network. We also developed a double-filtering algorithm
to reduce incorrectly classified signals. That made it possible to successfully recover the sporadic
E layer and the F2 layer from highly noise-contaminated ionograms whose mean signal-to-noise
ratio was low, SNR = 1.43. The Intersection over Union (IoU) of the recovery of these two signal
classes was greater than 0.6, which was higher than the previous models reported. We also identified
three factors that can lower the recovery accuracy: (1) smaller statistics of samples; (2) mixing and
overlapping of different signals; (3) the compact shape of signals.

Keywords: ionospheric sounding; space weather; artificial intelligence; fully convolutional DenseNet

1. Introduction

The task of monitoring the ionosphere above the Taiwan-Korea region is important
for the control and prediction of the conditions for the propagation and distortions of
signals from the Global Navigation Satellite Signal (GNSS) constellation. The low-latitude
ionosphere is highly variable due to the daily, seasonal, and solar cycle variations, as well
as due to the impacts of the external and internal drivers. These external drivers are
related to space weather effects such as solar flares [1], geomagnetic storms [2], and particle
precipitations from the radiation belts [3]. The internal sources are related to tidal effects [4],
earthquakes [5], and tsunamis [6]. Operative identification of the ionospheric disturbances
of different origins is required for the development of nowcast and forecast models of
the regional ionosphere. The wide variety of disturbances and the complex behaviors of
the ionosphere require the development of advanced methods of ionospheric observation
and diagnostics.
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Ionospheric sounding is conducted by using the standard techniques of ground-based
ionosondes and a network of Global Positioning System (GPS) receivers, which provide
high temporal resolution. Ionosondes can measure the vertical profiles of electron density
from the ground up to the maximum of the F2 layer [7], while the GPS receivers can provide
the Slant Total Electron Content (STEC) by estimating the signal delay from the satellites
to ground-based receivers [8]. Unfortunately, the coverage of these standard instruments
is not sufficient in the Taiwan—Korea region mainly because the instruments can not be
installed in the sea. In order to enhance spatial coverage, a novel technique known as
the Vertical Incidence Pulsed Ionospheric Radar (VIPIR) was implemented in Korea and
Taiwan. VIPIR is a digital ionosonde consisting of several antennas [9].

Active sounding allows the determination of important local ionospheric parame-
ters for regional modeling of the ionosphere and for calculation of ionospheric indices.
The oblique sounding with sweeping frequency will allow the measurement of the verti-
cal ionization profile above the sea surface. Oblique sounding is one the most effective
techniques for the observation of Traveling Ionospheric Disturbances (TIDs) and the deter-
mination of their properties and origin. The technique can also verify the assumptions of a
uniform and quasi-static reflecting ionospheric boundary. The ionospheric scintillations
could also be estimated from fast fluctuations of the received signal.

Ionogram recovery from the aforementioned vertical and oblique sounding technique
is a very complex problem. The raw ionogram contains many parasitic signals from
numerous ground-based radio transmitters. Thus, a special data processing technique is
required in order to recover the useful ionospheric signal from the contaminations and
the noise. Currently, ionogram recovery methods are based on fuzzy segmentation and
connectedness techniques [10]. These methods however cannot completely remove the
noise from the ionograms, leading to further manual data treatments. The VIPIR technique
produces thousands of ionograms per day. The amount of raw data from two VIPIRs and
two dynasondes is estimated to be about 20 Terabytes (TB) per year. It is almost impossible
to operate on these data manually.

In recent years, deep learning techniques have been implemented to aid ionospheric
research. Predictive models based on deep learning methods have been developed in order
to forecast GPS-TEC at midlatitudes in Turkey [11]. In another similar study, Convolutional
Neural Networks (CNNs) were also used to forecast TEC values globally [12]. Deep learn-
ing has also played an important role in the recent Coronavirus Disease 2019 (COVID-19)
pandemic. In particular, the attention-based VGG-16 model has been used as an image
classification tool for COVID-19 diagnosis [13]. Recently, CNNs have been used to auto-
matically recover the signals of the ionospheric F-layer from experimental ionogram data
in Peru [14]. The results in that paper showed that CNN models significantly removed the
noise from the recovered ionograms, and thus, the quality of information was improved.

In this study, we approached the problem of ionogram recovery by implementing
a CNN model known as FC-DenseNet [15]. We show numerically that ionogram data
obtained from Taiwan ionosondes have far more noise and contaminations as compared to
Peru data. In addition, this image segmentation technique, which separates the wanted
signals such as the ionogram signals from the unwanted signals such as the background and
the noise, can also provide a classification between signals from various ionospheric layers
as different classes. We demonstrate that the model has different prediction capabilities for
different classes because of various reasons, which are identified and discussed.

The goal of this work was to present the application of an advanced CNN model for
improvement of the ionogram recovery techniques, as well as to present several challenges
upon applying the model for the complex ionogram data. Section 2 presents the experimen-
tal data together with their main characteristics and problem features. The CNN model
is introduced in Section 3. Section 4 describes the results of the model application and
discusses the problems for future work. Lastly, Section 5 is the conclusions.
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2. Experimental Data from Ionosondes
2.1. Ionograms

An ionogram is a type of data obtained from an ionosonde. It is used to examine the
vertical profile of the ionosphere as a function of frequency at a given time. The ionograms
used to train the model were from ionosondes located at Hualien, Taiwan (23.99° N,
121.61° E), and had a time resolution of 12 min. An example of an ionogram obtained by
using the VIPIR technique is shown in Figure 1. It is represented in the form of a gif image
(f, h, I), where f is the frequency, h is the virtual height, I is the intensity of the received
signal represented in a color scale from 0 to 255, and the dimension of the ionogram images
is 1600 by 800 by 256, respectively. This sample ionogram was obtained by using the VIPIR
technique as mentioned in the Introduction. In this method, the antennas are situated in a
specific order to determine the inclination and the azimuth of the incident radio waves.
VIPIR can also transmit a radio signal with a sweeping frequency range from 1-20 MHz.
This radio signal reflects from the bottom-side ionosphere at different heights depending
on the frequency, which makes it possible to measure a vertical profile of the ionospheric
electron density.
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Figure 1. An ionogram containing three key features: the background, the contamination, and the
ionospheric signal. The color bar on the right represents the amplitude of the signal in Decibels (dB).

In the ionogram shown in Figure 1, we can distinguish a number of features: back-
ground (Sp), contamination (S, ), calibration signal, and ionospheric signals (S). The back-
ground is a field of diffusive signals of low intensity. It can be defined as the instrumental
noise that varies with time and frequency. The contamination manifests as intense vertical
lines. This signal is produced by transmitters of constant-frequency radio signals. The cali-
bration signal gives a thick horizontal line at the virtual height of 50 km. The ionospheric
signals appear as curves and spots of intermediate intensity. Those signals are reflected
from the ionosphere back to the ionosonde. In Figure 1, one can see the ordinary and
extraordinary signals from the E, F1, F2, and F3 ionospheric layers. The extraordinary
signals have a higher frequency at the given virtual height. The ionospheric signals are the
useful signals, which we have to analyze. In addition, a secondary echo from ionospheric
layers can be seen at heights above 500 km. Secondary echoes occur when the ionosonde
signal reflected from the ionosphere travels back to the Earth’s surface then propagates
back to the ionosphere, which reflects it back to the Earth. This double reflection produces
the secondary echoes, whose virtual height is two-times higher than the actual height of
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the ionospheric layers. The main purpose of the ionogram recovery technique is to separate
the ionospheric signals from the background, contamination, and secondary echoes.

In this work, the signals from ionospheric layers were labeled in 6131 ionograms
from 2013 and 2014. The labeling procedure was performed by manually identifying the
ionospheric layers for the the ordinary and extraordinary modes of the E, Es, F1, F2, and F3
layers on the ionogram. As a result, we obtained 11 different classes of ionospheric signals,
as shown in Table 1.

Table 1. The 11 ionospheric layers with their corresponding class labels.

Ionospheric Layer Class Label
E layer ordinary mode €o
E layer extraordinary mode ex
Sporadic E layer ordinary mode eso
Sporadic E layer extraordinary mode esx
Sporadic E layer es
F1 layer ordinary mode fao
F1 layer extraordinary mode fax
F2 layer ordinary mode tbo
F2 layer extraordinary mode fbx
F3 layer ordinary mode fco
F3 layer extraordinary mode fex

The determination of the critical frequencies for the ionospheric layers is important
to determine the amount of ionization in the ionosphere. In Figure 2, the distribution
of the maximum and minimum frequencies of the labeled F2 layer of the ionograms is
shown. The coverage of the critical frequencies was nonuniform, wherein several deep
and wide gaps could be observed. This was owed to the presence of strong quasi-static
man-made contamination signals from ground-based transmitters. We can also observe
that the distribution of the maximum and minimum frequencies overlapped somewhere
between 5 MHz and 8.5 MHz. This is because of the wide dynamics of the F2 layer. In order
to address this issue, the ionogram recovery model should (1) operate inn a wide frequency
range and (2) have a smart interpolation of the ionospheric layers.

Critical Frequency for Labeled Fbo
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301 max
25
w20 A
a
=
=
8 15
10 4
5_
0 ||||||| 1 SN 1 O O o . | .
858 10.82 13.25 15.58 17.92 20.25

frequency (MHz)

Figure 2. Distributions of the maximum (blue) and minimum (orange) frequencies of the labeled F2
layer of the ionograms.
2.2. Signal-to-Noise Ratio

To evaluate the level of the contamination, we define the Signal-to-Noise Ratio (SNR) of
an ionogram based on the statistical distribution (i.e., histogram) of the signal amplitudes
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(pixel color I), that is the total occurrence number N(I) vs. I. The idea is to define a
characteristic amplitude for the background Sy, contamination Sy, and ionospheric signal
S, respectively, based on the statistical distribution and use the characteristic amplitudes to
define the SNR.

Figure 3 (upper panel) shows the histogram of the pixel intensities I of an entire
ionogram. The ionogram shows that S,,; was the weakest signal that occupies the largest
portion of the image. The second most populated signal was Sy, of which the pixel intensity
was comparable to that of S. Based on these observations, we expected that the major
peak (Imp) in the histogram would be primarily contributed by Spg and Sn. Since Spg
correspond to weaker signals, they should mostly be located at the left side of the major
peak. Therefore, we can define the characteristic pixel intensity of Spg (CSpy) as the median
amplitude of all pixels with a pixel intensity smaller than Ip:

CSpg = Median(I < Imp)
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Figure 3. (a) The histogram of the pixel intensity I of the entire ionogram inserted on the right.
(b) The histogram of the pixel intensity of the useful signal of the ionogram inserted on the right.

Since Sp is composed of the stronger signals, we can define its characteristic pixel
intensity (CSn) as the median amplitude of all pixels with intensities higher than CSy,g:

CSn = Median(I > CSy,)

To determine the characteristic pixel intensity for the useful signal, S, we considered
the statistical distribution of the pixel intensity inside the labeled signals (I5) and used their
median value as the representative pixel intensity (CS):

CS = Median(Is)

An example is shown in the lower panel of Figure 3. It can be seen that the distribution
contained several peaks. The median of distribution (CS = 53) fell into the major peak
located between I = 50 and I = 60. Hence, the median value was robust for the statistical
representation of the signal intensity.
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Finally, the signal-to-noise ratio is defined as the ratio between the characteristic signal
(CS) and characteristic man-made noise (CSy):

CS
SNR = —
CSn

The distributions of the SNR are presented in Figure 4. The histogram for Taiwan
data of 6131 ionograms is shown by orange. For comparison, we show the histogram for
Peru data by blue. The Peru dataset consisted of 816 manually labeled ionograms acquired
from Jicamarca ionosonde (see the details in [14]). It can be seen clearly that the SNRs of
Peru data, with a mean SNR = 2.09, were predominantly higher than those of Taiwan data,
with a mean SNR = 1.43. In other words, almost all Peru ionograms were cleaner than the
Taiwan ionograms.

Figure 5 shows the comparison of the maximum and minimum SNR cases for Peru
and Taiwan. We can see that the ionospheric signals in the noisiest Peru ionogram case,
which had an SNR = 1.56, were still clearly distinguishable from the noise and background.
However, it was difficult to determine the ionospheric signals for the noisiest Taiwan
ionogram case, which had an SNR = 0.8.

30

B Peru data
Taiwan data

Percentage (%)
s o 4

w

2.0 25 30
SNR

Figure 4. The histograms of the SNR for Peru data (blue) and for Taiwan data (orange). The mean
SNR for Peru data is 2.09, and that for Taiwan data is 1.43, as indicated in the plot.
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Figure 5. Maximum and minimum SNR cases for Taiwan (upper panels) and Peru (lower panels).
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2.3. Shape Parameter

An ionospheric signal can be classified into two types according to its shape. Figure 6
shows a diagram of the (a) compact signal and the (b) elongated signal. The area of the
signal is shown in red, and the labeling area is shown in purple. The labeling area is located
along the outer boundary of the signal; therefore, in most cases, the area enclosed by the
labeling is larger than the signal. If the area of the labeling becomes comparable to the area
of the signal, it may cause a significant decrease in the prediction performance. Conversely,
if the area of the labeling is very small such that the signal is almost perfectly enclosed by
the labeling, then the prediction accuracy is expected to be high. It is important to note that
the accuracy of the model can never attain 100% since the process of manually labeling
the signals introduces room for error. In order to evaluate how the shape of an ionogram
signal affects the performance of the model, we define a shape parameter. The detailed
derivations for the shape parameter is presented in Appendix A.

The shape parameter, which we refer to as the circumference-over-area C/A, distin-
guishes between the compact and the elongated signals. Compact signals will have a low
C/A, while elongated signals will have a high C/A.

(a)

(b)

Figure 6. The two types of ionogram signals: (a) compact and (b) elongated. The area of the signal is
shown in red, and the labeled area is shown in purple.

The performance of an image segmentation model is often measured in terms of the
Intersection over Union (IoU) (Equation (1)).

prediction N ground truth

IoU =
© prediction U ground truth

)

Asignal ?)

IoUperfect = 57—
P Asignal + Alabel

In this study, the area occupied by the ground truth was equal to the sum of the
labeling area Ajpe and the signal area Agignal, i-€., Alabel + Asignal- In the case of a perfect
prediction, that is the model prediction is exactly equal to Agjgnal, the IoU would become
Equation (2). The equation shows that the IoU for a perfect prediction would be smaller
than 1 since Ajapel + Asignal > Asignal- In Appendix A, we show that Ajapel + Asignal 18
closer to Agignal for features with higher C/A. Therefore, the higher C/A is, the higher IoU
for a perfect prediction. The elongated signals (high C/A) were expected to have a higher
IoU compared to the compact signals.

3. Materials and Methods
3.1. Convolutional Neural Networks

CNNis are a special class of Artificial Neural Networks (ANNSs) that are commonly
used in computer vision applications. CNNs comprise multilayer networks that are
specifically designed to process two-dimensional data such as images or videos [16].
The first application of CNNs were from the 1990s where the technique was applied to
perform the task of hand-written character recognition [17]. The main advantage of CNNs
over other kinds of ANNSs is due to its capability of weight sharing, which significantly
reduces the number of parameters needed for training a model. Hence, CNNs can be
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trained more smoothly and are less prone to overfitting [18]. Due to their remarkable
performance, CNNs have been widely used in many areas of image recognition [19-21].

In terms of applying image segmentation techniques on ionograms, Reference [14]
already used the Peru dataset to implement a model based on an encoder-decoder, also
known as an auto-encoder, CNN architecture. The auto-encoder architecture used in
their study had 4385 parameters, of which 4385 were trainable and 0 non-trainable. This
consisted of 6 convolutional layers with a ReLU activation, 3 max pooling layers with zero
padding, and 3 upsamplings. They used binary cross-entropy as their loss function and
adadelta as an optimizer.

3.2. Fully Convolutional DenseNet

Fully Convolutional DenseNet (FC-DenseNet) is a Fully Convolutional Network (FCN)
model evolved from a CNN model called DenseNet. Our specific model, FC-DenseNet24,
was created based on FC-DenseNet103 [15]. The basic building blocks of FC-DenseNet103
are the Dense Block (DB), Transition Down (TD), and Transition Up (TU). The composition
layers of DB, TD, and TU are shown in Table 2.

Since one of the purposes of our work was to make the results open to everybody, we
provide our model and dataset on Kaggle (The data and models are provided in the Data
Availability Statement section at the end), a web-based data and computing environment.
The original version of the FC-DenseNet-103 model (see Figure 7, right panel) was too
heavy to be run on Kaggle because of computing and memory limitations. Note that
the resolution of Taiwan ionograms was 1600 x 800 pixels, and the number of samples
was more than 6000. These data require much space; hence, we simplified the original
model step-by-step in order to fit the requirements of Kaggle. As a result, we achieved
a configuration of the FC-DenseNet-24 model (see Figure 7, left panel), which is friendly
for Kaggle such that everybody can run the model, verify our results, and check for other
datasets. For the adjustments, we reduced the number of blocks by two and the number
of layers several times such that the number of training parameters was reduced from
9.4 million to 690,886.

Table 2. The composition layers of the basic building blocks of FC-DenseNet24. From left to right:
Dense Block (DB), Transition Down (TD), and Transition Up (TU).

Dense Block (DB)  Transition Down (TD) Transition Up (TU)
Batch Normalization =~ Batch Normalization 3 x 3 Transposed Convolution (stride = 2)
ReLU ReLU

3 x 3 Convolution 1 x 1 Convolution

Dropout (p =2) Dropout (p =2)

2 x 2 Max Pooling
FC-DenseNet 24 FC-DenseNet 103
| & i |
_ Input, m =3
lprbim] 3 x 3 Convolution, m = 48
3x3 Convolution, m = 48 DB (4 layers) + TD, m = 112
DB (1 layers) + TD, m =4 DB (5 layers) + TD, m = 192

DB (7 layers) + TD, m = 304
Wb i) b= DB (10 1ayyers) + 1D, m — 464
DB (3 layers) + TD, m = 4 DB (12 layers) + TD, m = 656
DB (4 layer), m =32 DB (15 layers), m = 880
TU + DB (12 layers), m = 1072
IUESDEGllayer),ms52 TU + DB (10 layyers), m = 800
TU + DB (2 layers), m =32 TU + DB (7 layers), m = 560
TU + DB (1 layers), m = 32 TU + DB (5 layers), m = 368
TU + DB (4 layers), m = 256
1 x 1 Convolution, m = ¢
Softmax Softmax

1x1 Convolution, m = ¢

Figure 7. The architectures of the FC-Dense24 and FC-DenseNet103 model.



Sensors 2021, 21, 6482

9o0f 16

As CNNs become increasingly deep, they can transfer more information. However,
as information about the input or gradient passes through many layers, it may vanish [22]
or explode [23]. In order to avoid that, FC-DenseNet24 has two mechanisms, which are the
randomly dropping layers and the shortcuts, as depicted in Figure 8.

aye!

Figure 8. An illustration of a dense block.

For the deeper CNNs, randomly dropping layers during training can allow better
information and gradient flow. FC-DenseNet24 has a dropout with p = 0.2 in the DB.
FC-DenseNet24 distills this insight into a simple connectivity pattern: to ensure maximum
information flow between layers in the network, we connected all layers (with matching
feature map sizes) directly to each other. To preserve the feed- forward nature, each layer
obtains additional inputs from all preceding layers and passes on its own feature maps to
all subsequent layers. By this mechanism, FC- DenseNet24 requires fewer parameters than
traditional convolutional neural networks, as there is no need to relearn redundant feature
maps. The total parameters for our FC-DenseNet24 were 690,886, with 685,176 trainable
parameters and 5710 nontrainable parameters.

3.3. Filtering Algorithm

The two most common incorrect predictions from our model were found to be incor-
rect classifications and secondary echoes mistaken as signals. To reduce such errors, we
developed a double-filtering scheme described below:

3.3.1. Filter for Incorrect Classification

Incorrect classification is when the class of a signal is incorrectly identified by the
model. This can be reduced by applying the following boundary filter:

Based on the physical properties and statistical distributions of the signal positions in
the ionograms, we first determined the upper and lower boundaries in the frequency and
virtual height for each signal class. Any predicted signal pixels that were located outside of
the boundaries were then considered as incorrect classification and removed;

3.3.2. Filter for Secondary Ionospheric Echoes

We created the following algorithm to filter out the secondary ionospheric echoes that
were incorrectly identified as signals:
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The filter scans through each frequency bin. If there are k predicted pixels at a
frequency bin f;, the mean height of these k pixels is computed and rounded to the nearest
height pixel. If these k pixels are all part of the same signal, their height pixels would be
continuous, and the mean height pixel would be equal to one of them. In this case, the filter
would consider there to be no echo to remove at this frequency bin. If the mean height pixel
does not belong to the set of the k height pixels, this indicates that there is a gap among
these pixels. The filter would consider any pixels located higher than the mean height pixel
as the secondary echoes and remove them.

4. Results

In order to train the model, the dataset was divided into training, testing, and valida-
tion sets. Table 3 shows the percentages of each layer for the datasets.

Because of the low percentages of the eso and esx classes, the three classes assigned to
the Es layer (eso, esx, es) were combined into one class “esa”, as presented in Tables 3 and 4.

Table 3. The percentage of ionograms that contain the indicated signal class in the training, testing,
and validation sets.

e0 ex eso esx es esa fao fax fbo fbx fco fcx

Train 76 11 126 100 399 519 393 264 946 878 015 0.13
Test 92 11 148 112 408 551 387 255 942 877 0.08 0.08
Validation 7.5 05 145 122 38.0 521 394 253 955 898 0.10 040

The accuracy level of the model prediction as evaluated by the IoU, defined in
Equation (1). The IoU of our model prediction for different signal classes before and
after the double filtering procedure is shown in Table 4.

Table 4. Comparison of the IoU between the original and the filtered outputs.

eo ex eso  esx es esa fao fax fbo fbx fco fcx

Original 0.00 0.00 037 016 051 056 047 033 059 048 0.00 0.00
Filtered 0.00 0.00 038 0.16 057 066 047 033 061 050 0.00 0.00

In Table 4, we see that the model was capable of identifying the es and fbo signals
with an accuracy of IoU > 0.5. By applying the double-filtering algorithm, the accuracy
was further increased to IoU > 0.6. The recovery of the eso, esx, fao, fax, and fbx signals
were between 0.2 < IoU < 0.5. The eo, ex, fco, and fcx classes had an IoU of zero.

The Peru group [14] applied an auto-encoder to recover the signals from the iono-
spheric F-layer without distinguishing different classes (such as F1, F2, and F3) and yield
an IoU = 0.57. In contrast, our model can predict the E and Es layers in addition to the
F1, F2, and F3 layers. The former ones have a very different geometry and location from
those for the F layer. Because of that, a simple binary classification cannot be applied for
the comparison of the two models. Instead, we calculated the prediction of our model for
the whole F layer, which was the combination of the following classes: F = fao + fax + fbo
+ fbx + fco + fcx. As a result, we obtained an IoU = 0.7. Apparently, this accuracy was
much higher than that for the Peru auto-encoder model. Our results show that despite
operating on the ionograms with a much lower SNR and needing to distinguish different
classes of signals, the FC-DenseNet24 model was capable of producing a much higher level
of accuracy for the F layer than that of Peru’s auto-encoder.

In Figure 9, two examples of the double-filtering results are shown for the incorrect
classification filter and in Figure 10 for the echo filter. In both figures, different classes of
the signals are represented by different colors: black: esa; green: fao; yellow: fax; red: fbo;
blue: fbx. In Figure 9C, some yellow pixels (fax) can be seen at the upper right end of



Sensors 2021, 21, 6482

11 of 16

the originally predicted signals. Since they are outside of the boundary for fax, they were
identified as incorrect classification and removed by the filter.

Original Ground Truth

il
il

Original Prediction

(B)
i —

Prediction Removed
Incorrect Classification Ramoved Part

(€) (D) (E)

/"_""f /

Figure 9. An example of filtering out incorrectly classified pixels. Different colors in (B—E) represent
different classes of the signals: black: esa; green: fao; yellow: fax; red: fbo; blue: fbx. (A) original
input ionogram; (B) labeled ground truth; (C) model prediction without filtering; (D) output after
the filtering; (E) the incorrectly classified fax pixels removed by the filter.

In Figure 10, the secondary echoes can be clearly seen in the original ionogram and
were originally predicted as the true signals (i.e., primary echoes) by the model (Panel C).
Most of these echo pixels were successfully identified and removed by the filter, as can be
seen in Panels D and E.

Original Ground Truth

l'“’ (®)
i -
1l

QOriginal Prediction

Prediction Removed Echo Removed Part

(4 (D) ()~

Figure 10. An example of filtering out secondary echoes. Different colors in (B-E) represent different
classes of the signals: black: esa; green: fao; yellow: fax; red: fbo; blue: fbx. (A) Original input
ionogram; (B) labeled ground truth; (C) model prediction without filtering; (D) output after the
filtering; (E) the secondary echoes removed by the filter.

The scatter plot of the IoU vs. SNR for the prediction results is shown in Figure 11.
It can be seen that a low IoU (<0.5) occurred predominantly for a smaller SNR (<1.5),
while a high IoU occurred when SNR > 1.4, which is very close to the median SNR = 1.43.
This shows that the noise had a serious impact on the model accuracy and that the model
operation was reasonable.
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Figure 11. The scatter plot of IoU vs. SNR for all the predictions.

It should be noted that the accuracy of the ionogram recovery might be increased

by the application of deeper learning models with a larger number of layers and training
parameters. This will be a subject of the next paper, where various models will be compared.
The purpose of the present paper was to identify the reasons that can affect the performance
of the signal recovery using the FC-DenseNet24 as a test model. We found the following
main reasons:

1.

The percentage of signal samples in the dataset:

A comparison of Table 3 and 4 revealed that the sample percentages for eo and ex
were both lower than 10%, the percentage for fax was less than 40%, and that for fao
was barely 40%. This suggests that the sample percentage in a dataset needs to be
higher than 40% in order for our model to adequately learn the characteristics of the
signal and be able to recover it from the noisy ionograms;

Mixing with other signals:

In addition to the sample percentage, another factor that can affect the model per-
formance is whether the location of a signal is overlapping with other signal classes.
Figure 9B,C show a clear example of an overlapping signal in our ground truth and
predictions, respectively. Although the sample percentage of fbx, which was nearly
90%, was significantly higher than that of esa, which was slightly over 50%, esa was
located distinctly away from any F signal classes. In contrast, fbo and fbx signals were
often overlapped, which caused difficulty in distinguishing and separating them even
by a human. In addition, F1 layers in the ionograms were often seen connected (con-
tinued) to F2 layers without a distinctive dividing point, affecting the determination
of their critical frequencies. Both factors contributed to the unimpressive IoU for fbx
signals;

C/A ratio:

As explained earlier, our “ground truth” occupied an area larger than the area of the
true signal because we labeled around the outer edge of the signal. Therefore, even if
the model perfectly predicted the true signal, the IoU, which compares the prediction
with the “ground truth”, would still be less than one. The derivation in the earlier
section showed that the lower the C/A, the lower the IoU of the perfect prediction.
As can be seen from the ionogram layers in Figure 1, F1 layers usually had a lower
C/A than Es layers, which can contribute to the lower IoU for fao and fax. Figure 12
shows the scatter plots for compact and elongated signals for Es layers and F2 layers,
respectively. The elongated F2 signals show that they had a high IoU in the regions
where C/A was high. For the Es signals, we see a similar result wherein the high
IoU cases were associated with the high C/A cases. It is evident that there was an



Sensors 2021, 21, 6482

13 of 16

inevitable decrease in the IoU as a result of labeling for both the compact and the
elongated cases of the signal shape.

08

06

loU

04

02

0.0

C/A Ratio C/A Ratio

Figure 12. The scatter plots of IoU vs. the C/A ratio for the F2 and Es layers.

Lastly, we discuss and compare our model to previous work performed by the Peru
team. The Peru auto-encoder CNN has 12 layers and a total of 4385 parameters. FC-
DenseNet24 is deeper, having 24 layers, and thus, has more parameters (690,886). The Peru
auto-encoder was trained using 816 labeled ionograms, and our FC-DenseNet24 was
trained on 6131 labeled ionograms. The Peru auto-encoder only outputs a binary image
containing the segmented signal from an ionogram that is unknown to the model. FC-
DenseNet 24 on the other hand outputs a vector of 11 elements corresponding to different
kinds of ionospheric signals. This makes our model capable of classifying the ionospheric
layers. This more sophisticated scheme of our model was due to the large statistics of the
Taiwan dataset. The design of FC-DenseNet24 is much more powerful and provides an
improved accuracy in comparison to the auto-encoder. It is also important to note that the
two models were trained using two different datasets: the Peru auto-encoder was trained
on Peru ionograms; FC-DenseNet24 was trained on Taiwan ionograms. A more rigorous
comparison between the two models would require training both of them using the two
datasets and comparing the results. Nevertheless, FC-DenseNet was still able to provide
an improved accuracy compared to the Peru auto-encoder despite having been trained on
a much higher noise in the Taiwan dataset.

5. Conclusions

In this work, we developed an artificial neural network, FC-DenseNet24, based on
the FC-DenseNet103 CNN [15], and applied it to automatically recover useful signals
from Taiwan ionograms. For this purpose, we labeled 6131 ionograms manually and
distinguished 11 different classes of the signals according to their ionospheric layers.
We also developed a double-filtering algorithm to improve the accuracy of recovery by
reducing incorrectly classified signal layers and the secondary echoes identified as true
signals. The results showed that FC-DenseNet24 with filtering can successfully recover
sporadic E layers and the F2 layers’ ordinary mode from highly noise-contaminated Taiwan
ionograms (mean SNR = 1.43). The IoU of the recovery of these two signal classes was
greater than 0.6, which is higher than the previous models reported.

We identified three factors that can lower the recovery accuracy: (1) the signal classes
with insufficient samples in the dataset; (2) the signals that are mixing and overlapping
with other signals in the ionogram; (3) the signals with a more compact shape, that is
smaller Circumference-over-Area (C/A) ratio. Our results indicated that the IoU of the
model predictions tends to be higher for signals that have a high C/A ratio.
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Appendix A. Shape and Contamination

Let us consider a simple case of a rectangular signal and labeling. In Figure Al,
the signal is shown by the red rectangle and the labeling area is the green rectangle.
The signal has a length L and thickness t. The labeling boundary has a characteristic offset
v from the signal.

Figure Al1. A diagram depicting the area of an ionogram signal (Area A) and its labeling area
(AreaS).

We can introduce the following characteristic numbers for the signal area, A = Lt and
its perimeter P = 2(L + t). For the labeling area, we can define the area of contamination
in (A1) as:

S=2(L+v)v+2(t+v)v (A1)
= 20(L 4t +20) (A2)
Note that the total area of labeling is (A + S).

The following ratios, the shape ratio (A3) and the contamination ratio (A5), are
given as:

P
Rs = ﬁ (A3)
_2(L+1) (Ad)
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References

In the case of a perfect prediction of the signal with area A inside the labeled region
with area S + A,

A

IoU = ST A (A7)
1

=R 1 (A8)

Appendix A.1. The Case of a Square (Regular Tetragon) Signal
It is easy to show that for this case, where L = ¢,

C2L+t) 2(t4t)
R, = N =4 (A9)

R, — 20(L 4+t +2v) _ 20(L+ L+ 20) :4<z+ UZ>

Lt L2 L2 (A10)
In the case of a very rough labeling (v = L), the contamination becomes huge: R, = 8
and loU =1/9 =~ 10%.

Appendix A.2. The Case of a Very Elongated Signal
In the case of a very long signal such that t/L — 0, the shape ratio would approach:

Ry — 2VL/t

A large R, indicates a more elongated shape of the signal.
Let us also consider that v is smaller than or comparable to t such that v/L — 0.
In this case, it is easy to show that for very elongated signals, the contamination ratio
will approach:
R, — 20/t

For a very rough labeling, where v = t, R, = 2 and IoU = 1/3 = 33%.
In a more realistic case, where v/t ~ 0.1, the effect of contamination of elongated
signals can be estimated as R, = 0.2 and IoU ~ 0.8.
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