
sensors

Article

Improved Point-Line Feature Based Visual SLAM Method for
Complex Environments

Fei Zhou 1, Limin Zhang 1,* , Chaolong Deng 1 and Xinyue Fan 1,2

����������
�������

Citation: Zhou, F.; Zhang, L.; Deng,

C.; Fan, X. Improved Point-Line

Feature Based Visual SLAM Method

for Complex Environments. Sensors

2021, 21, 4604. https://doi.org/

10.3390/s21134604

Academic Editor: Benoit Vozel

Received: 18 May 2021

Accepted: 2 July 2021

Published: 5 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Communication and Information Engineering, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China; zhoufei@cqupt.edu.cn (F.Z.);
s190131177@stu.cqupt.edu.cn (C.D.); fanxy@cqupt.edu.cn (X.F.)

2 Intelligent Terminal Key Laboratory of Sichuan Province, Yibin 644000, China
* Correspondence: s190101139@stu.cqupt.edu.cn

Abstract: Traditional visual simultaneous localization and mapping (SLAM) systems rely on point
features to estimate camera trajectories. However, feature-based systems are usually not robust in
complex environments such as weak textures or obvious brightness changes. To solve this problem,
we used more environmental structure information by introducing line segments features and
designed a monocular visual SLAM system. This system combines points and line segments to
effectively make up for the shortcomings of traditional positioning based only on point features.
First, ORB algorithm based on local adaptive threshold was proposed. Subsequently, we not only
optimized the extracted line features, but also added a screening step before the traditional descriptor
matching to combine the point features matching results with the line features matching. Finally,
the weighting idea was introduced. When constructing the optimized cost function, we allocated
weights reasonably according to the richness and dispersion of features. Our evaluation on publicly
available datasets demonstrated that the improved point-line feature method is competitive with the
state-of-the-art methods. In addition, the trajectory graph significantly reduced drift and loss, which
proves that our system increases the robustness of SLAM.

Keywords: visual SLAM; point and line feature; adaptive ORB; data association; LSD feature
extraction; reprojection error

1. Introduction

In recent years, the application of mobile robots in the fields of service robots, indus-
trial automatic guided vehicles (AGVs) [1], and unmanned driving have put forward higher
requirements for autonomous navigation. Among them, SLAM [2] is the key technology
to realize positioning and map construction, such as laser SLAM [3], visual SLAM (VS-
LAM) [4], and so on. Because of the advantages of low price and convenient portability, the
visual SLAM method has become the mainstream technology for robot navigation today.
Although the theoretical framework of the visual SLAM algorithm is relatively complete,
the robustness of the algorithm is inadequate to meet the needs of the actual environ-
ment, and system crashes caused by data association failures occur frequently. Therefore,
improving the robustness of data association in the SLAM algorithm is important.

Since Klein et al. introduced the parallel tracking and mapping (PTAM) [5] algorithms
in 2007, many real-time visual SLAM methods have been proposed, which can be divided
into two categories: direct methods and indirect methods. The direct methods directly
use the pixel intensity to match the pixels in the image and perform pose estimation
by minimizing the reprojection error, such as large-scale direct monocular SLAM (LSD-
SLAM) [6], direct sparse odometry (DSO) [7], and direct sparse mapping (DSM) [8]; these
methods are extremely sensitive to light. On the contrary, the indirect methods estimate
the pose by tracking the point features of the image, such as oriented FAST and rotated
BRIEF-SLAM (ORB-SLAM) [9] and RGBD-SLAM-V2 [10]. The indirect methods based

Sensors 2021, 21, 4604. https://doi.org/10.3390/s21134604 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4738-8332
https://orcid.org/0000-0002-4334-5928
https://doi.org/10.3390/s21134604
https://doi.org/10.3390/s21134604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134604
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134604?type=check_update&version=2

Sensors 2021, 21, 4604 2 of 17

on point features have long been considered the mainstream method for the front-end of
SLAM [11] because they have the advantages of stability and insensitivity to light and
dynamic objects. In addition, the indirect methods are also relatively mature solutions
at present.

Point features are the lowest level feature, their related theories are relatively well
developed, and they are easy to extract in rich-texture scenes. However, in complex
environments such as low-texture environment, point features are less likely to maintain
mutuality, and they may even disappear temporarily. These phenomena may lead to
tracking failure, which often happen in man-made scenes. However, despite the lack of
reliable feature points, by using more structural information from the real environment,
such as line features, the system can obtain more accurate camera pose estimation. In
addition, lines have conditional advantages; they are not so sensitive to scenes such as
low-texture environment, wide viewing angle range, and motion blur, which are the main
disadvantages of SLAM systems that only use point features. As shown in Figure 1, it
can be found that there are far more line features in the scene than point features, and
line features can better represent image information. Therefore, algorithms based on line
features have received more and more attention [12–15].

Sensors 2021, 21, x FOR PEER REVIEW 3 of 19

The rest of this paper is structured as follows: Section 2 reviews the related work.
Section 3 presents a brief description of our system. Section 4 introduces the improved
point-line feature processing. Section 5 presents experimental results using datasets, fol-
lowed by the conclusion in Section 6.

Figure 1. The results of point and line features on the KITTI dataset sequence 00. The green boxes
represent the point features extracted from the image, and the blue lines are the extracted line fea-
tures.

2. Related Work
The existing SLAM methods based on the point features are generally divided into

two parts: front-end estimation and back-end optimization. The front-end extracts fea-
tures from environmental information and matches them to complete the robot’s motion
state estimation. The back-end uses filter methods or optimization methods to optimize
the motion state calculated by the front-end. Point features methods have certain robust-
ness to light and dynamic objects. For example, ORB-SLAM can achieve more robust cam-
era tracking and relocation in scenes with rich textures. However, in the face of sudden
light changes and low textures, the algorithm cannot associate or even detect point fea-
tures, which directly leads to the failure of the algorithm.

There are many existing point features extraction algorithms, such as scale invariant
feature transform (SIFT) [19], speeded up robust features (SURF) [20], oriented FAST and
rotated BRIEF (ORB) [21]. SIFT and SURF have more accurate feature extraction results,
but they are too time-consuming [22–24]. The open-source system ORB-SLAM uses ORB
algorithm to extract features because ORB addresses the problem that the FAST corner
points have no directionality, and it uses the extremely fast binary descriptor binary ro-
bust independent elementary feature (BRIEF) [25], which greatly accelerates the entire im-
age features extraction process. ORB features are composed of two parts: FAST keypoints
and BRIEF descriptors. FAST algorithm mainly detects the obvious changes in the gray
level of local pixels. The idea of the algorithm is: if the gray value of a pixel and its neigh-
boring pixels are too different (too bright or too dark), then it is more likely to be a corner
point. Before the comparison, it is necessary to set the brightness comparison threshold
between pixels in advance. The setting of the threshold is very important. On one hand, if
the value is too small, the extracted corner points are not special enough and may also be
“clustered”. On the other hand, if the value is too large, a sufficient number of point fea-
tures may not be extracted. In order to solve the problem of uneven feature distribution
caused by improper threshold selection, many scholars have done research. In ORB-
SLAM system, Mur-Arta et al. [9] proposed the use of quadtree to improve the uniformity
of feature distribution, but this was only to optimize the extraction results; this method
essentially used the original FAST algorithm. Fan Xinnan et al. [26] proposed an adaptive
threshold extraction method, but it still contained artificially set parameters and could not
achieve true adaptive extraction.

Figure 1. The results of point and line features on the KITTI dataset sequence 00. The green boxes
represent the point features extracted from the image, and the blue lines are the extracted line features.

However, the correspondence relationship based only on line features is not as reliable
as the corresponding relationship based on point features because of the weakness of
lines, and the cumulative global error generated by the long-term operation of the system
will affect the performance of the system. In addition, the calculation and matching
of line features are time-consuming, which will affect the real-time performance of the
system. Therefore, the point and line features fusion has been applied to the SLAM
system. Albert Pumarola et al. added line features for visual tracking based on ORB-SLAM,
and they proposed a visual point and line SLAM (PL-SLAM) [16] algorithm combined
with monocular points and lines. The line segments are represented by their endpoints,
respectively, and the projection errors are calculated from the endpoints to the lines, which
still use point features in essence. Xie Xiaojia et al. [17] improved the representation method
of spatial lines. For the first time, they used orthogonal representation as a minimization
parameter to simulate line features and point features in visual SLAM, analyzed the
Jacobian matrix of the reprojection errors of line parameters, improved the SLAM solutions,
and solved the problem of over-parameterization of lines. However, when constructing
the errors optimization cost function [18], they simply added the reprojection errors of the
points and lines, and did not consider the problems of line features that are easily prone
to matching errors and other issues. In addition, these algorithms are only improved line
features, and do not consider that point features are susceptible to sudden light changes.

In response to the above problems, this paper adds line features on the basis of ORB-
SLAM and constructs an improved point-line integrated monocular VSLAM algorithm.
The main contributions of this article are as follows:

Sensors 2021, 21, 4604 3 of 17

• An adaptive ORB uniform distribution algorithm is proposed. We adjust the threshold
adaptively according to the brightness of each image block. The extracted features are
more uniform, and the algorithm is more robust to light mutation.

• The traditional LSD algorithm is improved. Our algorithm completes line features
matching based on the results of point features matching. In addition, we also use
merging line segments and eliminating short lines to shorten time and improve the
correct rate of line features matching.

• A new cost function of reprojection error is proposed. We weight the reprojection
errors of point and line features based on the richness and dispersion of features in
the scene, so as to give full play to the advantages of point and line features.

The rest of this paper is structured as follows: Section 2 reviews the related work.
Section 3 presents a brief description of our system. Section 4 introduces the improved point-
line feature processing. Section 5 presents experimental results using datasets, followed by
the conclusion in Section 6.

2. Related Work

The existing SLAM methods based on the point features are generally divided into
two parts: front-end estimation and back-end optimization. The front-end extracts features
from environmental information and matches them to complete the robot’s motion state
estimation. The back-end uses filter methods or optimization methods to optimize the
motion state calculated by the front-end. Point features methods have certain robustness
to light and dynamic objects. For example, ORB-SLAM can achieve more robust camera
tracking and relocation in scenes with rich textures. However, in the face of sudden light
changes and low textures, the algorithm cannot associate or even detect point features,
which directly leads to the failure of the algorithm.

There are many existing point features extraction algorithms, such as scale invariant
feature transform (SIFT) [19], speeded up robust features (SURF) [20], oriented FAST and
rotated BRIEF (ORB) [21]. SIFT and SURF have more accurate feature extraction results,
but they are too time-consuming [22–24]. The open-source system ORB-SLAM uses ORB
algorithm to extract features because ORB addresses the problem that the FAST corner
points have no directionality, and it uses the extremely fast binary descriptor binary robust
independent elementary feature (BRIEF) [25], which greatly accelerates the entire image
features extraction process. ORB features are composed of two parts: FAST keypoints and
BRIEF descriptors. FAST algorithm mainly detects the obvious changes in the gray level of
local pixels. The idea of the algorithm is: if the gray value of a pixel and its neighboring
pixels are too different (too bright or too dark), then it is more likely to be a corner point.
Before the comparison, it is necessary to set the brightness comparison threshold between
pixels in advance. The setting of the threshold is very important. On one hand, if the value
is too small, the extracted corner points are not special enough and may also be “clustered”.
On the other hand, if the value is too large, a sufficient number of point features may
not be extracted. In order to solve the problem of uneven feature distribution caused by
improper threshold selection, many scholars have done research. In ORB-SLAM system,
Mur-Arta et al. [9] proposed the use of quadtree to improve the uniformity of feature
distribution, but this was only to optimize the extraction results; this method essentially
used the original FAST algorithm. Fan Xinnan et al. [26] proposed an adaptive threshold
extraction method, but it still contained artificially set parameters and could not achieve
true adaptive extraction.

Except for point features, line features and plane features appear frequently in the
environment, where line features are more discriminative than point features and can
directly provide geometric information of the scene. SLAM based on line features has
attracted people’s attention for a long time. In 1997, the paper [27] proposed to apply
vertical line segments to the SLAM system based on the extended Kalman filter (EKF)
framework, but the line features detection results were not stable. Line features do not
have complete extraction, description, and matching methods like point features. For a

Sensors 2021, 21, 4604 4 of 17

long time, the extraction and description of line features themselves have directly restricted
the application of line features in SLAM [28]. Later, with the proposal of line segments
detection methods such as line segment detector (LSD) [29] and line segments description
methods such as line band descriptor (LBD) [30], line features are more widely used in
SLAM systems.

As shown in Figure 2, compared with point features, the line features are more
robust to the low-texture environment and the suddenly changing lightness environment.
However, line features are less robust to scale and perspective. These lead to phenomena
such as breakage of detected line features and added difficulty to the subsequent line
features matching. Based on the problem of increased error and system breakdown caused
by poor line features matching accuracy in the monocular SLAM system, this paper uses
point features matching results to improve the accuracy of lines matching and introduces
the weighted fusion method of point and line features to effectively avoid the impact of low
matching accuracy of line features and improve the robustness and operating efficiency of
the system after fusing point and line features in monocular SLAM.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 19

Except for point features, line features and plane features appear frequently in the
environment, where line features are more discriminative than point features and can di-
rectly provide geometric information of the scene. SLAM based on line features has at-
tracted people’s attention for a long time. In 1997, the paper [27] proposed to apply vertical
line segments to the SLAM system based on the extended Kalman filter (EKF) framework,
but the line features detection results were not stable. Line features do not have complete
extraction, description, and matching methods like point features. For a long time, the
extraction and description of line features themselves have directly restricted the applica-
tion of line features in SLAM [28]. Later, with the proposal of line segments detection
methods such as line segment detector (LSD) [29] and line segments description methods
such as line band descriptor (LBD) [30], line features are more widely used in SLAM sys-
tems.

As shown in Figure 2, compared with point features, the line features are more robust
to the low-texture environment and the suddenly changing lightness environment. How-
ever, line features are less robust to scale and perspective. These lead to phenomena such
as breakage of detected line features and added difficulty to the subsequent line features
matching. Based on the problem of increased error and system breakdown caused by poor
line features matching accuracy in the monocular SLAM system, this paper uses point
features matching results to improve the accuracy of lines matching and introduces the
weighted fusion method of point and line features to effectively avoid the impact of low
matching accuracy of line features and improve the robustness and operating efficiency
of the system after fusing point and line features in monocular SLAM.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. The performance of point and line features in areas of rich texture, low texture, and sudden changes in bright-
ness. (a,d,g) A rich-texture scene, low-texture scene, and scene with brightness reduced to 40% of (a). We can clearly see
that the ORB point features (b,e,h) and LSD line features (c,f,i) are extracted in the above scene.

Figure 2. The performance of point and line features in areas of rich texture, low texture, and sudden changes in brightness.
(a,d,g) A rich-texture scene, low-texture scene, and scene with brightness reduced to 40% of (a). We can clearly see that the
ORB point features (b,e,h) and LSD line features (c,f,i) are extracted in the above scene.

3. System Overview

In this section, a brief description of our system is presented. Our constructed system
adds line features information based on ORB-SLAM structure, which can make the line
features work in feature tracking and local map construction. The overall flow of the
algorithm is shown in Figure 3.

The system is completed by three parallel threads which can be seen from Figure 3
and the main improvements have been marked in the flowchart. After the initialization is
completed, the system will maintain a local map composed of point and line features. In the
tracking thread, whenever an image is input, the system uses dual threads to extract point

Sensors 2021, 21, 4604 5 of 17

and line features separately, calculates feature depth information through triangulation,
and maps it to the local map. Then, with the help of the matching relationship between
features, the system calculates the pose of the current frame. By reprojecting the features of
the local map to the current frame, the reprojection error is calculated; at the same time, the
system will determine whether the current frame is judged as a keyframe [31] according to
the keyframe screening strategy.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 19

3. System Overview
In this section, a brief description of our system is presented. Our constructed system

adds line features information based on ORB-SLAM structure, which can make the line
features work in feature tracking and local map construction. The overall flow of the al-
gorithm is shown in Figure 3.

New
image

TRACKING

Feature
Extraction and

Processing

*Point Feature
Processing

*Line Feature
Processing

Pose
Estimation

Point Feature
Processing

*Line Feature
Processing

Local Map
Tracking

Point
Reprojection

*Line
Reprojection

New
Keyframe
Decision

Keyframe

Point
Feature
*Line

Feature

LOCAL MAPPING

*Map Point-Line
Update

Keyframe Culling

Keyframe Insertion

*BA Optimization
Based on Point-Line

LOOP CLOSING

Loop Closure
Correction

Loop Closure
Detection

Global BA
Optimization

Figure 3. System overview. Our system pipeline is an extension of ORB-SLAM. The system is com-
pleted by three parallel threads: tracking, local mapping, and loop closure. Compared with ORB-
SLAM, the main improvements of our system have been marked with “*” in the flowchart.

The system is completed by three parallel threads which can be seen from Figure 3
and the main improvements have been marked in the flowchart. After the initialization is
completed, the system will maintain a local map composed of point and line features. In
the tracking thread, whenever an image is input, the system uses dual threads to extract
point and line features separately, calculates feature depth information through triangu-
lation, and maps it to the local map. Then, with the help of the matching relationship be-
tween features, the system calculates the pose of the current frame. By reprojecting the
features of the local map to the current frame, the reprojection error is calculated; at the
same time, the system will determine whether the current frame is judged as a keyframe
[31] according to the keyframe screening strategy.

The local map is composed of keyframes, map points, and map lines corresponding
to the keyframes. This thread is responsible for maintaining local map information, in-
cluding the insertion and deletion of keyframes, the insertion and deletion of correspond-
ing features, and the local pose optimization using beam adjustment based on reprojection
errors. Then, according to the similarity between the new keyframe and the previous
keyframe, the system decides whether to delete some keyframes with a high coincidence
rate.

After initialization is completed, the system will perform global loop closure detec-
tion [32] continuously. Loop closure detection has high requirements for feature density,
illumination invariance, and scale invariance. In these aspects, point features have more
advantages than line features. In addition, the computational cost of line features is too
high, which will affect the real-time performance of the system. Therefore, this paper does
not add line features to the loop closure detection part. For each feature, the system cal-
culates the bag-of-words vector [33] of the feature. For each keyframe, the system calcu-
lates its visual vector and stores them in the keyframe database. When performing loop
closure detection, the system searches for a keyframe in the keyframe database. If the

Figure 3. System overview. Our system pipeline is an extension of ORB-SLAM. The system is
completed by three parallel threads: tracking, local mapping, and loop closure. Compared with
ORB-SLAM, the main improvements of our system have been marked with “*” in the flowchart.

The local map is composed of keyframes, map points, and map lines corresponding to
the keyframes. This thread is responsible for maintaining local map information, including
the insertion and deletion of keyframes, the insertion and deletion of corresponding fea-
tures, and the local pose optimization using beam adjustment based on reprojection errors.
Then, according to the similarity between the new keyframe and the previous keyframe,
the system decides whether to delete some keyframes with a high coincidence rate.

After initialization is completed, the system will perform global loop closure detec-
tion [32] continuously. Loop closure detection has high requirements for feature density,
illumination invariance, and scale invariance. In these aspects, point features have more
advantages than line features. In addition, the computational cost of line features is too
high, which will affect the real-time performance of the system. Therefore, this paper does
not add line features to the loop closure detection part. For each feature, the system calcu-
lates the bag-of-words vector [33] of the feature. For each keyframe, the system calculates
its visual vector and stores them in the keyframe database. When performing loop closure
detection, the system searches for a keyframe in the keyframe database. If the keyframe
is similar to the current frame in terms of visual vector, it will be regarded as a candidate
frame for loop closure. Then, the system conducts further screening by introducing similar
transformations to confirm whether there is a loop closure. If it exists, the system will
bind the map points corresponding to the current frame and the candidate keyframe for
global optimization.

In recent point-line combined SLAM system, the combination of LSD line segments
extraction and LBD line segments description is usually used to complete the work of
line features matching. Besides, the point-line features extraction and matching work are
completely separated, which consumes a lot of computing resources. Moreover, these
SLAM systems simply use the existing point and line features extraction algorithm, and
have not improved the shortcomings of the algorithm. In view of the above problems, this

Sensors 2021, 21, 4604 6 of 17

paper improves the front end of ORB-SLAM system, and the main process is shown in
Figure 4. The main improvements made in this paper have been marked in purple.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 19

keyframe is similar to the current frame in terms of visual vector, it will be regarded as a
candidate frame for loop closure. Then, the system conducts further screening by intro-
ducing similar transformations to confirm whether there is a loop closure. If it exists, the
system will bind the map points corresponding to the current frame and the candidate
keyframe for global optimization.

In recent point-line combined SLAM system, the combination of LSD line segments
extraction and LBD line segments description is usually used to complete the work of line
features matching. Besides, the point-line features extraction and matching work are com-
pletely separated, which consumes a lot of computing resources. Moreover, these SLAM
systems simply use the existing point and line features extraction algorithm, and have not
improved the shortcomings of the algorithm. In view of the above problems, this paper
improves the front end of ORB-SLAM system, and the main process is shown in Figure 4.
The main improvements made in this paper have been marked in purple.

Frame

Adaptive
Extraction of

Point Features

Line Feature
Extraction and
Preprocessing

Point Feature
Matching

Line Feature
Matching

 Calculate the rotation
angle to filter the lines

to be matched

Calculate the
Reprojection
Error of Map

Points Calculate the
Reprojection Error

of Map Lines

Construct a Point-
Line Feature Error

Model

Pose Optimization

Figure 4. The front-end framework diagram based on the improved point-line features algorithm.

When a new image frame is input, the system performs point and line features ex-
traction. First, the system uses ORB algorithm with adaptive threshold to extract point
features in the image, and calculates the rough pose matrix of the current frame based on
the point features matching results obtained. Then, based on this, the system performs
preliminary screening of line segments to be matched, and then completes the line fea-
tures matching. After obtaining the matching results of point and line features, the system
reprojects the points and lines in the local map to the current frame, calculates the errors
between the observed points and lines and the points and lines obtained by the reprojec-
tion, and sets reasonable values for the errors. Finally, the system optimizes the pose by
minimizing the reprojection error.

4. Improved Point-Line Feature Processing
In this section, we first introduce the construction process of the ORB extractor with

local adaptive threshold. Then we describe the process of line features extraction and

Figure 4. The front-end framework diagram based on the improved point-line features algorithm.

When a new image frame is input, the system performs point and line features extrac-
tion. First, the system uses ORB algorithm with adaptive threshold to extract point features
in the image, and calculates the rough pose matrix of the current frame based on the point
features matching results obtained. Then, based on this, the system performs preliminary
screening of line segments to be matched, and then completes the line features matching.
After obtaining the matching results of point and line features, the system reprojects the
points and lines in the local map to the current frame, calculates the errors between the
observed points and lines and the points and lines obtained by the reprojection, and sets
reasonable values for the errors. Finally, the system optimizes the pose by minimizing the
reprojection error.

4. Improved Point-Line Feature Processing

In this section, we first introduce the construction process of the ORB extractor with
local adaptive threshold. Then we describe the process of line features extraction and
matching, including line features extraction, line features preprocessing, and line features
matching assisted by point features matching results. Finally, in Section 4.3, we show the
weight construction model of the reprojection error of the point-line features.

4.1. Adaptive Point Feature Extractor

ORB detector can quickly extract pixels with obvious brightness difference in the
image, so it is widely used in the field of visual SLAM. However, the point features
extracted by the traditional ORB algorithm are unevenly distributed, and they are prone
to “clustering”. Point features are redundant in regions with rich textures but rare in
regions with weak textures. This will have a negative impact on visual SLAM, and can
easily lead to failure of subsequent image matching, which will affect the accuracy of pose

Sensors 2021, 21, 4604 7 of 17

estimation. In response to this problem, Mur-Arta et al. [9] proposed a quadtree-based
point features extraction algorithm, which divides image into uniform grids. Then, their
system performed point features detections and descriptor calculations in the grids. Finally,
the extracted image point features are evenly distributed. Figure 5 visually shows the point
features extraction process. The main improvements made in this paper have been marked
in blue in Figure 5.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 19

matching, including line features extraction, line features preprocessing, and line features
matching assisted by point features matching results. Finally, in Section 4.3, we show the
weight construction model of the reprojection error of the point-line features.

4.1. Adaptive Point Feature Extractor
ORB detector can quickly extract pixels with obvious brightness difference in the im-

age, so it is widely used in the field of visual SLAM. However, the point features extracted
by the traditional ORB algorithm are unevenly distributed, and they are prone to “clus-
tering”. Point features are redundant in regions with rich textures but rare in regions with
weak textures. This will have a negative impact on visual SLAM, and can easily lead to
failure of subsequent image matching, which will affect the accuracy of pose estimation.
In response to this problem, Mur-Arta et al. [9] proposed a quadtree-based point features
extraction algorithm, which divides image into uniform grids. Then, their system per-
formed point features detections and descriptor calculations in the grids. Finally, the ex-
tracted image point features are evenly distributed. Figure 5 visually shows the point fea-
tures extraction process. The main improvements made in this paper have been marked
in blue in Figure 5.

start
Calculate FAST Corner
Extraction Threshold

Adaptively
Building an Image Pyramid

Meshing and
Extracting Corner

Points

Build a Quadtree to
Manage Nodes

Calculation Direction
and DescriptorEnd

Figure 5. Flow chart of improved ORB algorithm.

The FAST algorithm performs features extraction by verifying whether the grayscale
differences between the pixel to be detected and its surrounding pixels meet a certain
threshold. In FAST, the threshold is manually determined, which usually depends on en-
gineering experience. However, the point features extraction method based on a fixed
threshold cannot be applied to all images, especially images with large differences in
brightness. This will cause uneven distribution of point features, and the number of ex-
tracted point features will change sharply with the change of brightness. For this reason,
inspired by the concept of “coefficient of variation” in mathematics, this paper proposes
an adaptive threshold method based on gray information for automatic selection of FAST
features extraction threshold. The algorithm automatically designs and calculates the
threshold according to the brightness of the pixel. The calculation method is as follows:

() ()() ()
2

1

1 n

j j i j j
i

iniTh I x I x I x
n =

= −∑ (1)

3j jminTh iniTh= (2)

where ()j iI x is the gray value of the i-th pixel in the j-th image block, ()jI x is the aver-

age gray value of the j-th image block, and jiniTh is the calculated initial extraction
threshold of the image block. In addition, referring to “dual threshold” idea coming from
Mur-Arta, our system uses jminTh to extract again for areas where no point features can
be extracted using the initial threshold. If this area is still not able to extract point features,
then this area will be discarded.

Figure 5. Flow chart of improved ORB algorithm.

The FAST algorithm performs features extraction by verifying whether the grayscale
differences between the pixel to be detected and its surrounding pixels meet a certain
threshold. In FAST, the threshold is manually determined, which usually depends on
engineering experience. However, the point features extraction method based on a fixed
threshold cannot be applied to all images, especially images with large differences in
brightness. This will cause uneven distribution of point features, and the number of
extracted point features will change sharply with the change of brightness. For this reason,
inspired by the concept of “coefficient of variation” in mathematics, this paper proposes
an adaptive threshold method based on gray information for automatic selection of FAST
features extraction threshold. The algorithm automatically designs and calculates the
threshold according to the brightness of the pixel. The calculation method is as follows:

iniThj =

√
1
n

n

∑
i=1

(
Ij(xi)− Ij(x)

)2
/Ij(x) (1)

minThj = iniThj/3 (2)

where Ij(xi) is the gray value of the i-th pixel in the j-th image block, Ij(x) is the average
gray value of the j-th image block, and iniThj is the calculated initial extraction threshold
of the image block. In addition, referring to “dual threshold” idea coming from Mur-Arta,
our system uses minThj to extract again for areas where no point features can be extracted
using the initial threshold. If this area is still not able to extract point features, then this
area will be discarded.

In order to accurately estimate the pose, the selected features should be evenly dis-
tributed throughout the image. It is not appropriate to use the brightness of the entire
image to determine the threshold for extracting features, because different areas of the
image have different brightness, so selecting features in this way may cause the features
selected in the low-textured grid to be unsuitable for tracking. For this reason, inspired by
the empirical formula summarized by Tiller et al. [34], this paper uses the “average area
occupied by each point” to divide the image block. The calculation formula for the side
length of the image block is as follows:

w =
√

width× height/Nα (3)

where height and width represent the height and width of the input image, respectively,
Nα is the number of features required for the α-th pyramid image, s is the scale factor of

Sensors 2021, 21, 4604 8 of 17

the pyramid, n is the total number of pyramid layers, and the calculation formula for Nα is
as follows:

Nα =
N(1− s)

1− sn sα (4)

4.2. Line Features Extraction and Matching

In this section, we first introduce the process of line features extraction and prepro-
cessing, including the merging of broken lines and near lines, and the elimination of short
lines. After that, we show the line features matching process assisted by the point features
matching results in Section 4.2.2.

4.2.1. Line Features Extraction and Preprocessing

In this paper, we used the famous LSD algorithm to extract the line features in the
image and the LSD algorithm can extract the set of pixels with similar gradient directions
in the image. This process can be completed in linear time without parameter adjustment.
So, it is suitable for the line features detection work in this paper.

However, the LSD algorithm usually splits a long line segment into several short line
segments. In addition, some detected line segments may be very near. The existence of
such detected line segments usually complicates the subsequent lines matching task, which
increases the uncertainty of line segments triangulation [35]. In order to minimize the
impact of multiple line segments produced by one line, this paper uses three parameters:
direction difference, point-line distance, and endpoint distance to merge near lines and
eliminate short lines. Among them, the point-line distance is defined as the minimum
distance l between the endpoints of two line segments and the vertical distance d from the
midpoint of a line segment to another line segment. Figure 6 visually shows the calculation
process of the point-line distance.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 19

In order to accurately estimate the pose, the selected features should be evenly dis-
tributed throughout the image. It is not appropriate to use the brightness of the entire
image to determine the threshold for extracting features, because different areas of the
image have different brightness, so selecting features in this way may cause the features
selected in the low-textured grid to be unsuitable for tracking. For this reason, inspired by
the empirical formula summarized by Tiller et al. [34], this paper uses the “average area
occupied by each point” to divide the image block. The calculation formula for the side
length of the image block is as follows:

/w width height Nα= × (3)

where height and width represent the height and width of the input image, respec-

tively, Nα is the number of features required for the α -th pyramid image, s is the
scale factor of the pyramid, n is the total number of pyramid layers, and the calculation
formula for Nα is as follows:

()1
1 n

N s
N s

s
α

α

−
=

−
 (4)

4.2. Line Features Extraction and Matching
In this section, we first introduce the process of line features extraction and prepro-

cessing, including the merging of broken lines and near lines, and the elimination of short
lines. After that, we show the line features matching process assisted by the point features
matching results in Section 4.2.2.

4.2.1. Line Features Extraction and Preprocessing
In this paper, we used the famous LSD algorithm to extract the line features in the

image and the LSD algorithm can extract the set of pixels with similar gradient directions
in the image. This process can be completed in linear time without parameter adjustment.
So, it is suitable for the line features detection work in this paper.

However, the LSD algorithm usually splits a long line segment into several short line
segments. In addition, some detected line segments may be very near. The existence of
such detected line segments usually complicates the subsequent lines matching task,
which increases the uncertainty of line segments triangulation [35]. In order to minimize
the impact of multiple line segments produced by one line, this paper uses three parame-
ters: direction difference, point-line distance, and endpoint distance to merge near lines
and eliminate short lines. Among them, the point-line distance is defined as the minimum
distance l between the endpoints of two line segments and the vertical distance d from
the midpoint of a line segment to another line segment. Figure 6 visually shows the calcu-
lation process of the point-line distance.

Figure 6. Point-line distance between two line segments.

After finishing the above processing, the system then screens the remaining line seg-
ments according to their length, and ignores the line segments whose length is less than
the threshold D . Figure 7 shows the line segments merging process and the effect of the
improved line features extraction algorithm on the EuRoC dataset sequence MH_01_easy.

Figure 6. Point-line distance between two line segments.

After finishing the above processing, the system then screens the remaining line
segments according to their length, and ignores the line segments whose length is less than
the threshold D. Figure 7 shows the line segments merging process and the effect of the
improved line features extraction algorithm on the EuRoC dataset sequence MH_01_easy.

4.2.2. Point Features Matching Results Assisted Line Features Matching

Many papers use LBD descriptors and introduce the geometric properties of lines
to match the calculated line features. So, the matching methods used in many papers
are very similar. For example, paper [17] mentioned that if two lines l1 and l2 can be
successfully matched, then they need to meet the following conditions: (1) The angle
difference between two lines is less than the threshold Φ. (2) The lengths of two lines are
similar: min(‖l1‖, ‖l2‖)/max(‖l1‖, ‖l2‖) > τ. (3) The overlap of two lines is greater than
the threshold loverlap/min(‖l1‖, ‖l2‖) > β. (4) The descriptor distance of two lines is less
than the threshold ε.

The screening process of the above four conditions is extremely time-consuming, and
the SLAM system is prone to losing real-time performance. In addition, the second filter
condition is not reasonable. Because line segments often change in length due to changes
in perspective or scale, this is the reason why many papers do not use the endpoints of line
segments for matching. Therefore, in our system, we did not use the second filter condition.

Considering that the processing speed of the point features is faster than the line
features, and the reliability of the point feature matching results is greater than that of
the line features, this paper combines the matching result of the point features with the

Sensors 2021, 21, 4604 9 of 17

line segments to be matched when matching the line segments, that is, adding the angle
limitation factor. The specific methods are as follows:

Sensors 2021, 21, x FOR PEER REVIEW 9 of 19

Figure 7. We link line segments into a longer one, and merge near line segments into a new one to enhance the quality of
lines extracted by LSD. The image comes from EuRoC dataset sequence MH_01_easy.

4.2.2. Point Features Matching Results Assisted Line Features Matching
Many papers use LBD descriptors and introduce the geometric properties of lines to

match the calculated line features. So, the matching methods used in many papers are
very similar. For example, paper [17] mentioned that if two lines 1l and 2l can be suc-
cessfully matched, then they need to meet the following conditions: (1) The angle differ-
ence between two lines is less than the threshold Φ . (2) The lengths of two lines are sim-
ilar: () ()1 2 1 2min , max ,l l l l τ> . (3) The overlap of two lines is greater than the

threshold ()1 2min ,overlapl l l β> . (4) The descriptor distance of two lines is less than the

threshold ε .
The screening process of the above four conditions is extremely time-consuming, and

the SLAM system is prone to losing real-time performance. In addition, the second filter
condition is not reasonable. Because line segments often change in length due to changes
in perspective or scale, this is the reason why many papers do not use the endpoints of
line segments for matching. Therefore, in our system, we did not use the second filter
condition.

Considering that the processing speed of the point features is faster than the line fea-
tures, and the reliability of the point feature matching results is greater than that of the
line features, this paper combines the matching result of the point features with the line
segments to be matched when matching the line segments, that is, adding the angle limi-
tation factor. The specific methods are as follows:

(1) For any two line segments, the system filters the line segments to be matched by
the rotation angle between frames. A rough rotation angle can be obtained through the
results of point features matching between adjacent frames. Suppose the rotation angle is
θ , and then our system calculates the rotation angle between line segments to be matched
and denoted it as lθ . Suppose the rotation angle error threshold is set to θt and set as
θt = 6° during the experiment. If - l tθ θ θ≤ is satisfied, the next check operation can be
performed.

(2) We traverse the candidate line segment and record the optimal and suboptimal
matching distance of the descriptor, which are recorded as 1d and 2d respectively. If

1 50d ≤ and 1 2 0.8d d ≥ , the line segment is matched successfully. It is considered that two
line segments do not match, and there is no need to perform descriptor matching.

This not only improves the accuracy of line features matching, but also speeds up the
matching process.

Figure 7. We link line segments into a longer one, and merge near line segments into a new one to enhance the quality of
lines extracted by LSD. The image comes from EuRoC dataset sequence MH_01_easy.

(1) For any two line segments, the system filters the line segments to be matched by
the rotation angle between frames. A rough rotation angle can be obtained through the
results of point features matching between adjacent frames. Suppose the rotation angle is
θ, and then our system calculates the rotation angle between line segments to be matched
and denoted it as θl . Suppose the rotation angle error threshold is set to θt and set as
θt = 6◦ during the experiment. If |θ − θl | ≤ θt is satisfied, the next check operation can
be performed.

(2) We traverse the candidate line segment and record the optimal and suboptimal
matching distance of the descriptor, which are recorded as d1 and d2 respectively. If d1 ≤ 50
and d1/d2 ≥ 0.8, the line segment is matched successfully. It is considered that two line
segments do not match, and there is no need to perform descriptor matching.

This not only improves the accuracy of line features matching, but also speeds up the
matching process.

4.3. Point-Line Features Error Weighted Model

When a new image is input, the system first extracts point and line features. This paper
uses ORB point features extraction algorithm and LSD line features extraction algorithm,
and then uses matching methods such as descriptors, optimal suboptimal ratios, and
angle thresholds. These methods of features extraction and matching have been relatively
complete, and the processing process can be referred to [36], which will not be described
here. After obtaining the matching results of point and line features, the points and lines in
the local map are reprojected to the current frame, and the pose is optimized by minimizing
the reprojection error.

The reprojection error formulas of point and line features are defined as follows:

ep = x− x′ (5)

el = d(z, lc) =

 pT
s lc√

l2
1 + l2

2

,
pT

e lc√
l2
1 + l2

2

T

(6)

where x and x′ represent the projection point and observation point of the three-dimensional
space point, respectively, and z and lc represent the projection line and the observation line
of the three-dimensional space line segment, respectively.

When constructing the error function, this paper introduces two criteria: the degree
of the richness and dispersion of features, which are used as a benchmark to weight the
results from two kinds of features. The former weights the score proportionally according
to the number of features of a certain type (point or line) in a set of features detected in

Sensors 2021, 21, 4604 10 of 17

the image, while the latter takes the dispersion of features in the image into account (the
greater the dispersion, the higher the weight); the error weights of points and lines are
obtained by the following formulas:

wp = 0.5
(

nk
nk + nl

+
dk

dk + dl

)
(7)

wl = 0.5
(

nl
nk + nl

+
dl

dk + dl

)
(8)

where nk and nl are the number of key points and lines extracted from the image, respec-
tively, and the degree of dispersion of key points and lines (dk and dl respectively) are
calculated by the square root of the sum of the variances of the x and y coordinates of
the extracted features. In the case of lines, such x and y coordinates are taken from their
midpoints. Finally, the optimized function is:

T = argmin

∑
i∈P

eT
pi

−1

∑
epi

wpepi + ∑
j∈L

eT
lj

−1

∑
elj

wlelj

 (9)

where epi represents the reprojection error of the i-th pair of matching points, elj
represents

the reprojection error of the j-th matching line, and P and L represent the sets of matching
points and matching lines, respectively.

5. Results

In this section, we first show the effectiveness of the improved point features extraction
algorithm under uniformity, extraction speed, and different lighting intensity conditions
in Section 5.1. Then, we show the positive effect of adding the improved point and line
features to the system.

The experiment first uses the EuRoC [37] dataset to conduct experiments on the
improved ORB algorithm, and then evaluates the system designed in this paper on the
TUM [38] dataset and the KITTI [39] road dataset; at the same time, the experiment
in Section 5.3 compares this system with the most advanced methods, including ORB-
SLAM, PL-SLAM, LSD-SLAM, and RGBD-SLAM. All experiments are run in a 64-bit Linux
operating system. The CPU of the running platform is I9-7900X, and the platform has 16G
running memory.

5.1. ORB Homogenization Algorithm Based on Adaptive Threshold

In order to quantify the distribution of features, this paper uses the distribution
uniformity function [40] to calculate the distribution uniformity of the point features. As
shown in Figure 8, we divide the image from vertical, horizontal, 45◦, 145◦, center and
periphery, so we obtain 10 regions of top, bottom, left, right, top left, bottom right, top
right, bottom left, center, and periphery. Then we count the number of feature points in
each area, calculate the variance V of this set of data, and the final uniformity u calculation
formula is:

u = 101× log(V) (10)

We use Equation (10) to calculate the uniformity of each frame. The smaller the
uniformity value, the better the uniform distribution effect.

In order to verify the effectiveness of our improved ORB algorithm in improving
the distribution uniformity and computational efficiency, we used images from the KITTI
dataset sequence 00. This sequence contains images with different viewing angles and
different brightness. This experiment uses the feature extraction algorithm proposed by
Mur-Arta in ORB-SLAM (in the following, it will be referred to as the MA algorithm
for short) and the improved algorithm proposed in this paper to conduct comparative
experiments, and for the sake of generality, all experiments are performed five times for

Sensors 2021, 21, 4604 11 of 17

each frame, and the average value of the five times of experiment results is taken as the
final experiment result. The experiment results are shown in Table 1.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 19

The experiment first uses the EuRoC [37] dataset to conduct experiments on the im-
proved ORB algorithm, and then evaluates the system designed in this paper on the TUM
[38] dataset and the KITTI [39] road dataset; at the same time, the experiment in Section
5.3 compares this system with the most advanced methods, including ORB-SLAM, PL-
SLAM, LSD-SLAM, and RGBD-SLAM. All experiments are run in a 64-bit Linux operating
system. The CPU of the running platform is I9-7900X, and the platform has 16G running
memory.

5.1. ORB Homogenization Algorithm Based on Adaptive Threshold
In order to quantify the distribution of features, this paper uses the distribution uni-

formity function [40] to calculate the distribution uniformity of the point features. As
shown in Figure 8, we divide the image from vertical, horizontal, 45°, 145°, center and
periphery, so we obtain 10 regions of top, bottom, left, right, top left, bottom right, top
right, bottom left, center, and periphery. Then we count the number of feature points in
each area, calculate the variance V of this set of data, and the final uniformity u cal-
culation formula is:

()101 logu V= × (10)

We use Equation (10) to calculate the uniformity of each frame. The smaller the uni-
formity value, the better the uniform distribution effect.

Figure 8. Details of the 10 areas divided when calculating the distribution uniformity.

In order to verify the effectiveness of our improved ORB algorithm in improving the
distribution uniformity and computational efficiency, we used images from the KITTI da-
taset sequence 00. This sequence contains images with different viewing angles and dif-
ferent brightness. This experiment uses the feature extraction algorithm proposed by Mur-
Arta in ORB-SLAM (in the following, it will be referred to as the MA algorithm for short)
and the improved algorithm proposed in this paper to conduct comparative experiments,
and for the sake of generality, all experiments are performed five times for each frame,
and the average value of the five times of experiment results is taken as the final experi-
ment result. The experiment results are shown in Table 1.

Table 1. Comparison of the uniformity and time consumption of two algorithms on the KITTI dataset sequence 00.

Image Sequence
Distribution Uniformity Time Consumption/ms

MA Algorithm Improved Algorithm MA Algorithm Improved Algorithm
1 389.84 325.91 2.543 1.318
2 518.85 465.88 5.255 2.705
3 495.95 404.86 3.701 1.143
4 487.64 441.88 3.247 1.688
5 468.56 417.28 4.085 1.703

It can be seen from Table 1 that the algorithm proposed in this paper is better than
the MA algorithm in the uniformity of the distribution, and the uniformity of the im-
proved algorithm is increased by 13.06% on average. The time consumption is also signif-
icantly reduced, and time consumption of our improved algorithm is reduced by 54.42%

Figure 8. Details of the 10 areas divided when calculating the distribution uniformity.

Table 1. Comparison of the uniformity and time consumption of two algorithms on the KITTI dataset sequence 00.

Image Sequence
Distribution Uniformity Time Consumption/ms

MA Algorithm Improved Algorithm MA Algorithm Improved Algorithm

1 389.84 325.91 2.543 1.318
2 518.85 465.88 5.255 2.705
3 495.95 404.86 3.701 1.143
4 487.64 441.88 3.247 1.688
5 468.56 417.28 4.085 1.703

It can be seen from Table 1 that the algorithm proposed in this paper is better than the
MA algorithm in the uniformity of the distribution, and the uniformity of the improved
algorithm is increased by 13.06% on average. The time consumption is also significantly
reduced, and time consumption of our improved algorithm is reduced by 54.42% on
average. Next, we conduct experiments on pictures from real indoor scenes, desktop
and lockers, to visualize the extraction effects of two algorithms. Figure 9 represents the
extraction results of two kinds of extraction algorithms. It is obvious that the features
extracted by our improved algorithm in this paper are more evenly distributed across the
entire image.

In order to further verify the adaptability of our improved ORB algorithm under
different brightness, we conducted experiments on the number of point features and feature
repetition rate extracted by the improved algorithm under different lighting conditions.
The specific operations are as follows: Firstly, we preprocess the original image to obtain
new image sequences. Based on the experimental original image, the range of brightness
change is −60% to 60% with 20% as an interval. Then we perform features extraction and
results calculation on each changed image. Figure 10 shows the number of extracted point
features and feature repetition rate under different brightness.

As shown in Figure 10a, it is obvious that the number of point features extracted by the
improved ORB algorithm is generally lower than that of the MA algorithm, because the MA
algorithm has a large number of overlapping point features. The number of point features
extracted by the MA algorithm decreases sharply with the change of brightness, while the
number of point features extracted by the improved algorithm does not change significantly,
indicating that the improved algorithm has stronger adaptability to changes in brightness.
Furthermore, the number of point features cannot accurately test the effectiveness of
our algorithm, because compared with the error extraction and elimination caused by a
fixed threshold, the adaptive threshold does not see a significant change in the number
of point features. In order to further illustrate the advantages of our improved algorithm,
repeatability is selected as a quantitative evaluation index. Repeatability is that the system
can extract the same point features as the original image on the new image obtained after
changing the brightness:

r = Nr/N f (11)

where Nr is the number of point features appearing in the same position of two images; N f
is the number of point features detected in the original image.

Sensors 2021, 21, 4604 12 of 17

Sensors 2021, 21, x FOR PEER REVIEW 12 of 19

on average. Next, we conduct experiments on pictures from real indoor scenes, desktop
and lockers, to visualize the extraction effects of two algorithms. Figure 9 represents the
extraction results of two kinds of extraction algorithms. It is obvious that the features ex-
tracted by our improved algorithm in this paper are more evenly distributed across the
entire image.

(a) (b)

(c) (d)

Figure 9. The extraction results of two algorithms on real indoor scenes: (a,b) desktop images, (c,d)
locker images. Images (a,c) show the distribution of the point features extracted by the MA algo-
rithm, and images (b,d) show the distribution of the feature points extracted by the improved algo-
rithm in this paper. The colored circles are the extracted point features.

In order to further verify the adaptability of our improved ORB algorithm under dif-
ferent brightness, we conducted experiments on the number of point features and feature
repetition rate extracted by the improved algorithm under different lighting conditions.
The specific operations are as follows: Firstly, we preprocess the original image to obtain
new image sequences. Based on the experimental original image, the range of brightness
change is −60% to 60% with 20% as an interval. Then we perform features extraction and
results calculation on each changed image. Figure 10 shows the number of extracted point
features and feature repetition rate under different brightness.

Figure 9. The extraction results of two algorithms on real indoor scenes: (a,b) desktop images,
(c,d) locker images. Images (a,c) show the distribution of the point features extracted by the MA
algorithm, and images (b,d) show the distribution of the feature points extracted by the improved
algorithm in this paper. The colored circles are the extracted point features.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 19

(a) (b)

Figure 10. The performance of two algorithms in the case of changes in brightness. (a,b) They show
the comparison of the number of point features and the feature repetition rates under different light-
ing conditions, respectively. The green lines show the advantages of the improved algorithm in this
paper.

As shown in Figure 10a, it is obvious that the number of point features extracted by
the improved ORB algorithm is generally lower than that of the MA algorithm, because
the MA algorithm has a large number of overlapping point features. The number of point
features extracted by the MA algorithm decreases sharply with the change of brightness,
while the number of point features extracted by the improved algorithm does not change
significantly, indicating that the improved algorithm has stronger adaptability to changes
in brightness. Furthermore, the number of point features cannot accurately test the effec-
tiveness of our algorithm, because compared with the error extraction and elimination
caused by a fixed threshold, the adaptive threshold does not see a significant change in
the number of point features. In order to further illustrate the advantages of our improved
algorithm, repeatability is selected as a quantitative evaluation index. Repeatability is that
the system can extract the same point features as the original image on the new image
obtained after changing the brightness:

r fr N N= (11)

where rN is the number of point features appearing in the same position of two images;

fN is the number of point features detected in the original image.
Figure 10b is the result of the repetition rate under the change of image brightness. It

can be seen that the overall repetition rate of the improved ORB point features extraction
algorithm is the highest, and the change with brightness is small, while the repetition rate
of the MA algorithm decreases sharply after the brightness increases and decreases. This
is enough to observe the effectiveness of the improved algorithm in this paper.

5.2. EuRoC Dataset Evaluation
This section uses the MH_01_easy scene sequence images in the EuRoC dataset. In

this sequence, each scene contains images taken by the left and right sides of the binocular
camera. Because this paper only makes improvements to the monocular ORB-SLAM, we
all choose the images taken by the camera on the left. Since this dataset provides real tra-
jectory information, we use root mean squared error (RMSE) to evaluate the accuracy of
the running trajectory.

The calculation method of the RMSE is shown in the following formula:

()
2

, ,1

n
e i s ii

T T
RMSE T i

n
=

−
= ∑ (12)

Figure 10. The performance of two algorithms in the case of changes in brightness. (a,b) They show
the comparison of the number of point features and the feature repetition rates under different
lighting conditions, respectively. The green lines show the advantages of the improved algorithm in
this paper.

Figure 10b is the result of the repetition rate under the change of image brightness. It
can be seen that the overall repetition rate of the improved ORB point features extraction
algorithm is the highest, and the change with brightness is small, while the repetition rate
of the MA algorithm decreases sharply after the brightness increases and decreases. This is
enough to observe the effectiveness of the improved algorithm in this paper.

5.2. EuRoC Dataset Evaluation

This section uses the MH_01_easy scene sequence images in the EuRoC dataset. In
this sequence, each scene contains images taken by the left and right sides of the binocular
camera. Because this paper only makes improvements to the monocular ORB-SLAM, we
all choose the images taken by the camera on the left. Since this dataset provides real
trajectory information, we use root mean squared error (RMSE) to evaluate the accuracy of
the running trajectory.

Sensors 2021, 21, 4604 13 of 17

The calculation method of the RMSE is shown in the following formula:

RMSE(T) =

√
∑n

i=1 ‖Te,i − Ts,i‖2

n
i (12)

where Te,i and Ts,i represent the estimated pose and real pose of the moving robot at time i
respectively.

We compare our algorithm with ORB-SLAM and several state-of-the-art methods,
including DSO [7], LDSO [41], PL-SLAM [42], and DSM [8]. The results of these advanced
methods are from related papers, and ORB-SLAM is obtained by running open source
code. When conducting experiments, each group of experiments is run more than five
times. Finally, the median of the results of multiple runs is taken as the final experimental
result. All experimental results are shown in Table 2.

Table 2. Comparison of RMSE and time-consuming of two algorithms on EuRoC dataset.

Sequence ORB-SLAM PL-SLAM DSM DSO LDSO Ours

MH_01_easy 5.13 4.16 3.9 4.6 5.3 4.37
MH_02_easy 3.48 5.22 3.6 4.6 6.2 3.73

MH_03_medium 7.1 3.99 5.5 17.2 11.4 3.56
MH_04_difficult 7.47 6.41 5.7 38.1 15.2 6.16
V2_02_medium 6.07 5.65 5.7 13.2 7.8 5.57
V2_03_difficult 10.55 12.61 78.4 115.2 × 9.98

Obviously, the accuracy of our system is higher than ORB-SLAM and PL-SLAM,
which can be expected due to our better integration of point and line features. Among the
six sequences listed, our system performed well in the medium and difficult sequences
because of the weak-texture regions in these sequences. The point features of the easy
sequences are relatively rich, which leads to the fact that the line features we added do not
make outstanding contributions to our system. At the same time, DSM adds a map reuse
module based on point features; this may be the reason why our system did not show the
best results in the easy sequences. In addition, in the environment where the illumination
changes significantly, such as MH_03_medium, the accuracy of DSO and LDSO based on
the principle of constant luminosity decreases significantly. Overall, our system performs
well on the EuRoC dataset.

In order to further illustrate the advantages of line features, Figure 11 shows the
comparison of the posture error trajectory between the ORB-SLAM and the improved PL-
SLAM in this paper under sequence V2_03_difficult. The sequence contains a weak-texture
environment for a period of time. It can be seen that ORB-SLAM system obviously fails to
locate, and it has not been able to relocate successfully during this period of time; what is
shown on the picture is a straight track that deviates from the true value. However, the
improved PL-SLAM in this paper can get close to the true value during this period, and
the error is also small.

5.3. TUM Dataset Evaluation

During the image acquisition process of the TUM mono dataset, mobile robots will
walk around in different rooms and corridors, and collect scenes such as walls, roofs,
walkways, desktops, and table bottoms. This dataset contains scenes with rich features
and weak textures. The types of scenes in the image sequence are relatively rich, the
changes between consecutive image frames are relatively large, and the lighting changes
are obvious. In this section, we selected several sequences with typical conditions such
as image blur and repeated texture for testing, and compared the results with excellent
systems such as LSD-SLAM.

Sensors 2021, 21, 4604 14 of 17Sensors 2021, 21, x FOR PEER REVIEW 15 of 19

Figure 11. Comparison of the pose error trajectory of two algorithms under the sequence V2_03_difficult. The color of the
trajectory changes from blue to red, and the closer the color is to red, the bigger the error. The one on the left is the posture
trajectory error map based on ORB-SLAM, and the one on the right is the posture trajectory error map based on the im-
proved PL-SLAM. Circled in black are trajectories of two algorithms corresponding to a continuous weak-texture envi-
ronment in the sequence.

5.3. TUM Dataset Evaluation
During the image acquisition process of the TUM mono dataset, mobile robots will

walk around in different rooms and corridors, and collect scenes such as walls, roofs,
walkways, desktops, and table bottoms. This dataset contains scenes with rich features
and weak textures. The types of scenes in the image sequence are relatively rich, the
changes between consecutive image frames are relatively large, and the lighting changes
are obvious. In this section, we selected several sequences with typical conditions such as
image blur and repeated texture for testing, and compared the results with excellent sys-
tems such as LSD-SLAM.

The test standard used in the experiment is the RGB-D test standard provided by the
Technical University of Munich and the experimental results are shown in Table 3. The
experimental results of LSD-SLAM and other algorithms used for comparison in this sec-
tion are from [16]. The experiment uses the RMSE to investigate the operating effects of
each system. The results show that compared with other algorithms, the proposed algo-
rithm has better accuracy and robustness in environments with weak textures and obvi-
ous illumination changes. Because the image sequences used contain obvious lighting
changes and weak-texture environments, our method performs better than ORB-SLAM
and RGBD-SLAM based only on point features, and better than LSD-SLAM based only on
line features. Compared with PL-SLAM, our method reasonably integrates point and line
features instead of simply adding errors, which can effectively improve the accuracy of
feature matching and the speed of feature tracking in the point-line SLAM system. This
may be the reason why our system performs better than PL-SLAM.

Table 3. Comparison of RMSE (cm) of five algorithms on TUM dataset.

Sequence ORB-SLAM LSD-SLAM RGBD-SLAM PL-SLAM Ours
fr1_xyz 1.38 9.00 1.34 1.21 0.60

fr1_floor 8.71 38.07 3.51 7.59 1.76
fr2_xyz 0.54 2.15 2.61 0.43 0.29

fr2_360_kidnap 4.99 × 393.3 3.92 3.68
f3_sit_xyz 0.08 7.73 × 0.066 0.057

Figure 11. Comparison of the pose error trajectory of two algorithms under the sequence V2_03_difficult. The color of
the trajectory changes from blue to red, and the closer the color is to red, the bigger the error. The one on the left is the
posture trajectory error map based on ORB-SLAM, and the one on the right is the posture trajectory error map based on
the improved PL-SLAM. Circled in black are trajectories of two algorithms corresponding to a continuous weak-texture
environment in the sequence.

The test standard used in the experiment is the RGB-D test standard provided by
the Technical University of Munich and the experimental results are shown in Table 3.
The experimental results of LSD-SLAM and other algorithms used for comparison in this
section are from [16]. The experiment uses the RMSE to investigate the operating effects
of each system. The results show that compared with other algorithms, the proposed
algorithm has better accuracy and robustness in environments with weak textures and
obvious illumination changes. Because the image sequences used contain obvious lighting
changes and weak-texture environments, our method performs better than ORB-SLAM
and RGBD-SLAM based only on point features, and better than LSD-SLAM based only on
line features. Compared with PL-SLAM, our method reasonably integrates point and line
features instead of simply adding errors, which can effectively improve the accuracy of
feature matching and the speed of feature tracking in the point-line SLAM system. This
may be the reason why our system performs better than PL-SLAM.

Table 3. Comparison of RMSE (cm) of five algorithms on TUM dataset.

Sequence ORB-SLAM LSD-SLAM RGBD-SLAM PL-SLAM Ours

fr1_xyz 1.38 9.00 1.34 1.21 0.60
fr1_floor 8.71 38.07 3.51 7.59 1.76
fr2_xyz 0.54 2.15 2.61 0.43 0.29

fr2_360_kidnap 4.99 × 393.3 3.92 3.68
f3_sit_xyz 0.08 7.73 × 0.066 0.057

5.4. KITTI Dataset Evaluation

This section shows the results of ORB-SLAM and our system on sequence 00 and 06
of the KITTI dataset. The KITTI dataset is collected by autonomous driving vehicles, and
the images obtained are outdoor public roads. As shown in Figure 12, orange and blue are
the trajectories of our system and ORB-SLAM on different sequences, respectively. On the
trajectory map in the bottom left corner of the 00 sequence, ORB-SLAM deviates from the
true trajectory for a period of time. On the contrary, our system is very successful both on
sequence 00 and 06, and the actual running trajectories almost completely coincide with
the real trajectories.

Furthermore, in order to better verify the effectiveness and robustness of the improved
system in this paper, we compare ORB-SLAM and our improved PL-SLAM with real
trajectories on the x, y, z axis and yaw, pitch, and roll, respectively. We still use 00 and

Sensors 2021, 21, 4604 15 of 17

06 sequences. As shown in Figure 13, orange and blue are the trajectories of our system
and ORB-SLAM on different sequences, respectively. It is easy to see that the ORB-SLAM
system has large errors in certain places on the 00 sequence, which may be due to the
presence of multiple weak-texture regions in this sequence. In addition, the 06 sequence
includes rich textures, so the trajectories of two systems are close to the real trajectories.
In general, our system has smaller trajectory errors on each axis than ORB-SLAM and is
closer to the true trajectory. This shows that the improvements made in this paper better
solve the positioning accuracy problem of the original system.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 19

5.4. KITTI Dataset Evaluation
This section shows the results of ORB-SLAM and our system on sequence 00 and 06

of the KITTI dataset. The KITTI dataset is collected by autonomous driving vehicles, and
the images obtained are outdoor public roads. As shown in Figure 12, orange and blue are
the trajectories of our system and ORB-SLAM on different sequences, respectively. On the
trajectory map in the bottom left corner of the 00 sequence, ORB-SLAM deviates from the
true trajectory for a period of time. On the contrary, our system is very successful both on
sequence 00 and 06, and the actual running trajectories almost completely coincide with
the real trajectories.

(a) (b)

Figure 12. Performance of different algorithms on the different sequences of the KITTI dataset. (a)
is the 00 sequence with multiple loops, (b) is the 06 sequence with long road and one loop.

Furthermore, in order to better verify the effectiveness and robustness of the im-
proved system in this paper, we compare ORB-SLAM and our improved PL-SLAM with
real trajectories on the x, y, z axis and yaw, pitch, and roll, respectively. We still use 00
and 06 sequences. As shown in Figure 13, orange and blue are the trajectories of our sys-
tem and ORB-SLAM on different sequences, respectively. It is easy to see that the ORB-
SLAM system has large errors in certain places on the 00 sequence, which may be due to
the presence of multiple weak-texture regions in this sequence. In addition, the 06 se-
quence includes rich textures, so the trajectories of two systems are close to the real trajec-
tories. In general, our system has smaller trajectory errors on each axis than ORB-SLAM
and is closer to the true trajectory. This shows that the improvements made in this paper
better solve the positioning accuracy problem of the original system.

Figure 12. Performance of different algorithms on the different sequences of the KITTI dataset. (a) is
the 00 sequence with multiple loops, (b) is the 06 sequence with long road and one loop.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 19

(a) (b)

(c) (d)

Figure 13. Performance of different algorithms on the different sequences of the KITTI dataset. (a,b) are the trajectory
errors of different algorithms on the X, Y, and Z axis. (c,d) are the trajectory errors of different algorithms on the yaw,
pitch, and roll.

6. Conclusions
In this paper, we introduce line features to ORB-SLAM system. Compared with the

existing visual SLAM systems based on the combination of point and line features, our
system not only considers how to better introduce line features, but also optimizes point
features to improve its extraction efficiency and stability of responding to obvious bright-
ness changes. In addition, considering the difference in the number and density of point
and line features, this paper introduces reprojected error weighted model when construct-
ing the optimization cost function. The more the number of features and the more scat-
tered the distribution, the greater the reliability. Experiments show that compared with
the state-of-the-art methods, our method has achieved good results in terms of accuracy.
In addition, trajectory graph also proved that fusing these two types of features will pro-
duce more robust estimation in different datasets. In the future, we will investigate how
to introduce inertial sensors into our system with point and line features.

Author Contributions: Conceptualization, F.Z., L.Z., C.D., and X.F.; methodology, L.Z.; investiga-
tion and validation, L.Z. and C.D.; writing—original draft preparation, L.Z.; writing—review and
editing, F.Z., L.Z., C.D., and X.F. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by open project fund of Intelligent Terminal Key Laboratory of
Sichuan Province (2019-2020) +SCITLAB-0014.

Institutional Review Board Statement: Not applicable.

Figure 13. Performance of different algorithms on the different sequences of the KITTI dataset. (a,b) are the trajectory
errors of different algorithms on the X, Y, and Z axis. (c,d) are the trajectory errors of different algorithms on the yaw, pitch,
and roll.

Sensors 2021, 21, 4604 16 of 17

6. Conclusions

In this paper, we introduce line features to ORB-SLAM system. Compared with
the existing visual SLAM systems based on the combination of point and line features,
our system not only considers how to better introduce line features, but also optimizes
point features to improve its extraction efficiency and stability of responding to obvious
brightness changes. In addition, considering the difference in the number and density
of point and line features, this paper introduces reprojected error weighted model when
constructing the optimization cost function. The more the number of features and the more
scattered the distribution, the greater the reliability. Experiments show that compared with
the state-of-the-art methods, our method has achieved good results in terms of accuracy. In
addition, trajectory graph also proved that fusing these two types of features will produce
more robust estimation in different datasets. In the future, we will investigate how to
introduce inertial sensors into our system with point and line features.

Author Contributions: Conceptualization, F.Z., L.Z., C.D., and X.F.; methodology, L.Z.; investigation
and validation, L.Z. and C.D.; writing—original draft preparation, L.Z.; writing—review and editing,
F.Z., L.Z., C.D., and X.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by open project fund of Intelligent Terminal Key Laboratory of
Sichuan Province (2019-2020) +SCITLAB-0014.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Beinschob, P.; Reinke, C. Graph SLAM based mapping for AGV localization in large-scale warehouses. In Proceedings of the

2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 3–5
September 2015; pp. 245–248.

2. Yamada, T.; Kawabata, K. Development of a dataset to evaluate SLAM for Fukushima Daiichi nuclear power plant decommis-
sioning. In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration (SII), Honolulu, HI, USA, 12–15
January 2020; pp. 7–11.

3. Huang, S.; Ma, Z.; Mu, T.; Fu, H.; Hu, S. Lidar-Monocular Visual Odometry using Point and Line Features. In Proceedings of the
2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 17–21 May 2020; pp. 1091–1097.

4. Sumikura, S.; Shibuya, M.; Sakurada, K. OpenVSLAM: A versatile visual SLAM framework. In Proceedings of the 27th ACM
International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2292–2295.

5. Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 225–234.

6. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the European Conference on
Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 834–849.

7. Engel, J.; Koltun, V.; Cremers, D. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 611–625. [CrossRef]
[PubMed]

8. Zubizarreta, J.; Aguinaga, I.; Montiel, J.M.M. Direct sparse mapping. IEEE Trans. Robot. 2020, 36, 1363–1370. [CrossRef]
9. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot.

2015, 31, 1147–1163. [CrossRef]
10. Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3-D mapping with an RGB-D camera. IEEE Trans. Robot. 2013, 30, 177–187.

[CrossRef]
11. Chien, C.H.; Hsu, C.C.J.; Wang, W.Y.; Chiang, H.H. Indirect visual simultaneous localization and mapping based on linear models.

IEEE Sens. J. 2019, 20, 2738–2747. [CrossRef]
12. Meng, Z.; Kong, X.; Meng, L.; Tomiyama, H. Camera Motion Estimation and optimization Approach. In Proceedings of the 2019

International Conference on Advanced Mechatronic Systems (ICAMechS), Kusatsu, Japan, 26–28 August 2019; pp. 212–217.
13. Lee, S.J.; Hwang, S.S. Elaborate monocular point and line slam with robust initialization. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1121–1129.
14. Li, K.; Yao, J.; Lu, X.; Li, L.; Zhang, Z. Hierarchical line matching based on line–junction–line structure descriptor and local

homography estimation. Neurocomputing 2016, 100, 207–220. [CrossRef]
15. Zhang, F.; Rui, T.; Yang, C.; Shi, J. Lap-slam: A line-assisted point-based monocular vslam. Electronics 2019, 8, 243. [CrossRef]

http://doi.org/10.1109/TPAMI.2017.2658577
http://www.ncbi.nlm.nih.gov/pubmed/28422651
http://doi.org/10.1109/TRO.2020.2991614
http://doi.org/10.1109/TRO.2015.2463671
http://doi.org/10.1109/TRO.2013.2279412
http://doi.org/10.1109/JSEN.2019.2952722
http://doi.org/10.1016/j.neucom.2015.07.137
http://doi.org/10.3390/electronics8020243

Sensors 2021, 21, 4604 17 of 17

16. Pumarola, A.; Vakhitov, A.; Agudo, A.; Sanfeliu, A.; Moreno-Noguer, F. PL-SLAM: Real-time monocular visual SLAM with points
and lines. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada,
20–24 May 2017; pp. 4503–4508.

17. Zuo, X.; Xie, X.; Liu, Y.; Huang, G. Robust Visual SLAM with Point and Line Features. In Proceedings of the 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 652–659.

18. Ortiz, J.; Pupilli, M.; Leutenegger, S.; Davison, A.J. Bundle adjustment on a graph processor. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2416–2425.

19. Sushama, M.; Rajinikanth, E. Face recognition using DRLBP and SIFT feature extraction. In Proceedings of the 2018 International
Conference on Communication and Signal Processing (ICCSP), Chennai, India, 3–5 April 2018; pp. 994–999.

20. Ramya, P.P.; Ajay, J. Object recognition and classification based on improved bag of features using surf and mser local feature
extraction. In Proceedings of the 2019 1st International Conference on Innovations in Information and Communication Technology
(ICIICT), Chennai, India, 25–26 April 2019; pp. 1–4.

21. Chen, J.; Luo, L.; Wang, S.; Wu, H. Automatic panoramic UAV image mosaic using ORB features and robust transformation
estimation. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 4265–4270.

22. Feng, R.; Du, Q.; Li, X.; Shen, H. Robust registration for remote sensing images by combining and localizing feature-and
area-based methods. ISPRS J. Photogramm. Remote Sens. 2019, 151, 15–26. [CrossRef]

23. Hartmann, J.; Klüssendorff, J.H.; Maehle, E. A comparison of feature descriptors for visual SLAM. In Proceedings of the 2013
European Conference on Mobile Robots, Barcelona, Spain, 25–27 September 2013; pp. 56–61.

24. Aulinas, J.; Carreras, M.; Llado, X.; Salvi, J.; Garcia, R.; Prados, R.; Petillot, Y. Feature extraction for underwater visual SLAM. In
Proceedings of the OCEANS 2011 IEEE-Spain, Santander, Spain, 6–9 June 2011; pp. 1–7.

25. Mohammad, S.; Morris, T. Binary robust independent elementary feature features for texture segmentation. Adv. Sci. Lett. 2017,
23, 5178–5182. [CrossRef]

26. Yu, X.Y.; Zhan, Y.A.; Zhu, F. Improved ORB feature extraction algorithm based on quadtree encoding. Comput. Sci. 2018, 45,
232–235.

27. Zhang, G.; Lee, J.H.; Lim, J.; Suh, I.H. Building a 3-D line-based map using stereo SLAM. IEEE Trans. Robot. 2015, 31, 1364–1377.
[CrossRef]

28. Jeong, W.Y.; Lee, K.M. Visual SLAM with line and corner features. In Proceedings of the 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 2570–2575.

29. Andrade, D.C.; Bueno, F.; Franco, F.R.; Silva, R.A.; Neme, J.H.Z.; Margraf, E.; Omoto, W.T.; Farinelli, F.A.; Tusset, A.M.; Okida, S.;
et al. A novel strategy for road lane detection and tracking based on a vehicle’s forward monocular camera. IEEE Trans. Intell.
Transp. Syst. 2018, 20, 1497–1507. [CrossRef]

30. Wei, X.; Huang, J.; Ma, X. Real-Time Monocular Visual SLAM by Combining Points and Lines. In Proceedings of the 2019 IEEE
International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 103–108.

31. Fu, W.K.; Lin, K.L.; Shih, C.S. Key-frame selection for multi-robot simultaneous localization and tracking in robot soccer field.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 109–116.

32. Xu, D.; Jia, Q.; Ye, P.; Sun, H. A Visual Relocation Algorithm with Illumination Changing Robustness. In Proceedings of the 2019
6th International Conference on Systems and Informatics (ICSAI), Vienna International Hotel Shanghai Pudong Airport Disney
Branch, Shanghai, China, 2–4 November 2019; pp. 127–132.

33. Gálvez-López, D.; Tardos, J.D. Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 2012, 28,
1188–1197. [CrossRef]

34. Cheng, X.; Cheng, X.; Li, Q.; Ma, L. Automatic registration of terrestrial and airborne point clouds using building outline features.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 628–638. [CrossRef]

35. Yu, Z.; Guo, X.; Lin, H.; Lumsdaine, A.; Yu, J. Line assisted light field triangulation and stereo matching. In Proceedings of the
IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2792–2799.

36. Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot.
2017, 33, 1255–1262. [CrossRef]

37. Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T. The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 2016, 35, 1157–1163.
[CrossRef]

38. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October
2012; pp. 573–580.

39. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [CrossRef]
40. Zhu, H.; Zhao, C. Evaluation method of image feature point distribution uniformity. J. Daqing Univ. 2010, 30, 9–12.
41. Gao, X.; Wang, R.; Demmel, N.; Cremers, D. LDSO: Direct sparse odometry with loop closure. In Proceedings of the 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 2198–2204.
42. Gomez-Ojeda, R.; Moreno, F.A.; Zuniga-Noël, D.; Scaramuzza, D.; Gonzalez-Jimenez, J. PL-SLAM: A stereo SLAM system

through the combination of points and line segments. IEEE Trans. Robot. 2019, 35, 734–746. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2019.03.002
http://doi.org/10.1166/asl.2017.7336
http://doi.org/10.1109/TRO.2015.2489498
http://doi.org/10.1109/TITS.2018.2856361
http://doi.org/10.1109/TRO.2012.2197158
http://doi.org/10.1109/JSTARS.2017.2788054
http://doi.org/10.1109/TRO.2017.2705103
http://doi.org/10.1177/0278364915620033
http://doi.org/10.1177/0278364913491297
http://doi.org/10.1109/TRO.2019.2899783

	Introduction
	Related Work
	System Overview
	Improved Point-Line Feature Processing
	Adaptive Point Feature Extractor
	Line Features Extraction and Matching
	Line Features Extraction and Preprocessing
	Point Features Matching Results Assisted Line Features Matching

	Point-Line Features Error Weighted Model

	Results
	ORB Homogenization Algorithm Based on Adaptive Threshold
	EuRoC Dataset Evaluation
	TUM Dataset Evaluation
	KITTI Dataset Evaluation

	Conclusions
	References

