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Abstract: Natural vibration characteristics serve as one of the crucial references for bridge monitoring.
However, temperature-induced changes in the natural vibration characteristics of bridge structures
may exceed the impact of structural damage, thus causing some interference in damage identification.
This study analyzed the influence of temperature on the natural vibration characteristics of simply
supported beams, which is the most widely used bridge structure. The theoretical formula for the
variation of the natural frequency of simply supported beams with temperature was proposed. The
elastic modulus of simply supported beams in the range of−40 ◦C to 60 ◦C was acquired by means of
the falling ball test and the theoretical formula and was compared with the elastic modulus obtained
by the three-point bending test at room temperature (20 ◦C). In addition, the Midas/Civil finite-
element simulation was carried out for the natural frequency of simply supported beams at different
temperatures. The results showed that temperature was the main factor causing the variation of the
natural frequency of simply supported beams. The linear negative correlation between the natural
frequency of simply supported beams and their temperature were observed. The natural frequency
of simply supported beams decreased by 0.148% for every 1 ◦C increase. This research contributed
to the further understanding of the natural vibration characteristics of simply supported beams
under the influence of temperature so as to provide references for natural frequency monitoring and
damage identification of beam bridges.

Keywords: temperature; natural vibration characteristics; simply supported beam; beam bridge;
Midas/Civil

1. Introduction

The natural vibration characteristics of bridges, including frequency, vibration mode,
and damping, are affected by structural stiffness and the extent of damage, which can pro-
vide a reference basis for bridge design and comprehensive performance evaluation [1–4].
However, environmental factors, such as temperature, humidity, wind speed, and ex-
tremely harsh environments, can also cause significant changes in the natural vibration
characteristics of the structure, which may even be greater than the changes in the natu-
ral vibration characteristics caused by actual damage, leading to difficulties in damage
identification technologies for bridge monitoring [5–9].

As an important reference basis in damage identification, natural vibration charac-
teristics play an essential role in bridge monitoring. In recent years, many researchers
have explored the evolutionary law of natural bridge frequency and environmental factors.
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Farrar CR et al. [10] carried out a study on the modal parameters of beam bridges based on
environmental factors and found that the natural frequency of beam bridges varied by 5%
over 24 h. Therefore, it can be concluded that the bridge modal change is mainly related to
the bridge temperature. Additionally, Liu and DeWolf [11] conducted a one-year observa-
tion on a curved concrete box girder bridge to investigate the dynamic characteristics. The
results showed that temperature change had an impact on the bridge’s modal frequency,
with a maximum of a 6% change in the bridge’s modal frequency when the temperature
changed to 39 ◦C over a year. Through regular monitoring of the temperature and modal
frequency of the reinforced concrete beam model, Liu et al. [5] found that, when the tem-
perature experienced a change from −14.1 ◦C to 22.8 ◦C, the first four modal frequencies
changed by 5–12%. This variation is sufficient to cover the variation in modal frequency
due to structural damage. Sun Limin et al. [12] conducted research on the relationship
between temperature, humidity, and bridge modal frequency based on the concrete contin-
uous beam bridge model in the laboratory. The experimental results suggested that the
natural frequency of the bridge decreased linearly with the increase of temperature. When
the boundary condition remained constant, the influence of air humidity on the structure
frequency was less than that of temperature. In addition, changes in temperature may alter
the boundary conditions of the bridge and thus affect the structural frequency. The above
studies proved that the temperature has a significant influence on the bridge’s natural
frequency among the environmental factors. Therefore, it is necessary to investigate the
effect of temperature on the natural vibration characteristics of bridges.

In order to study the influence of temperature on the natural vibration characteristics
of bridges, the use of field monitoring of the bridge, or the finite-element method, is the
main strategy to obtain the relationship between bridge natural frequency and temperature.
However, the influence of other factors cannot be excluded in field monitoring of the
bridge, resulting in different conclusions. Most of the studies [5,12–18] indicate that the
frequency decreases with the increase of temperature, though there are also papers [19–21]
that hold the opposite views. It should be noted that the long-term monitoring data cannot
exclude the influence of material property changes and structural damage on natural
vibration characteristics. Changes in the natural vibration characteristics of bridges are
not necessarily caused by temperature. Changes in the self-vibration characteristics of
bridges are also not necessarily caused by temperature, as there are many environmental
factors simultaneously in effect. Furthermore, the influence of temperature on the dynamic
characteristics of the bridge is different for various bridge types and boundary conditions,
which is the main reason why some scholars reached different conclusions.

The reinforced concrete simply supported beam bridge is the earliest and most widely
used bridge structure, which consists of beams supported by movable bearings and articu-
lated bearings at both ends (namely: simply supported beam) as the main load-bearing
structure. The factors that influence the natural frequency of simply supported beam
bridges due to temperature changes are as follows [22,23]: (1) The change of temperature
will cause the change in elastic modulus of structural materials (such as concrete and the
reinforcing bar); (2) The change of temperature will cause changes in structure size; (3)
In the statically indeterminate structure, the change of temperature can cause secondary
stress; and (4) The change of temperature will cause changes in boundary conditions of
the structure, which are mainly manifested by changes in abutment stiffness. Yang [24]
and Li [25] both analyzed the influence of ambient temperature on the natural vibration
characteristics of concrete beams through laboratory experiments, and proposed that there
is a negative correlation between the bridge’s natural frequency and the ambient temper-
ature. However, both experiments were performed at ambient temperature, which, in
addition to the temperature of the simply supported beam have relatively small changes
with the temperature control range above 0 ◦C. It is necessary to conduct experiments over
a wider range of temperature variations so as to ensure the universality and reliability of
the conclusions.
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In this paper, the influence of temperature on the natural vibration characteristics
of reinforced concrete simply supported beam was analyzed in the laboratory. The theo-
retical calculation formula for simply supported beam natural frequency variation with
temperature was presented. The variation law of the natural frequency of testing beams
within the temperature range of −40 ◦C to 60 ◦C was explored by means of the falling ball
test and three-point bending test. The Midas/Civil finite-element simulation method was
also applied to analyze the natural frequency of the testing beam at different temperatures.
Through theoretical analysis, experimental analysis, and simulation analysis, the relation-
ship between the natural frequency and the temperature was derived, which can provide
references for actual bridge natural frequency monitoring and damage identification.

2. Theoretical Analysis on the Influence of Temperature on the Natural Frequency of
Simply Supported Beam

As the simply supported beam is a statically determinate structure without abutment
stiffness, temperature will not cause changes in secondary structural stress and bound-
ary conditions. The influence of temperature on elastic modulus and structure size is
analyzed below.

2.1. Influence of Temperature on Elastic Modulus

The influence of temperature on a concrete elastic modulus far exceeds that of a
reinforced elastic modulus. Concrete is the main material of the simply supported beam.
Therefore, the influence of temperature on reinforcing bar was ignored. The analysis of
the influence of temperature on the elastic modulus of the simply supported beam was in
accordance with the calculation formula in the European Concrete Specification CEB-FIP
Model Code 2010 [26]:

ET = E20◦C[1− θE(T− 20)] (1)

where,

ET: Elastic modulus (Mpa) of concrete at T temperature;
T: Temperature of concrete (◦C);
E20◦C: Elastic modulus of concrete (MPa) at 20 ◦C;
θE: Temperature coefficient of elastic modulus, with a value of 0.003.

2.2. Influence of Temperature on Structure Size

The influence of temperature on the structure size of the simply supported beam
is mainly manifested in the elongation or shortening of the beam and the change of the
section inertia moment, which is related to the properties of the material. For the rectangular
equal section simply supported beam, the change in beam length can be obtained by the
following formula:

ll = (1 + α∆T)l (2)

where,

l1: Beam length after temperature change;
α: Linear expansion coefficient with reinforcement of 1.2× 10−6 and concrete of 1.0 × 10−5;
∆T : Temperature change;
l: Initial beam length;

The variation of beam width b and beam height h can be expressed as:

bl = (1 + vα∆T)b (3)

hl = (1 + vα∆T)h (4)
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where, v represents Poisson’s ratio, with concrete Poisson’s ratio v = 0.2 and reinforced
Poisson’s ratio v = 0.31. On the basis of section inertia moment I = bh3

12 , the variation of
the section inertia moment can be expressed as:

I =
(1 + vα∆T)4bh3

12
(5)

2.3. Influence of Temperature on the Natural Frequency of Simply Supported Beam

According to the derivation method in the literature [2,17,23], the relationship between
the natural frequency and the temperature was explored using the first-grade rectangular
section simply supported beam as a model. Let the length, width, and height be l, b, and h
respectively, as shown in Figure 1.
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Figure 1. Diagram of the simply supported beam.

The basic transverse vibration equation for the undamped homogeneous beam is as
follows [2,17]:

∂4v(x, t)
∂x4 +

ρA
EI
× ∂2v(x, t)

∂t2 = 0 (6)

The formula for the free vibration frequency of the model is:

fn =
n2π

2l2

√
EI
ρA

(7)

where,

fn: nth order modal frequency
l: Calculated span lengths of beam
E: Young’s modulus
I: Second moment of area
ρ: Mass density
A: Sectional area

Standard vibration mode function:

ϕn(x) = sin
nπx

l
(8)

The fundamental frequency temperature is 20 ◦C. Function (1) is adopted, considering
the change of the material elastic modulus with temperature:

ET = E(1− θE∆T) (9)

By substituting Formulas (2), (5), and (9) into Formula (7), the natural frequency of
the simply supported beam considering the effect of temperature is:

fT
n =

n2π

2l2

√
EI
ρA
·
√
(1− θE∆T)(1 + vα∆T)2

(1 + α∆T)2 = λIλlλE
n2π

2l2

√
EI
ρA

(10)

where,

λI: Influence coefficient of inertia moment, λI = (1 + vα∆T)2
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λl: Influence coefficient of beam length, λl =
1

(1+α∆T)2

λE: Influence coefficient of elastic modulus, λE =
√

1− θE∆T

With model beam α = 1.0× 10−5, v = 0.2, and θE = 0.003 into Function (10), the
change rate of the natural frequency of the simply supported reinforced concrete beam is:

∆fn =

(
fT
n

fn
− 1

)
× 100% =

√
(1− 0.003∆T)

(
1 + 0.2× 10−5∆T

)2

(1 + 1.0× 10−5∆T)2 − 1 (11)

Taking 0–50 ◦C with the interval of 2 ◦C and assigning the value to ∆T in Formula (11),
the corresponding value of ∆fn can be obtained. The curve fitting is shown in Figure 2.
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Figure 2. The relationship between ∆fn and ∆T.

It can be seen from Figure 2 that R2 = 0.9999, which indicates that the fitting curve error
was small, and ∆fn = −0.16%, which means that the frequency change of the model beam
caused by the change of material characteristics and geometric size was −0.16% when the
temperature rose by 1 ◦C. Taking 20 ◦C as the fundamental frequency temperature, the
influence coefficients of each grade of natural frequency in the ultimate temperature drop
of 60 ◦C were obtained as follows:

Influence coefficient of elastic modulus: λE = 1.08628
Influence coefficient of inertia moment: λI = 0.99976
Influence coefficient of beam length: λl = 1.00120

Considering the ultimate cooling ∆T = 60 ◦C, the elastic modulus of the simply
supported beam causes the frequency to increase by 8.628%; the section inertia moment
causes the frequency to decrease by 0.024%; the beam length causes the frequency to
increase by 0.12%; and the comprehensive effect of structure size causes the frequency
to increase by 0.096%. In comparison, the changes in section inertia moment and beam
length are negligible. The change in the natural frequency of the simply supported beam
with temperature is mainly related to the material elastic modulus, while the change in the
structure size has almost no effect on the frequency.

3. Experimental Study on the Influence of Temperature on the Natural Frequency of
Simply Supported Beam
3.1. Test Scheme

The test scheme is shown in Figure 3, and was mainly divided into three steps.
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Figure 3. Test scheme.

Step 1: Three reinforced concrete testing beams made of C30 concrete and HRB400
reinforcing bar were prefabricated, with lengths of 800 mm, widths of 80 mm, and heights
of 100 mm.

Step 2: The temperature of testing beams was controlled. The No. 1 and No. 2 testing
beams were placed into the temperature box as parallel test models, and the No. 3 testing
beam was reserved. The model of the temperature box was water+bai ag ETC 550-1, with
the working temperature of −150 ◦C to 600 ◦C. The temperature in the temperature box
was adjusted to 20 ◦C. To ensure that the internal temperature of the testing beam was
consistent with the external temperature, it was kept at a constant temperature for 3 h after
the temperature box reached 20 ◦C. In order to make the test results more accurate, the test
was carried out immediately after the No. 1 testing beam was taken out, while the No. 2
testing beam was insulated in the temperature box.

Step 3: First, the testing beam was fixed. At 100 mm from the left and right ends of
the testing beam, steel bars with a diameter of 20 mm were respectively used as a fixed
end abutment and a sliding end abutment. Before the testing, the upper end of the testing
beam was divided into four equal lengths. The center position of the three bisectors was
marked as the landing point of small balls. Then, the acceleration sensor (Type: KT1100L,
Measurement range:5 g) was fixed with silicone rubber at a distance of 300 mm from one
end of the testing beam. The oscilloscope (Type: RIGOL MSO1104) was adjusted to the
“SINGLE” state. By controlling the air compressors (Type: AFS-550), the ball was fixed
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by the fixture. The ball fell freely onto the testing beam. After landing, the height was
adjusted until the oscilloscope showed a smooth fluctuation curve. By controlling the air
compressors, the ball was dropped onto the testing beam from three landing points in turn
to obtain three waveforms. Then, the same test was carried out on the No. 2 testing beam.
Finally, the waveform diagrams of the No. 1 and No. 2 testing beams at −40 ◦C, −20 ◦C,
0 ◦C, 20 ◦C, 40 ◦C, and 60 ◦C were sequentially measured.

3.2. Result Analysis

According to the average value of the natural frequency obtained after three drops
of balls fall at the same temperature, the experimental results of the natural frequency at
different temperatures were obtained, as shown in Figure 4.
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Figure 4. Relationship between the first-grade natural frequency of the No. 1 beam and the No. 2
beam with temperature change.

Figure 4 shows the temperature-frequency fitting curve. R2 of the No. 1 beam and No.
2 beam were both close to 1, indicating a good fit. Essentially, there was a linearly negative
correlation between the natural frequency of the testing beam and the temperature. In
addition, the results of the No. 1 and No. 2 testing beams were essentially the same. When
the temperature increased by 1 ◦C, the fundamental frequency of the No. 1 testing beam
decreased by 0.6657 Hz, with the change rate of −0.149%. When the temperature increased
by 1 ◦C, the fundamental frequency of the No. 2 testing beam decreased by 0.6921 Hz, with
the change rate of −0.154%. The above results are similar to the natural frequency change
rate of −0.16% obtained by the theoretical formula, indicating that the experimental results
were consistent with the theoretical formula.

Figure 5 shows the comparison between the theoretical and experimental results of the
first-grade natural frequency of the No. 1 and No. 2 testing beams at different temperatures.
Among them, the theoretical calculation results are derived from Formula (10).
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Figure 5. Relationship between theoretical results of the testing beam and experimental results of the
first-grade natural frequency with temperature change.

In Figure 5, there is little difference in the slopes between the experimental value and
the theoretical value of the fitting curve of the No. 1 and No. 2 beams, which means that the
change rate of the first-grade frequency with temperature is essentially the same. Therefore,
it can be concluded that the experimental results are consistent with the theoretical formula.
The test value of the No. 1 beam at−40 ◦C had a large deviation from the fitted curve, which
may have been caused by the temperature increase of the test beam when the test beam
was taken out from the −40 ◦C environment into the normal temperature environment and
because the experiment was not carried out immediately. Additionally, the non-linearity of
natural frequency below 0 ◦C increased with the decreasing temperature, resulting in a
decrease in the linear dependence of the data points overall. This may have been due to
the moisture of the concrete beam. The moisture in concrete undergoes a phase change at
around 0 ◦C, which may have an impact on the natural frequency of concrete. The influence
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of water should not be omitted when the concrete is subjected to lower temperatures. When
the temperature was between 20 ◦C and 60 ◦C, the error between the theoretical value and
the experimental value may have been caused by the inevitable error in the experimental
process and the insufficient consideration of factors in the theoretical formula. Figure 5
illustrates that the theoretical formula of the temperature influence coefficient is applicable
to the calculation of the first-grade frequency of the simply supported beam.

3.3. Method Verification

The elastic modulus of the testing beam can be derived from the theoretical Formula (7)
based on frequency and temperature. Therefore, the accuracy of the frequency-temperature
test results can be verified by comparing the theoretical value with the elastic modulus of
the testing beam measured by the three-point bending test.

In this paper, the three-point bending test was used to determine the elastic modulus.
The fatigue testing machine was used to carry out the concentrated loading and mass
values of the No.1 and No.2 testing beams within the elastic range at a room temperature
of 20 ◦C. The test results are shown in Figure 6.
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The elastic modulus of the testing beam can be obtained by the following formula:

E =
F

∆L
· l3

48I
(12)

where,

F: Concentrated loading (N);
∆L: Deflection (mm);
l: Testing beam effective span length (m);
I: Section inertia moment (m4);

According to Formula (12), the test results are shown in Tables 1 and 2.

Table 1. Elastic modulus of testing beam.

Beam
Number

Initial Deflection/
mm

Initial Load/
N

Deflection/
mm

Load/
N

Elastic Modulus/
10ˆ4 MPa

1 −0.0005 0 −0.0180 −803.36 3.0986
2 0 0 −0.0195 −910.26 3.1509
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Table 2. Comparison of the elastic modulus measured by different methods (20 ◦C).

Beam
Number

Elastic Modulus/10ˆ4 MPa
Frequency-Temperature Test

Calculation Value
Three Point Bending Test

Value Relative Error

1 3.1569 3.0986 1.88%
2 3.1626 3.1509 0.37%

The elastic modulus calculated from the deflection value is the actual elastic modulus
in the three-point bending test. The error between the calculated value and the actual value
in the frequency-temperature test of the elastic modulus of the testing beam was relatively
small, indicating that the results of frequency-temperature test were correct.

4. Simulation Analysis on the Influence of Temperature on the Natural Frequency of
Simply Supported Beam
4.1. Model Establishment

Midas/Civil is a special finite-element software for general structural analysis and
design systems in the bridge field, which is mainly applied to the linear-elastic small
deformation beam element calculations. Midas/Civil was used to create the testing beam
model, with size and structure consistent with the testing beam. The Y axis is the width
direction, the X axis is the length direction, and the Z axis is the height direction. The
calculated span length of the beam refers to the distance between two supports [27–29].
Considering the distance between supports is 600 mm, the calculated span length of the
beam during the numerical simulation was set to 600 mm. The element type of the finite-
element model is the beam element, in which a beam element can consist of two nodes. The
model had a total of 30 beam elements with simply supported beam boundary conditions,
which is shown in Figure 7.
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Figure 7. The testing beam model.

In order to make the simulation results more accurate, the actual values of the elastic
modulus at 20 ◦C obtained from the three-point bending test were substituted into the
design parameters of the testing beam model and verified with Formula (1).

4.2. Result Analysis

The first four-grades natural frequency of the testing beam model obtained at a
fundamental frequency temperature of 20 ◦C were taken. Then, the first four-grades
natural frequency of the testing beam model at −40 ◦C, −20 ◦C, 0 ◦C, 20 ◦C, 40 ◦C, and
60 ◦C was successively obtained. The relationship between n-grades natural frequency
(n = 1, 2, 3, 4) and temperature in the theoretical results and simulation results of beam 1
and beam 2 is shown in Figure 8.
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According to Figure 8a,b, the residual square and R2 of temperature-frequency fitting
curve of the No. 1 beam and No. 2 beam were both close to one, indicating that fitting
was good. Both the theoretical and simulation results showed that the first four-grades
modal frequency of the testing beam were linearly negatively correlated with temperature.
According to the frequency-temperature fitting curve, the theoretical and simulated values
of the first-grade natural frequency of the No. 1 beam and No. 2 beam had little difference
within the temperature range of −40 ◦C to 60 ◦C, which were basically consistent. In terms
of the change rate, when the temperature of the No.1 beam increased by 1 ◦C, the theoretical
value decreased by 0.148%, and the simulated value decreased by 0.149%. The results were
essentially the same for both. When the temperature of the No. 2 beam increased by 1 ◦C,
the theoretical value decreased by 0.148%, and the simulated value decreased by 0.150%.
The results of both are also almost the same.

Figure 8c,d shows the relationship between the theoretical and simulated second-
order natural frequency and temperature of the No. 1 beam and No. 2 beam, respectively.
According to the frequency-temperature fitting curve, it was found that the theoretical
value of the second-order natural frequency was greater than the simulated value in the
temperature range of −40~60 ◦C. At 20 ◦C, the theoretical value of the No. 1 beam was
1777.306 Hz, and the simulated value was 1412.862 Hz. Under the same temperature
conditions, the theoretical value of the No.2 beam was 1792.243 Hz, and the simulated
value was 1424.735 Hz. Based on the theoretical value, the simulated value was about
20% smaller than the theoretical value, indicating that there was a relatively large error.
In terms of the change rate, for every 1 ◦C increase in temperature, the theoretical value
decreased by 0.148% and the simulated value decreased by 0.148%. That is to say, the two
were basically consistent in terms of the change trend.

Figure 8e–h show the relationship between theoretical and simulated third-order and
fourth-order natural frequencies and temperature of the No. 1 beam and No. 2 beam. From
the frequency-temperature fitting curve, it was found that the variation trend of the third-
order natural frequency and fourth-order natural frequency of the No. 1 beam was similar
to that of the second-order natural frequency in the temperature range of −40~60 ◦C.
In addition, the slope of the curve increased with the increase of order. However, the
theoretical increase in the slope of the curve was much greater than the simulated one.
At 20 ◦C, the theoretical value of the third-order natural frequency of the No.1 beam was
3998.94 Hz, and the simulated value was 2335.15 Hz. In contrast, the simulated value
was 41.61% lower than the theoretical value. At the same temperature, the theoretical
value of the fourth-order natural frequency was 7109.23 Hz, and the simulated value was
2818.29 Hz. In contrast, the simulated value was 60.36% lower than the theoretical value.
Furthermore, the comparison result of the No. 2 beam was also similar. With the theoretical
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value as the standard, the high-order natural frequency of the beam will cause a large
error. According to the theoretical Formula (7), it was found that the n-order frequency
of the simply supported beam was n2 times the first-order frequency. Although the first-
order frequency obtained by theoretical calculation was close to the simulated first-order
frequency, there were still errors. With the increase of the order, the error between the
theoretical frequency and the simulated frequency will further increase. However, the
simulation results had the same trend as the theoretical results. In other words, there
was a linear relationship between frequency and temperature change. The simulation
results showed that the theoretical calculation formula is only applicable for calculating
the first-grade frequency of the simply supported beam, not for the frequencies above the
first grade, which provides references for the study on natural vibration characteristics of
actual bridges.

5. Conclusions

This paper obtained the relationship between the natural frequency of simply sup-
ported beams and temperature through theoretical analysis, experimental testing, and
numerical simulation. The conclusions are as follows:

(1) The theoretical calculation formula for the change of natural frequency with tempera-
ture was obtained through the theoretical analysis of natural vibration characteristics
of simply supported reinforced concrete beams. Theoretical analysis indicated that
the effect of temperature on the natural frequency of the simply supported beam
was mainly caused by the change of the elastic modulus of simply supported beam
material. There was little influence of structure size on natural frequency.

(2) The influence of temperature in the range of −40~60 ◦C on the natural frequency
of the simply supported beam was analyzed through the small ball excitation test.
The temperature range was so wide that it covered the conventional service tempera-
ture range of simply supported beam bridges. An acceleration sensor was used to
monitor the natural frequency of the simply supported beam. The natural frequency-
temperature change curve was obtained and verified. The curve showed that, for each
1 ◦C increase in temperature in the range of −40 ◦C to 60 ◦C, the natural frequency of
the simply supported beam decreased by 0.148%.

(3) The Midas/Civil finite-element simulation was applied to analyze the natural fre-
quency of simply supported beams at different temperatures. By comparing with the
theoretical values, the theoretical calculation formula for the natural frequency of the
simply supported beam was only applicable to the fundamental frequency, rather
than the frequencies above the first grade.

The evolution law of the natural frequency of reinforced concrete simply supported
beams with temperature changes can provide references for dynamic characteristics moni-
toring and damage identification of simply supported beam bridges. The actual bridge
structure and the influence of uneven temperature distribution on the bridge’s natural
vibration characteristics need to be considered in subsequent studies.
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