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Abstract: Handover Management (HM) is pivotal for providing service continuity, enormous reliabil-
ity and extreme-low latency, and meeting sky-high data rates, in wireless communications. Current
HM approaches based on a single criterion may lead to unnecessary and frequent handovers due to
a partial network view that is constrained to information about link quality. In turn, HM approaches
based on multicriteria may present a failure of handovers and wrong network selection, decreasing
the throughput and increasing the packet loss in the network. This paper proposes SIM-Know, an
approach for improving HM. SIM-Know improves HM by including a Semantic Information Model
(SIM) that enables context-aware and multicriteria handover decisions. SIM-Know also introduces a
SIM-based distributed Knowledge Base Profile (KBP) that provides local and global intelligence to
make contextual and proactive handover decisions. We evaluated SIM-Know in an emulated wireless
network. When the end-user device moves at low and moderate speeds, the results show that our
approach outperforms the Signal Strong First (SSF, single criterion approach) and behaves similarly
to the Analytic Hierarchy Process combined with the Technique for Order Preferences by Similarity
to the Ideal Solution (AHP-TOPSIS, multicriteria approach) regarding the number of handovers
and the number of throughput drops. SSF outperforms SIM-Know and AHP-TOPSIS regarding the
handover latency metric because SSF runs a straightforward process for making handover decisions.
At high speeds, SIM-Know outperforms SSF and AHP-TOPSIS regarding the number of handovers
and the number of throughput drops and, further, improves the throughput, delay, jitter, and packet
loss in the network. Considering the obtained results, we conclude that SIM-Know is a practical and
attractive solution for cognitive HM.

Keywords: semantic information model; knowledge base profile; handover management; wireless
networks

1. Introduction

Handover Management (HM) is responsible for making network (dis)connection
decisions in a timely manner [1,2]. In this sense, HM is pivotal for providing service
continuity, enormous reliability and extreme-low latency, and meeting sky-high data
rates, in current and upcoming wireless communications [3,4]. To achieve efficient HM
challenges need to be face that are related to high handover rates and ping-pongs in dense
communication environments, leading to an increase in both the data flow latency and
the packet loss and, consequently, to a reduction of the network throughput [5,6]. Users
moving at moderate-to-high speed require a seamless handover mechanism with few
failures [7,8].

In the networking literature, we find two types of approaches that address HM,
namely, single criterion-based and multicriteria-based. Approaches based on a single
criterion, such as the Signal Strong First (SSF), usually consider only the link quality in the
end-user device for carrying out handovers. SSF compares the Received Signal Strength
Indication (RSSI) of available networks and selects the network with the highest signal [9].
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Single criterion-based approaches operate with a constrained network view that disregards
contextual information, such as movement velocity and application requirements, leading
to unnecessary and frequent handovers. These handover issues can decrease throughput,
increase packet loss and even cause network service disruption [10–12]. The multicriteria-
based approaches in [13–22] use RSSI and context information as criteria for ranking
the available networks; the top-ranked network is selected by the end-user device for
performing the connection process. These approaches disregard one or more relevant
criteria, such as wireless network characteristics (e.g., coverage area), user device features
(e.g., battery consumption), application requirements (e.g., real-time response) or user
peculiarities (e.g., mobility pattern), leading to the failure of handovers and wrong network
selection, negatively impacting the network’s performance [12,23]. Hybrid solutions
combine multicriteria approaches [24]; however, their computational complexity is high.

This paper presents SIM-Know, an approach for improving HM. The contributions
of SIM-Know are two-fold. SIM-Know proposes a Semantic Information Model (SIM)
that allows us to make context-aware handover decisions by considering and relating
criteria from several context information domains: Network, Application, User, UserDe-
vice, and Handover. SIM-Know also introduces a SIM-based distributed Knowledge Base
Profile (KBP) that offers local and global intelligence for making contextual and proactive
decisions during the handover process. We evaluated SIM-Know in an emulated wireless
network. When the end-user device moves at low and moderate speeds, the results show
that our approach outperforms SSF (a single criterion approach) and behaves similarly
to the Analytic Hierarchy Process combined with the Technique for Order Preferences by
Similarity to the Ideal Solution (AHP-TOPSIS, a multicriteria approach), regarding the num-
ber of handovers and the number of throughput drops. SSF outperforms SIM-Know and
AHP-TOPSIS regarding the handover latency metric because SSF runs a straightforward
process for making handover decisions. At high speeds, SIM-Know outperforms SSF and
AHP-TOPSIS regarding the number of handovers and the number of throughput drops
and, further, improves the throughput, delay, jitter and packet loss in the network. From
the obtained results, we conclude that SIM-Know is an attractive and feasible solution for
cognitive HM.

The rest of this paper is organized as follows: Section 2 reviews the related work.
Section 3 introduces SIM-Know, including SIM and KBP. Section 4 presents the evaluation
of SIM-Know. Finally, some conclusions and future work are presented in Section 5.

2. Related Work

This section presents research on HM approaches based on both a single criterion and
on multiple criteria. Table 1 briefly summarises each approach and presents the type of
data/information model employed and how they make handover decisions. According
to [25], the handover control can be: Network-Controlled HandOver (NCHO), Mobile-
Controlled HandOver (MCHO), Mobile-Assisted HandOver (MAHO) and Network-Assisted
HandOver (NAHO). In NCHO, the network starts and controls the handover; operators
usually adopt it for load balancing and traffic management. In MCHO—traditionally used
by IEEE 802.11 technologies—the end-user device initiates and controls the handover. In
MAHO, the end-user device helps in the handover process controlled by the network;
MAHO is typically used in cellular networks. In NAHO, the network helps with the
handover process controlled by the end-user device; NAHO is intended for heterogeneous
wireless networks.

Next, we point out the main shortcomings of the related work. The work in [9] em-
ployed SSF to make handover decisions. Since it does not exploit contextual information,
such as movement velocity and application requirements for enhancing HM, SSF can lead
to unnecessary and frequent handovers, decreasing throughput, increasing packet loss
and even causing network service disruption. In [13–22] handover decisions are made by
using multicriteria and techniques such as Fuzzy Logic, Network Management Policies or
Multiple Attribute Decision Making (MADM) Algorithms. Nonetheless, these approaches



Sensors 2021, 21, 4234 3 of 19

neglect an information model that disregards criteria from one or more information do-
mains, such as network characteristics and status, application requirements, end-user
profile, end-user device features, or handover history, which are relevant for advancing
HM. Thus, they can also lead to handover issues (generating failure, unnecessary and
frequent handovers) and, consequently, network performance degradation. The work
in [24] presents a solution that combines multicriteria approaches for improving HM.
Nevertheless, its computational complexity is higher than that of the unique criterion and
individual multicriteria methods. Unlike the related work, SIM-Know introduces an SIM to
enable context-aware handover decisions by considering and relating criteria from a com-
prehensive set of context information domains: Network, Application, User, UserDevice
and Handover. SIM-Know also proposes KBP, to realize cognitive and proactive handover
decisions by providing local and global knowledge.

Table 1. Related Work.

Work Description
Making-Decision

Wireless Technology
Control Method

[9]
The end-user device switches to another Access
Point (AP) or Base Station (BS) when the RSSI
level of the serving network is lower than
a threshold

MCHO Policy

Universal Mobile
Telecommunications

System, Wireless Local
Area Network (WLAN)

[13]
A Software-Defined Networking (SDN)
controller uses a fuzzy system to score
candidate networks for staying in the current
network or connecting to a better one

NCHO Fuzzy Logic Fifth Generation (5G)

[14]
An algorithm is proposed to reduce the
handovers by multicriteria decision-making
algorithms improved with a context-aware and
threshold-based scheme

MCHO
TOPSIS,

PROMETHEE,
SAW

5G, Long-Term Evolution
(LTE), WLAN

[15]

A framework, based on a quantum-inspired
immune clonal algorithm and network-related
and user-related parameters with different
weights, is proposed for improving the access
network selection in wireless networks

NCHO Quantum
Computing LTE, WLAN

[16]

A fuzzy logic and reinforcement learning-based
mechanism is introduced to address
unnecessary and frequent handovers by
adjusting the handover hysteresis margin and
time-to-trigger

NCHO Fuzzy
Q-Learning LTE

[17]

A solution, based on SDN, Binary Integer Linear
Programming (BILP), user criteria and network
packet error rate data, is proposed to rank
candidate BSs and to enhance the handover
selection phase

NCHO BILP LTE
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Table 1. Cont.

Work Description Making-Decision Wireless Technology
Control Method

[18]
A framework, based on data analytics, context
extraction, user profiling and pre-processing
contextual information, is presented to score the
available BSs and to improve network access selection

NAHO Fuzzy Logic 5G

[19]
The AP or BS selection is improved by using AHP for
weighting selection criteria coming from the user and
networks’ context and TOPSIS for ranking the
available networks

NCHO AHP-TOPSIS LTE, WLAN

[20]

A mechanism is proposed for selecting the radio
access network that best meets the end-user needs by
considering the on/off state and battery level of the
mobile device and the available bandwidth in the
target and serving network

MCHO Policy LTE, WLAN

[21]
A versatile modeling methodology is introduced for
evaluating proactive and reactive vertical handover
approaches

NCHO Policy 5G, LTE, WLAN

[22]

Two co-operating algorithms with adaptive
thresholds are introduced for performing network
selection while avoiding network congestion and
meeting user preferences regarding monetary cost,
Quality of Service (QoS), security and energy
consumption

NAHO Policy 5G

[24]

A multiattribute decision handover making scheme,
centered in the triggering phase and based on SDN
and Fuzzy Logic, is proposed for increasing the
network throughput and reducing unnecessary
handovers and total handover delay in femto-access
points and device-to-device communications

NAHO
TOPSIS,

Fuzzy Logic,
AHP

LTE, WLAN

PROMETHEE: Preference ranking organization method for enrichment evaluation—SAW: Simple Additive Weighting Algorithm.

3. SIM-Know

HM allows an end-user device to keep an active connection when moving from one
network’s coverage area (BS or AP coverage) to another [9]. HM comprises the initiation,
selection and execution phases [17,26,27]. Handover Initiation gathers all the information
needed to identify and determine the neighboring networks and their current and future
statuses (e.g., data about network performance and available services). Network Selection
chooses the best available network from a ranking created by taking into account a single
criterion or multiple criteria. Handover Execution connects and disconnects end-users to
and from a network, involving resource allocation and releasing [28].

SIM-Know introduces SIM and KBP for improving HM. SIM allows SIM-Know to
make context-aware handover decisions. In turn, the distributed KBP provides local and
global intelligence to make rule-based cognitive decisions about network connection and
disconnection. SIM and KBP envision diminishing the number of handovers and the
number of throughput drops and, as a consequence, have a positive impact on several
network performance metrics (delay, jitter, packet loss, and throughput).
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3.1. Semantic Information Model

SIM-Know makes appropriate and contextual handover decisions by considering
criteria from several information domains (i.e., Network , Application, User, UserDevice, and
Handover) modeled by SIM. We use the Common Information Model (CIM) and the Web
Ontology Language (OWL) to carry out SIM (see Figure 1). We adopted CIM [29] because
it provides high expressiveness for modeling, for management purposes, information
systems, applications, and networks [30]. We used OWL [31] because it enables reasoning
in the model and the sharing of knowledge among software agents [32]. In particular, SIM
uses OWL classes and properties to characterize HM entirely by modeling the information
domains and their relationships.

QoS Resource Handover Policy

Application Network

UserDevice AccessPoint

NetworkTraffic

User Cell

RangeUserSpeed

ShortRange LargeRangeSlowMobility ModerateMobility HighMobility

Topology

UserPreferences

UserHistory MobilityPattern

belongToTopology
hasResource

covers

runsApplication

askForResources
affects 

applies 

connects

generates

hasUserHistory 

hasUserPreferences
isInCell

manages 

requires

uses

ServiceProfile

DeviceProfile

DeviceStatus

Initiation Selection Execution

discover

Super Class

Classes

Asymmetric Object Properties

 Symmetric Object Properties

has sub-classhas sub-class

has sub-class
has sub-class

has sub-class

has sub-classhas sub-class

Location

locatedAt

Figure 1. Semantic Information Model.

Figure 1 shows the five knowledge domains comprising SIM as superclasses, namely,
Network, User, Application, UserDevice and Handover. It is worth noting that the Handover
superclass models HM by using the Initiation, Selection, Execution and Policy classes. The
other superclasses represent the information domains containing the parameters used to
improve decision making in HM. Each superclass relates to other classes by the has sub-class
relationship. The Initiation class models the initiation phase that defines when the selection
phase is triggered, which, in turn, is modeled by the Selection class that is responsible
for obtaining the candidate networks for performing the handover. The Execution class
performs the handover itself, since it allocates and releases AP (i.e., AccessPoint class) and
user device (i.e., UserDevice class) resources, represented by the Resource class, which affects
the QoS required (i.e., QoS class) by a user application (i.e., Application class) . The Policy
class represents the policies to apply to the Network class and governs the HM process. An
example of a policy is to rank the candidate networks considering some criteria such as
users’ speeds and their movement patterns.

The Network superclass models the characteristics and status of a network by using
the Topology, NetworkTraffic, and AccessPoint classes. The Topology class represents the
network’s organization, including nodes and links. The NetworkTraffic class represents data
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and control traffic passing by the network. The AccessPoint class models a networking
device using wireless technology; this class considers the area covered by the Cell class,
which includes the Range class, which contains the LargeRange and SmallRange classes.
The isCoveredByCell, hasResource and belongToTopology properties represent the AccessPoint
class’s relationship with the Cell, Resource and Topology classes, respectively. The Resource
class models the ability to manage the resource consumption of APs located at (Location
class) a particular network point.

The User superclass models the profile and behavior of the end-users by the UserPref-
erences, UserHistory, MobilityPattern and UserSpeed classes. The UserSpeed class includes
the SlowMobility, ModerateMobility and HighMobility classes in order to model how fast
an end-user moves. The UserPreferences class profiles the users with information related
to, for instance, network preference by cost and service quality expectation. The UserHis-
tory class models the historical (dis)connection of end-users. The MobilityPattern contains
information about the end-users’ mobility pattern, which is predictable from their trajec-
tory and velocity. The Application superclass represents end-user applications with the
ServiceProfile and QoS. The ServiceProfile class models the application’s types (e.g., remote
surgery, augmented reality, high definition video conferences). The QoS class allows the
representation of a set of QoS requirements (e.g., delay, throughput and packet loss) for
each type of application.

The UserDevice superclass models the end-user devices and their components by the
DeviceProfile, DeviceStatus and Resource classes. The DeviceProfile class models the device’s
characteristics. The DeviceStatus class represents the device’s current status (e.g., low-
battery and off-air). The Resource class models the ability to manage the resource con-
sumption of end-user devices located at (Location class) a particular network point. The
UserDevice superclass relates to the Application superclass via the runsApplication property,
which allows knowledge of the applications that are running in each end-user device. The
isUsedByUser property defines a relationship between UserDevice and User.

3.2. Knowledge Base Profile

KBP is a distributed knowledge base that intends to provide local and global intelli-
gence that supports making rule-based cognitive decisions about network connection and
disconnection processes. Figure 2 depicts the KBP internal structure, which is comprised
of layers and processes. The Semantic layer uses SIM (the entire model or a part) to obtain
information from the data included in the Context layer. The Reasoning layer obtains knowl-
edge from the information represented by SIM. The Adaption process acts on the layers
to maintain updated data, information and knowledge. The Collaboration process enables
the sharing of the obtained knowledge between KBP instances. Next, we detail the KBP’s
layers and processes.

3.2.1. Layers

The Context layer includes contextual data about the user, network, device, application,
and handover. Contextual data are essential for carrying out HM in environments with
multiple wireless networks [20]. As in [21,33], this layer is divided into static and dynamic
sublayers. The Static Context sublayer involves data that do not change or rarely do; it
plays a vital role in assisting with neighbor network discovery [34]. Examples of static
data include the wireless technology supported by the end-user devices and APs, and
the wireless network technology coverage area. The Dynamic Context sublayer serves an
updated network view, including dynamic data such as the application requirements of a
device needing handover and capacity available in a target AP, which enables the upper
layers (Semantic and Reasoning layers) to realize knowledge-based handovers.

The Semantic layer offers a SIM instance that is nourished by the bottom layer’s
contextual data. Thus, the Semantic layer structures the information to achieve intelligent,
timely and context-aware HM (considering criteria from the Static and Dynamic contexts).
For instance, the DeviceProfile, UserPreferences, UserSpeed and MobilityPattern SIM classes can



Sensors 2021, 21, 4234 7 of 19

be used to build up a map of candidate networks; overall, SIM classes provide a structure
to contextual data. It is worth noting that we consider three KBP flavors depending on
how they instantiate SIM. KBPN , located at any AP or BS, instantiates the superclasses
Network and Handover. KBPM, located at end-user devices, instantiates the superclasses
Application, User, UserDevice and Handover. KBPS is a complete KBP that can run on a
logically centralised entity (e.g., a controller in a software-defined wireless network). The
SIM’s distribution allows any KBP (SIM-Know) to create and share local knowledge to
generate global knowledge.

MDk

APj

MDl

Collaboration

Context Layer

Static Dynamic

Reasoning Layer

Semantic Layer
(Subset of SIM)

KBP

Context Layer

Static Dynamic

Reasoning Layer

Semantic Layer
(Subset of SIM)

KBP

A
dap

tatio
n

Context Layer

Static Dynamic

Reasoning Layer

Semantic Layer
(Subset of SIM)

KBP

A
dap
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n

MDi

KBP 

MDj

APi

Collaboration

Layer

Network

User

Device

Application

Processes
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Network

User

Device

Application

Processes

Collaboration Flow

Layer

Network

User

Device

Application

Processes

Collaboration Flow

Centralized entity

M

KBP MKBP M

KBP MKBP M

KBP MKBP M

KBPNKBPN

KBPNKBPN

KBPSKBPS

Figure 2. Knowledge Base Profile.

The Reasoning layer triggers the Initiation phase, selects the target network and realizes
the handover itself by inferring knowledge from SIM. We use Description Logic (DL) [35]
to express in a structured and formal way the rules governing the Reasoning layer and,
so, HM; the reasoning rules generate local and global intelligence to make autonomous
handover connection decisions. Each rule has a set of conditions and settings. To illustrate
how the Reasoning layer operates, next, we present some of the rules that are modeled to
realize a policy intended to select candidate networks proactively, considering the coverage
of APs and the mobility pattern of end-user devices. For example, the Rule APInRange
(see Listing 1) serves to discover neighboring networks considering RSSI.

Listing 1. Rule for APInRange.

APInRange ≡ User u ∃ isInCell.(∃ covers.AccessPoint)

Listing 2 shows that the Rule UserSpeed is useful for defining the speed of users.
If a User is moving with v > thu, he/she has a UserHighSpeed. If a User is moving
with a speed higher than thl and lower than or equal to thu, he/she has a UserModSpeed.
UserSlowSpeed is when the user moves with v ≤ thl . According to [36], thu can be set to
50 Km/h and thl to 10 Km/h.
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Listing 2. Rule for UserSpeed.

UserHighSpeed ≡ User u (∃ hasUserSpeed.HighMobility)
UserModSpeed ≡ User u (∃ hasUserSpeed.ModerateMobility)
UserSlowSpeed ≡ User u (∃ hasUserSpeed.SlowMobility)

Listing 3 shows that Rule APRange is helpful for listing the APs by coverage range.
LargeRange is given by range > thr and ShortRange by range ≤ thr. According to [14], thr
can be set to 35 m for 802.11ac. Listing 4 presents Rule SoJournTime, which is useful for deter-
mining the time the user stays covered by an AP. If UserSlowSpeed is moving in APLRange,
it results in LongSojournTime. If UserHighSpeed is moving in APSRange, it results in
SmallSojournTime. A MSojournTime happens when UserHighSpeed or UserModSpeed is
moving in APLRange. If UserSlowSpeed or UserModSpeed is moving in APSrange, it also
results in MSojournTime. SmallSojournTime may be more challenging than
LongSojournTime and MSojournTime in 5G networks and beyond is characterized by
small coverage areas and high-mobility.

Listing 3. Rule for APRange.

APLRange ≡ AP u ∃ isCoveredBy.(∃ hasRange.LargeRange)
APSRange ≡ AP u ∃ isCoveredBy.(∃ hasRange.ShortRange)

Listing 4. Rule for SoJournTime.

LongSojournTime ≡ UserSlowSpeed u (∃ APLRange)
SmallSojournTime ≡ UserHighSpeed u (∃ APSRange)
MSojournTime ≡ APLRange u (UserHighSpeed tUserModSpeed)t

APSRange u (UserSlowSpeed tUserModSpeed)

Listing 5 shows that Rule CandidateAP is useful for creating the list of candidate APs
for end-user devices with MSojournTime or LongSojournTime in the network. Listing 6
presents Rule AssociateAP, which links the end-user device with the first AP in the list of
candidates. It is worth noting that each network administrator can define his/her own
rules to manage the wireless network as he/she needs.

Listing 5. Rule for CandidateAP.

CandidateAP ≡ MSojournTime t LongSojournTime

Listing 6. Rule for AssociateAP.

AssociationToAP ≡ User u ∃Uses.UserDevice(∃Connects.AP)

3.2.2. Processes

The Adaptation process allows SIM-Know to dynamically adapt to the changing envi-
ronments and to enhance HM by modifying the content of the layers of the KBP instances.
The content is modified in a bottom-up way, starting with the contextual data, followed by
the SIM instances, and ending with the acquired knowledge when environmental changes
happen, such as new networks appearing, dynamic traffic conditions and variations in QoS
requirements. Furthermore, this process allows the addition and updating of the Reasoning
layer seeking to meet QoS and to preserve network performance.

The Collaboration process allows KBP (KBPN , KBPS, KBPM and any other profile
defined to extend SIM-Know) to interchange the knowledge obtained for enhancing the
decision-making in HM. For instance, the collaboration between KBPM and KBPN would
allow for choosing the optimal and appropriate time to trigger the handover and select the
most suitable access network according to the end-user QoS requirements and network
status.



Sensors 2021, 21, 4234 9 of 19

3.3. Operation

Figure 3 presents how SIM-Know operates in WLAN. First, KBPS, KBPM and KBPN
collect their Static Context. Second, KBPM monitors and updates the Dynamic Context
information related to, for instance, end-user speed, APs in range and RSSI. In parallel,
KBPM requests from KBPN the Dynamic Context information, which includes the associated
and in range end-user devices. Third, based on the Static Context and Dynamic Context,
every KBP generates its local knowledge. For example, the local knowledge in KBPM can
be HighMobility and in KBPN can be LargeRange. Fourth, KBPM launches the handover
process. Fifth, the Collaboration process starts between the corresponding KBPM and KBPN
and ends with sending knowledge to KBPS. Sixth, KBPS builds up the global network view,
generates a handover policy for selecting candidate APs according to the rules defined in
its Reasoning Layer, and sends those candidates to KBPM. Seventh, KBPM selects the Target
KBPN by using the rules defined in its Reasoning Layer. Eighth, KBPM sends a Handover
Request to the Target KBPN , which sends back an acknowledgment to KBPM. Ninth,
KBPM sends disconnection requests to the current Serving KBPN , which, in turn, sends
a disconnection acknowledgment to KBPM. Tenth, every KBP executes the Adaptation
process to handle the context variations dynamically.

KBPKBP
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KBP
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KBP
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KBP
Candidate

KBP
Target 
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Target 

KBP
KBPKBP

Static Context Collected Static Context Collected Static Context Collected Static Context Collected
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Figure 3. SIM-Know Operation.

Figure 4 shows the data format used in KBPS to store the global knowledge built with
the information coming from KBPN and KBPM. The format follows the triplet (Subject,
Predicate, Object) encoded in Entity Notation [37], which enables a lightweight knowl-
edge representation for resource-constrained environments. The Subject identifies a class
in SIM by the combination of ClassId (e.g., ceu101) and ClassType (e.g., User). Each
Subject is related to various pairs, Predicate–Object. The Predicate identifies a property
(e.g., UserSpeed) of the Subject while the Object provides the value of such a property
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(e.g., HighMobility). The Object can also be a ClassId, to represent relationships among
Subjects.

KBP
ObjectPredicateSubject

Triplet
Repository

ObjectPredicate1 i i j j

ObjectPredicateSubject ObjectPredicaten k k l l

Data Format
S

Figure 4. KBPS Data Format.

Figure 5 illustrates how SIM-Know can operate in 5G by running KBPM in the User
Equipment (UE), KBPN in gNodeB (gNB), and KBPS in the Core Network (CN). The
handover in 5G, according to the specification 3GPP TS38.300 [38], consists of three phases:
preparation (steps 0–5), execution (steps 6–8), and completion (steps 9–12).
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Figure 5. SIM-Know in 5G Intra-AMF/UPF Handover.

The steps are as follows:

• Step 0: Each KBP gathers the Static context.
• Step 1: KBPM and KBPN initialize measuring procedures to collect the Dynamic

context, generate local knowledge, and exchange Measurement Reports by way of the
Collaboration process. Source KBPN builds up its local knowledge.

• Step 2: Source KBPN , based on its local knowledge, makes handover decisions. gNBs
are responsible for making handover decisions.



Sensors 2021, 21, 4234 11 of 19

• Step 3: Source KBPN sends a handover request message to Target KBPN .
• Step 4: Target KBPN executes the admission control procedure based on its local

knowledge.
• Step 5: Target KBPN sends a handover request acknowledgment to Source KBPN .
• Step 6: Source KBPN sends a handover command to KBPM for handover initiation.
• Step 7: Source KBPN sends the sequence number status transfer message to Target

KBPN . Source KBPN may initiate data forwarding.
• Step 8: KBPM detaches from Source KBPN and synchronizes with Target KBPN .
• Step 9: Target KBPN informs KBPS that KBPM has changed the cell by way of the path

switch request message.
• Step 10: KBPS switches the data path towards Target KBPN .
• Step 11: KBPS acknowledges the path switch request message.
• Step 12: Target KBPN informs Source KBPN that the handover was successful and

triggers the release of resources for Source KBPN by sending a UE Context Release
message. Finally, Source KBPN releases the resources associated with KBPM, invoking
the Adaptation process.

4. Evaluation

This section presents the evaluation of SIM-Know in a WLAN, aiming to show its
behavior regarding the number of handovers and the number of throughput drops, and
its impact on various typical network performance metrics. Section 4.1 depicts the SIM-
Know’s prototype and the test environment. Section 4.2 shows the performance metrics
and traffic generation. Section 4.3 presents and discusses the results of SIM-Know and two
well-known handover solutions.

4.1. Prototype and Test Environment

We implemented the SIM-Know prototype for WLAN, including KBPM, KBPN , and
KBPS, by using the Python programming language version 2.7. We also deployed the pro-
totype in a Mininet-WiFi emulator [39] (see Figure 6) running on an Ubuntu 16.04 Virtual
Machine (VM) with a Core i7-3630 processor and 8 GB RAM. Mininet-WiFi adds virtual
BSs and APs to classical Mininet [40] to enable the emulation of wireless network envi-
ronments. The SIM-Know prototype, as well as all test scripts, are available in the project
repository [41].

Centralized entity

AP1 AP4

AP5

AP2

AP3

AP7

AP6

User 1

User 2

POINT B

POINT AKBP MKBP M

KBPNKBPN

KBPNKBPN

KBPNKBPN

KBPNKBPN

KBPNKBPN KBPNKBPN

KBPNKBPN

KBP MKBP M

KBPSKBPS

Figure 6. Test Environment.
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Figure 6 shows the WLAN test scenario in which we evaluated and compared SIM-
Know, SSF, and AHP-TOPSIS. The scenario, deployed in Mininet-WiFi, included seven APs,
an end-user device associated with User1, and another end-user device linked to User2. In
particular, we used three APs with a large coverage range (i.e., up to 75m for AP1, AP4, and
AP5 with 802.11n) and four with a short coverage range (i.e., up to 35m for AP2, AP3, AP6,
and AP7 with 802.11ac). We also analyzed the performance when the User 1 moved from
Point A to Point B by following a straight line without directional change at a constant
speed. We used three speeds for testing: 1.42 m/s corresponding to SlowMobility, 3.74 m/s
to ModerateMobility, and 13.41 m/s to HighMobility. The end-user device associated with
User 1 transmitted traffic (Voice over IP (VoIP) or Transmission Control Protocol (TCP)) to
the end-user device linked to User 2, which was immobile. We repeated the experiments
thirty-three times to obtain results with a 95% confidence level. Table 2 summarizes the
setup of the experiments.

Table 2. Experiment Setup.

Parameters Value

Wireless technology 802.11n, 802.11ac

Emulation area 180 × 180 m

Carrier frequency 2 GHz

Channel bandwidth 20 MHz

Transmission power of cells
large-range/short-range 25/14 dBm

Path loss model from cells Log-Distance Propagation Loss/ITU-R P1283

Emulation time for HighMobility 30 s

Emulation time for ModerateMobility 80 s

Emulation time for SlowMobility 180 s

TCP traffic Flows with constant inter-departure time between packets
(1000 pkts/s) and constant packets size (512 bytes)

VoIP traffic Flows with audio code (G.711.2-84 Kbps and 50 pkts/s) transmitted
using real time protocol and voice activity detection

It is worth mentioning that the described scenario was constrained to a small number
of end-user devices because our main objective was to show the feasibility of SIM-Know. We
will perform more extensive evaluations on large emulated environments in our subsequent
papers.

4.2. Performance Metrics and Traffic Generation

We compared SIM-Know to SSF and AHP-TOPSIS in terms of the number of han-
dovers, number of throughput drops, handover latency, and various well-known network
performance metrics (throughput, delay, jitter and packet loss) [42]. The quantity of han-
dovers is the number of transfers an end-device makes when it moves from one place to
another [43]. The throughput drops represent the times that the number of bytes transmit-
ted falls to zero because of a handover [28]. The handover latency is the time that elapses
between the instant that the user-device sends the last link-going-down message to the
serving AP and the moment at which the end-user device establishes the connection with
the target AP [3].

In the emulation experiments, scripts for generating traffic were developed by using
the iPerf3 [44] and D-ITG [45] tools. We used D-ITG to generate VoIP flows with audio
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code (G.711.2 - 84 Kbps and 50 pkts/s) transmitted using real-time protocol and voice
activity detection. We used iperf3 to generate TCP flows with constant inter-departure
time between packets (1000 pkts/s) and constant packet size (512 bytes).

4.3. Results and Analysis

Table 3 shows that SIM-Know and AHP-TOPSIS outperformed SSF, in terms of the
number of handovers and the number of throughput drops, when the end-user device
moved at any speed (slow, moderate, or high). This behavior is expected because SSF is
the baseline and triggers a handover as soon as an AP with an RSSI higher than that of the
serving AP is available.

Table 3. Handover Performance.

Parameter SSF AHP-TOPSIS SIM-Know

SlowMobility

Number of handovers 7 3 3

Number of throughput drops 5 3 3
ModerateMobility

Number of handovers 7 3 3

Number of throughput drops 5 3 3
HighMobility

Number of handovers 7 4 3

Number of throughput drops 5 2 1

Table 3 also reveals that when the end-user device moved at slow and moderate speeds,
SIM-Know behaved as AHP-TOPSIS does regarding the number of handovers and the
number of throughput drops. Figure 7 shows that SIM-Know outperformed AHP-TOPSIS
in these metrics when the end-user device moved at a high velocity. The outperformance
regarding the number of handovers and number of throughput drops was due to SIM-
Know making context-aware, cognitive and proactive handovers. Figure 8 corroborates
the fact that SIM-Know carried out handovers before SSF and AHP-TOPSIS did.
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Figure 7. Throughput Drops.

Figure 9 shows, as expected, that SIM-Know obtained a higher handover latency than
SSF did, since our approach is knowledge-based and SSF makes decisions considering a
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single criterion. SIM-Know had 27% less handover latency than AHP-TOPSIS because, first,
our approach is proactive and, according to [46], AHP-TOPSIS is reactive; the proactivity
shortens the Handover Initiation phase [21]. Secondly, SIM-Know employs a rule-based
reasoning method while AHP-TOPSIS uses a complex mathematical model that requires a
considerable amount of time to make handover decisions.
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Figure 8. Proactivity.
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Figure 9. Handover Latency.

Next, we present how SIM-Know, SSF and AHP-TOPSIS impact various network
performance metrics when the end-user device moves at HighMobility. Figure 10 depicts
SIM-Know overcoming SSF and AHP-TOPSIS regarding the throughput, delay, and packet
loss when the wireless network transferred VoIP/UDP traffic. In particular, the delay
attained by SIM-Know was 29.28% and 23.13% lower than that achieved by SSF and AHP-
TOPSIS (see Figure 10a). The packet loss of SIM-Know was 99.44% and 98.38% lower
than that obtained by SSF and AHP-TOPSIS (see Figure 10b). The throughput obtained
by SIM-Know was 57.17% and 16.87% higher than that obtained by SSF and AHP-TOPSIS
(see Figure 10c). Figure 11 shows that SIM-Know also outperformed SSF and AHP-TOPSIS
regarding the throughput, delay and jitter when the wireless network transferred TCP
traffic. Specifically, the delay attained by SIM-Know was 91.95% and 80.27% lower than that
achieved by SSF and AHP-TOPSIS (see Figure 11a). The jitter performed by SIM-Know was
57.98% and 32.94% lower than that obtained by SSF and AHP-TOPSIS (see Figure 11b). The
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throughput accomplished by SIM-Know was 80.3% and 29.22% higher than that attained
by SSF and AHP-TOPSIS (see Figure 11c).

We argue that the improvement in throughput, delay, jitter, and packet loss offered
by SIM-Know is due to its context-aware, cognition and proactivity capabilities, which
decreased the number of handovers and the number of throughput drops. In particular,
SIM provides the context-aware capability to perform handover decisions through the
comprehensive and semantic network view given by the information domains (Network,
Application, User, UserDevice, and Handover). The KBP’s Reasoning layer allows the achieve-
ment of cognitive HM. The distributed nature of KBP and its continuous updating allow
the Handover Initiation phase to be proactive and operate with the local knowledge, built
by KBPM and KBPN , and the global knowledge, available in KBPS. It is worth noting that
the above results corroborate the idea that proactive approaches are more effective than
reactive ones for meeting QoS requirements. On the other hand, we consider that the
handover latency of SIM-Know can be addressed by improving the data format and the
communication model between KBPS and both KBPM and KBPN . These improvements are
out of the scope of this paper and constitute limitations of the current SIM-Know version.
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5. Conclusions and Future Work

This paper introduced SIM-Know, an approach that performs context-aware, cogni-
tive, and proactive handovers. SIM-Know includes SIM to provide context-awareness to
handover decisions and KBP to incorporate cognition in HM. KBP distributes knowledge
(local and global) to afford the proactivity capability in HM. The evaluation results showed
that, thanks to the aforementioned SIM-Know capabilities, our approach overcomes SSF re-
garding the number of handovers and the number of throughput drops when the end-user
device moves at any speed and, further, equals AHP-TOPSIS when it travels at low and
moderate speeds. SSF outperforms SIM-Know and AHP-TOPSIS regarding the handover
latency metric because SSF runs a straightforward process for making handover decisions.
SIM-Know overcomes AHP-TOPSIS regarding all evaluated metrics when the end-user
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device moves at a high speed, positively impacting the wireless network’s performance in
terms of the delay, throughput, packet loss and jitter metrics. Considering these results, we
concluded that SIM-Know is an attractive and feasible solution for cognitive HM.

For future work, we intend to enrich our approach with SDN and NFV capabilities
to deal with the scalability issue imposed on HM by the Industrial IoT and the massive
IoT 5G use case. We also plan to create an efficient model for communicating KBPs and
evaluating SIM-Know when it makes handover decisions in scenarios with many end-user
devices, high network traffic, and high load in APs.
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3GPP 3rd Generation Partnership Project
5G Fifth Generation
AHP Analytic Hierarchy Process
AMF Access and Mobility Management Function
AP Access Point
BILP Binary Integer Linear Programming
BS Base Station
CIM Common Information Model
CN Core Network
DL Description Logic
EN Entity Notation
gNB gNodeB
HF Handover Failure
HM Handover Management
IoT Internet of things
KBP Knowledge Base Profile
LTE Long-Term Evolution
MADM Multiple Attribute Decision Making
MAHO Mobile-Assisted Handover
MCHO Mobile-Controlled Handover
NAHO Network-Assisted Handover
NCHO Network-Controlled Handover
NFV Network Function Virtualization
OWL Web Ontology Language
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PP Ping-Pong
PROMETHEE Preference Ranking Organization METHod for Enrichment Evaluation
QoS Quality of Service
RAN Radio Access Network
RLF Radio Link Failure
RSSI Received Signal Strength Indication
SAW Simple Additive Weighting
SDN Software-Defined Networking
SIM Semantic Information Model
SSF Signal Strong First
TCP Transmission Control Protocol
TOPSIS Technique for Order Preferences by Similarity to the Ideal Solution
UDP User Datagram Protocol
UE User Equipment
UPF User Plane Function
URLLC Ultra-Reliable and Low Latency Communications
VM Virtual Machine
VoIP Voice over IP
WLAN Wireless Local Area Network
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