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Abstract: This paper presents a novel approach to substantially improve the detection accuracy of
structural damage via a one-dimensional convolutional neural network (1-D CNN) and a decision-
level fusion strategy. As structural damage usually induces changes in the dynamic responses of a
structure, a CNN can effectively extract structural damage information from the vibration signals and
classify them into the corresponding damage categories. However, it is difficult to build a large-scale
sensor system in practical engineering; the collected vibration signals are usually non-synchronous
and contain incomplete structure information, resulting in some evident errors in the decision stage
of the CNN. In this study, the acceleration signals of multiple acquisition points were obtained, and
the signals of each acquisition point were used to train a 1-D CNN, and their performances were
evaluated by using the corresponding testing samples. Subsequently, the prediction results of all
CNNs were fused (decision-level fusion) to obtain the integrated detection results. This method was
validated using both numerical and experimental models and compared with a control experiment
(data-level fusion) in which all the acceleration signals were used to train a CNN. The results
confirmed that: by fusing the prediction results of multiple CNN models, the detection accuracy
was significantly improved; for the numerical and experimental models, the detection accuracy was
10% and 16–30%, respectively, higher than that of the control experiment. It was demonstrated that:
training a CNN using the acceleration signals of each acquisition point and making its own decision
(the CNN output) and then fusing these decisions could effectively improve the accuracy of damage
detection of the CNN.

Keywords: structural damage detection; decision-level fusion; 1-D convolutional neural network;
vibration experiments; acceleration signals; bridge model

1. Introduction

Structural damage detection (SDD) is one of the most relevant topics in structural
health monitoring (SHM). Timely SDD is helpful for finding the potential defects of a
structure and preventing its sudden collapse. The early detection methods are mainly
on-site inspections, which are labor-intensive, time-consuming, and only effective for visi-
ble surface defects. The structural vibration contains real and complete state information
of a structure [1]; therefore, some vibration-based SDD methods are proposed. For ex-
ample, the SDD methods are based on modal parameters and their derivatives (namely,
the parametric method), including the natural frequencies [2], mode shapes [3], modal
flexibility [4], mode curvature [5], and modal strain energy [6,7]. The non-parametric
method establishes the SDD indicators directly from the real-time vibration signals, includ-
ing acceleration [8] and displacement [9]. Among them, the real-time detection method
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based on eigen perturbation and a Kalman filter has been well confirmed [10]. Although
these methods have significantly improved the accuracy of the SDD, they still face many
challenges. The parametric methods need accurate modal parameter identification, which
may be compromised under the influence of many factors (measurement and/or analysis
errors). Furthermore, a single modal-based indicator cannot cover all damage scenarios
(e.g., the natural frequencies can only detect the existence of damage, but cannot deter-
mine the damage location) [2]; meanwhile, the non-parametric methods require large-scale
data analysis, which is affected by the knowledge level of analysts, and the accuracy and
efficiency of damage detection are questionable. Even the popular Kalman filter method
also needs both accurate structural modeling and external excitation, which will limit its
application in real engineering [10]. Therefore, an automatic and efficient data processing
tool to integrate/fuse multiple information sources is urgently needed.

Machine learning (ML) methods provide a new way to solve the above difficulties.
The ML enables a system to automatically learn from its experience and predict the corre-
sponding scenario according to the learned knowledge. ML algorithms have been widely
used in vibration-based SDD. Classical ML algorithms include the support vector machine
(SVM) [11] and artificial neural network (ANN) [12], which have achieved encouraging
results. In particular, the backpropagation (BP) neural network has been widely applied
to the parametric and non-parametric SDD methods, for example, damage detection of
a truss [13], a steel frame [14], and a bridge model [15], and its effectiveness was also
confirmed on a real steel frame [16]. However, all the above methods need to extract a set
of fixed features, e.g., the modal parameters and/or wavelet transform coefficients [17],
principal component analysis (PCA) [18], and wavelet decomposition (WD) [11]. Further-
more, the fully connected neural network (i.e., BP neural network) is prone to over-fitting
and is computationally expensive, which will sacrifice the effectiveness of the method in
large-scale SDD tasks.

As a deep learning algorithm, a convolutional neural network (CNN) provides a novel
method for the SDD due to its excellent feature extraction ability. Meanwhile, a CNN
has powerful computing performance and is able to prevent over-fitting due to its weight
sharing (in the convolution process) and sparse connection (in the pooling process); it
has unprecedented potential in the field of SDD. Zhong et al. [19] demonstrated that a
CNN can extract damage information from the mode shapes; Lin et al. [20] also showed
that a CNN can extract damage information directly from the acceleration signals, and
Teng et al. [21] illustrated a CNN feature extraction process in structural surface defect
detection. The effectiveness of a 2-D CNN was demonstrated using numerical [22] and
experimental [23] models of a benchmark structure by joining the data of 14 accelerometers.
As an alternative, a 1-D CNN has attracted attention in electrocardiogram (ECG) detection,
engine detection [24], and voltage/current detection of electronic equipment [25]. These
studies confirmed the excellent performance of a 1-D CNN in damage detection. In the
field of civil engineering, a 1-D CNN was used [26] to detect damage in a laboratory frame,
where its effectiveness was validated on the collected acceleration signals using a wireless
sensor network (WSN) [27]. Subsequently, the SDD method based on the vibration and
1-D CNN was also used to detect the mass changes of the real bridges [28]. Although
the CNN-based SDD methods achieved encouraging results, for practical engineering,
especially for the long-span bridges, it is difficult to collect the complete bridge vibration
information and arrange sufficient signal acquisition points. Therefore, although a CNN
has a strong signal processing capability, the damage detection is affected by the non-
synchronization and incompleteness of the vibration signals and the interference between
multiple sensors. In order to obtain more complete damage information, a new data
analysis strategy is necessary.

The strategy of data fusion provides a state-of-the-art SDD method. By fusing multi-
channel/multi-scale information, the data fusion technology can provide complete and
detailed object information. In medical engineering, computed tomography and magnetic
resonance (CT-MR) image fusion can obtain a more accurate lesion location [29]; in remote
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sensing image processing, image fusion technology can improve image resolution [30]. In
the field of SHM, the time domain and frequency domain images of the bridge vibration
were fused to detect abnormal signals [31], and the accuracy of damage detection was
improved by fusing the modal strain energy (MSE) of multi-modes [32] and the MSE
with dynamic response [33], and the Dempster–Shafer (D–S) evidence theory and multi-
sensor-signals-based SDD method was also implemented [34]. The damage indicators
based on modal parameters and their derivatives need accurate modal identification from
the original vibration signal and the accuracy is compromised by the accidental error of
measurement and/or analysis. The popular Kalman filters can effectively eliminate the
interference of noise [35]; however, the structural parameter identification method based on
eigen perturbation and a Kalman filter still faces many challenges: (1) it can only be used to
identify time-invariant structural parameters [36]; (2) for sub-component (location) damage
detection of a structure, the accuracy and robustness need to be further improved [37];
(3) it cannot be applied to a non-Gaussian parameter system [38]; (4) there is a certain time
delay [39]; (5) low sampling frequency will affect the stability of the filter [40]. These often
lead to significant implementation difficulties. The vibration signals contain the complete
structural state information [41]; thus, it is of great potential to use the vibration signals
as structural damage indicators. The information of a single sensor has a certain ability
to detect the structural damage state [42]; however, the influence of the sensor location
on damage detection results is not clear, and the complementarity of multiple sensors
is also a topic worthy of further study. The existing methods fuse the original data of
multiple sensors as the input of a CNN (namely, data-level fusion); however, the collected
signals may be unsynchronized and incomplete, and the signals of multiple sensors may
have interference.

In order to further improve the accuracy of damage detection, one solution was to
synthesize the information of multiple sensors and avoid mutual interference. In this study,
a novel decision-level fusion strategy was applied to the SDD. That is, each acquisition
point (accelerometer) was regarded as an independent observation unit. Each accelerometer
signal was used to train a 1-D CNN, and the prediction results of the multiple CNN models
were integrated to finally predict the structural damage state (decision-level fusion). This
work was carried out on a numerical model and two experimental models; meanwhile,
a control experiment (data-level fusion) was designed to highlight the advantages of the
proposed method.

2. Materials and Methods

In this study, 3 cases of damage detection were carried out, including numerical and
experimental models of a bridge structure and a large-span steel frame model. The detailed
implementation strategies were as follows (Figure 1).
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Figure 1. The implementation strategies of the SDD using the 1-D CNN.

2.1. Numerical and Experimental Models

The numerical model (Figure 2) of the bridge structure (Figure 3a) with a length of
2.40 m, a width of 0.30 m, and a height of 0.30 m was created in ABAQUS (SIMULIA Inc,
Providence, RI, USA); it included 60 flat steel bars. Each flat steel bar had a rectangular
cross-section (0.02 × 0.002). The elastic modulus, Poisson’s ratio, mass density, and modal
damping ratio of the flat steel were 210 GPa, 0.3, 7800 kg/m3, and 0.003, respectively, for
the bridge model. All the flat steel bars were meshed with beam elements (B31 type). The
60 flat steel bars were named FS-1, FS-2, . . . , FS-60, respectively; among them, FS-59 and
FS-60 were not used as the investigated objects because their 2 ends were fixed, and their
damage had no effect on the vibration signal, which was shown in relevant studies [33].

Figure 2. The bridge model with 60 flat steel bars.
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Figure 3. The bridge model with 60 flat steel bars. (a) Model layout; (b) boundary condition; (c) connection type.

The bridge structure in Figure 3a was used for the vibration experiment. The flat steel
bars were connected using bolts (Figure 3c). The experimental facilities (Figure 4) included:
a JM3840 dynamic data acquisition instrument, 7 accelerometers, an instrumented hammer,
a laptop, and some damaged flat steel bars (damage scenarios were achieved by replacing
the flat steel bars in the damaged location). Figure 3b showed the boundary conditions of
the experimental model (it was pinned on the supporting frame using the bolts).

Figure 4. Experimental facilities: (a) accelerometers; (b) hammer; (c) JM3840 dynamic data acquisition
instrument; (d) damaged flat steel bars; (e) laptop.

In order to further validate its generality, the proposed method was also applied to a
long-span steel frame model (Figure 5). The steel frame had a length, width, and height
of 9.912 m, 0.354 m, and 0.354 m, respectively. The steel frame consisted of 355 rods; each
rod had a hollow circular cross-section with an external radius of 0.005 m and thickness
of 0.002 m. The 2 ends of the steel frame were pinned. Damage was introduced to
9 rods (namely, R1, R2, . . . , R9 in Figure 5). The response signals of 13 acquisition points
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(accelerometers) on the bottom chord were used as the inputs of the CNN. The excitation
point was on the top chord (Figure 5).

Figure 5. The steel frame model with 355 rods. (a) Model layout; (b) intact and damaged rods; (c) boundary condition.

2.2. 1-D Convolution Neural Network

A standard CNN usually includes a series of convolution layers, pooling layers,
activation layers, a fully connected layer, a softmax layer, and an output layer. The input
data is transferred through these layers, and finally, it is mapped to the class to which the
original data belongs. In particular, the input of a 1-D CNN is a 1 × N or N × 1 array. As
shown in Figure 6, an N × 1 array goes through a series of convolution and pooling layers,
and finally, finds the class (class 1, class 2, or class 3) of the array in the output layer.

Figure 6. Architecture of a 1-D CNN. C: convolution layer; P: pooling layer; FCN: fully connected layer.

The convolution process (Figure 7a) involves multiplying each element in the convo-
lution kernel with the corresponding element in a sub-region (e.g., green box or red dotted
box) of the input data of the convolution layer and summing up the products to obtain an
element in the feature map. Each time, the sub-region moves down 1 step and the process
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is repeated until all elements of the input data are involved; in the end, the convolution
operation will form a new array (i.e., the feature map).

Figure 7. Convolution and pooling operations. (a) Convolution; (b) pooling.

The pooling operation is a down-sampling technique that greatly improves the CNN
computational speed and effectively prevents over-fitting. There are usually 2 different
pooling methods, namely, max pooling and mean pooling. Max pooling was utilized in
this study as it is better than mean pooling [43]. Figure 7b demonstrates that max pooling
picks up the maximum value of a sub-matrix (2 × 1) to form an element of the feature map.

The activation layers, softmax layer, and fully connected layer are similar to a general
2-D CNN, which was described in a relevant reference [33]. The responses of a structure to
the excitation were different under different damage scenarios. In this study, the vibration
signals (acceleration) of multiple acquisition points (accelerometers) of the bridge model
or steel frame model were taken as the input of the network, and the damage state of
the structure was taken as the output (e.g., different damage locations were labeled as
different scenarios). In the process of network training, the 1-D CNN used the convolu-
tion and pooling layers to process the acceleration signals layer by layer to extract the
damage information, which was classified into different damage scenarios in the fully
connected layer.

2.3. Structural Damage Detection

First, the vibration signals of various structural scenarios (one intact structure and
58 damaged structures (the damage locations were FS-1, FS-2, . . . , FS-58, respectively)
were obtained by using the numerical model described in Section 2.1, where the parametric
analysis codes based on ABAQUS and PYTHON were reported in a relevant reference [32].
The damage of the flat steel bar was simulated using the change of its elastic modulus. It
was assumed that the damage level of the flat steel bar was proportional to the reduction
of its elastic modulus. In this study, the elastic modulus of the flat steel bar at the damage
location was reduced by 60%. Two consecutive impulse excitations (800 N and 1000 N)
were applied to the structure at the excitation point, and then the acceleration signals of
400 sampling points (sampling time of 4 s with an increment of 0.01 s) of each impulse
excitation were collected. The CNN samples were created as follows.

As shown in Figure 8, the vibration signal (1 × 400 array) generated by an excitation,
with its 400 sampling points, was divided into 4 equal parts through the fixed size windows,
that is, 4 samples (four 1 × 100 arrays); this operation was repeated to obtain all 472 samples
(4 × 59 (1 intact structure and 58 damage locations) × 2 (2 excitations)). The samples from
the 1000 N excitation were used as the training samples (236 samples), and the samples
from the 800 N excitation were used as the testing samples (236 samples). The CNN input
was acceleration signals, and the CNN output was labeled as state 1 (intact structure), state
2 (damage on FS-1), state 3 (damage on FS-2), and so on. The acceleration signals from
each acquisition point (7 points in total) were used to train each respective CNN, that is,
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there were a total of 7 CNN models (namely, NNP1, NNP2, NNP3, . . . , NNP7, as shown in
Figure 8).

Figure 8. The sample acquisition of the CNNs.

Second, for the design of the damage scenarios of the experimental model (bridge
model), the intact flat steel bar was replaced with a damaged flat steel bar of the experimen-
tal model, and the following 6 structural scenarios were designed: state 1 (intact structure),
state 2 (damage on EFS-1), state 3 (damage on EFS-2), state 4 (damage on EFS-3), state 5
(damage on EFS-1 and EFS-2, simultaneously), and state 6 (damage on EFS-1, EFS-2, and
EFS-3 simultaneously). For each damage scenario, the structure was stimulated 3 times
(at the excitation point by a hammer) and the acceleration signals were collected at the
corresponding locations (E-A, E-B, E-C, . . . , E-G in Figure 9), where the data obtained from
the 1st and 2nd excitations were used as the training samples and the data from the 3rd
one was used as the testing samples. According to the above sample acquisition method
(Figure 8), for a CNN sample dataset, the number of training and testing samples was
48 (4 × 6 (6 structural scenarios) × 2 (2 impulse excitations)) and 24 (4 × 6 (6 structural
scenarios) × 1 (1 impulse excitation)), respectively. Seven CNN models could be trained
from the acceleration signals collected by the 7 accelerometers (namely NNP1, NNP2, NNP3,
. . . , NNP7).

Figure 9. Distribution of the damage locations and accelerometers (bridge model).

Third, according to the above method, a total of 10 structural scenarios were designed
in the steel frame model (Figure 5), i.e., state 1 (intact structure), state 2 (damage on
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R1), state 3 (damage on R2), and so on. According to the above sample acquisition
method (Figure 8), for the CNN sample dataset, the number of training and testing samples
was 80 (4 × 10 (10 structural scenarios) × 2 (2 excitations)) and 40 (4 × 10 (4 structural
scenarios) × 1 (1 excitation)), respectively. In total, 13 CNN models could be trained from
the acceleration signals collected by the 13 accelerometers (namely, NNP1, NNP2, NNP3,
. . . , NNP13).

Subsequently, a 1-D CNN was established by using the ‘Deep Learning Toolbox’ of
MATLAB (MathWorks Inc., Natick, MA, USA), including 2 convolution layers, 1 pooling
layer, 2 activation layers (leaky ReLU activation function), 1 fully connected layer, and
1 softmax layer. Detailed network parameters are shown in Table 1.

Table 1. Structural parameters of the 1-D CNN.

Layer Type Kernel Num. Kernel Size Stride Activation

1 Input None None None None
2 Convolution (C1) 128 3 × 1 1 Leaky ReLU
3 Max pooling (P) None 2 × 1 1 None
4 Convolution (C2) 256 2 × 1 1 Leaky ReLU
5 FC None None None None
6 Softmax None None None None
7 Classification None None None None

In this study, 7 CNNs (for the bridge model) could be obtained from 7 acquisition
points (accelerometers). The testing samples were used to evaluate the performance of
7 networks, and the testing results of each network were fused (decision-level fusion)
as follows.

The prediction results of the 7 networks were P1, P2, . . . , P7:

Pi = [ai bi ci . . .] (1)

where i = 1, 2, . . . 7, and ai, bi, ci, etc., represent the prediction results of the ith network for
the first, second, and third testing samples, and so on. In this study, the decision fusion of
predictions (DFP) was calculated from the predicted results of the 7 networks:

PT =

 P1
...

P7

 =

 a1 b1 c1 . . .
...

a7 b7 c7 . . .

 (2)

DFP = Mode(PT , 2) (3)

where Mode is a MATLAB function; Mode (PT, 2) was used to calculate the most frequent
number in each column of the PT. This was similar to the voting process in an election,
where all the decision makers (i.e., the CNNs) vote on the decisions, and the decision with
the most votes is recognized.

In order to further prove the outstanding performance of the proposed method, a
corresponding control experiment was designed: the acceleration data of all acquisition
points were fused (as shown in Figure 10) using data-level fusion. Therefore, the CNN
input was a 2-D array, and then a sample database was established by using the data
of all structural states (it was consistent with the numerical and experimental models
described in Section 2.3), and the training samples were input into the CNN model (NNPT)
to implement the network training.
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Figure 10. Implementation of the control experiment (data-level fusion).

3. Results and Discussion

This section includes two parts: (1) damage detection results (decision-level fusion)
based on the numerical model and 1-D CNN, and comparisons with that of the control
experiment (data-level fusion); (2) the damage detection results of two experimental models
(the bridge model and long-span steel frame model), and comparisons with that of the
control experiment (data-level fusion).

3.1. Detection Results of the Numerical Model

First, ABAQUS was employed for the numerical simulations of the bridge model. The
vibration signals of the intact structure are shown in the Appendix A (Figure A1), where
S1, S2, . . . , S7 are the time history curves of the acquisition points (A, B, . . . , F, G) under
the 800 N impulse force excitation, respectively; the complete vibration signals (for all
structural scenarios) are shown in the Supplementary Materials. The training and testing
samples of the 1-D CNN were obtained by using the method described in Section 2.3.

The training samples of the numerical bridge model were used to train the 1-D CNN.
The training processes of the seven networks are shown in the Appendix A (Figure A2).
After 1400 iterations, the accuracy and loss value of the networks tended to be stable, the
accuracy of the training samples was 100%, and the loss value tended to be 0. The testing
samples were used to evaluate the detection performance of the 1-D CNN; Figure 11 shows
the accuracy of the testing samples of the seven networks NNP1 to NNP7, ranging from 88
to 90%.

Table 2 shows some detection errors of the seven networks for the testing samples,
where the mistakenly detected cases of each network were different. For example, NNP1,
NNP2, and NNP4 had incorrect detections for structural state 1, while NNP3, NNP5, NNP6,
and NNP7 had no wrong detections for state 1; NNP1 and NNP6 had incorrect detections for
structural state 57, while NNP2, NNP3, NNP4, NNP5, and NNP7 had no wrong detections
for state 57. Therefore, each CNN had different sensitivities to different damage scenarios.
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Figure 11. Detection results of the 7 networks.

Table 2. Cases that were mistakenly detected by the numerical model.

Sample NNP1 NNP2 NNP3 NNP4 NNP5 NNP6 NNP7

1 1 1 5 1 8 5 2
2 6 4 5 1 9 6 6
3 8 6 6 5 10 9 8
4 9 7 8 5 11 11 11
5 9 16 9 10 11 11 13
6 13 18 10 13 15 14 17
7 13 18 10 15 18 15 19
8 14 19 14 20 19 17 26
9 14 19 19 21 20 18 27

10 17 22 20 21 23 20 27
11 21 23 20 22 29 23 28
12 21 25 20 23 32 25 31
13 30 25 22 24 32 25 31
14 32 26 22 31 34 27 33
15 32 31 36 31 34 28 36
16 34 35 39 34 35 31 36
17 37 36 43 34 36 32 36
18 38 39 45 36 37 37 37
19 39 40 52 42 37 40 38
20 41 45 54 43 39 49 38
21 42 46 55 44 41 49 43
22 47 49 56 48 42 50 45
23 48 51 58 53 43 52 49
24 49 54 59 54 45 54 49
25 57 55 55 46 54 50
26 55 48 57 52
27 58 53

Note: Number is the state number.

According to the proposed fusion strategy described in Section 2.3, the prediction
results of all network models were fused and the results showed that the accuracy of
the SDD using the decision-level fusion strategy was 100%. The training process of the
control experiment (data-level fusion) is shown in Figure 12; in the stable stage of the
network training, the accuracy of the training samples reached 100%. Figure 12 also
shows the change in the accuracy of the testing samples for the different iterations. Finally,
the accuracy of the testing samples was 89.83%; therefore, the accuracy of the proposed
method was higher than that of the control experiment (data-level fusion). Furthermore,
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the accuracy of the decision-level fusion strategy was higher than that of any individual
network before the fusion, as shown in Table 3. Hence, interestingly, any individual network
(before fusion) could only achieve about 90% accuracy; the accuracy was improved by
about 10% by using the proposed fusion strategy to fuse the results of multiple networks.

Figure 12. Detection results of the control experiment (numerical bridge model).

Table 3. Comparisons of the detection results before and after the decision-level fusion.

Accuracy Decision-Level Fusion Improvement

NNP1 89.41%

100%

10.59%
NNP2 88.98% 11.02%
NNP3 89.83% 10.17%
NNP4 89.41% 10.59%
NNP5 88.56% 11.44%
NNP6 88.98% 11.02%
NNP7 88.56% 11.44%

Average 89.10% 10.90%

3.2. Detection Results of the Experimental Model

Figure A3 (Appendix A) in the Appendix shows the acceleration signals of state 1
(i.e., intact structure), where S1, S2, . . . , S7 are the time history curves of the acquisition
points (E-A, E-B, . . . , E-G, respectively); the complete data are shown in the Supplementary
Materials. It should be noted that the magnitudes of the excitation forces of the structure
were not the same for the manual excitation.

The training samples described in Section 2.3 were input into the seven CNN models.
Figure A4 (Appendix A) shows the training process of the 1-D CNN. The accuracy increased
and the loss value decreased with the increase in iterations, and finally, both tended to be
stable, the accuracy reached 100%, and the loss value was close to 0. The testing samples
were used to evaluate the detection performance of the networks. The detection accuracy
of the testing samples is shown in Figure 13. The detection accuracy of the seven networks
ranged from 70 to 96%, with the lowest of 70.83% for NNP4 and the highest of 95.83%
for NNP2, NNP3, and NNP5. Then, the decision-level fusion strategy was used to fuse
the prediction results of the seven networks, where the accuracy was 100%. The training
process of the control experiment (data-level fusion) is shown in Figure 14; in the stable
stage of network training, the accuracy of the training samples reached 100%. Figure 14
also shows the accuracy of the testing samples in the different iterations. Finally, the
accuracy of the testing samples was 83.33%; therefore, the accuracy of the proposed method
was higher than that of the control experiment (data-level fusion).
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Figure 13. Detection results of the testing samples using 7 networks.

Figure 14. Detection results of the control experiment (experimental bridge model).

Table 4 shows the detection errors of the seven networks. The results show that: NNP1
had incorrect detections for structural states 5 and 6; NNP2 had an incorrect detection
only for structural state 1; NNP4 had incorrect detections for structural states 1, 2, 4, and
5; and so on. Generally, each CNN model had different sensitivities to different damage
states, and each CNN model provided the correct prediction for some specific damage
states. Therefore, it was of great significance to fuse the detection results of multiple
networks. The accuracy of an individual network (the detection results before fusion)
was 70–96% (Table 5); the accuracy after fusion was 100% such that the accuracy was
increased by 4–30% (average 12.50%). Therefore, the proposed method was validated in
the experimental model.

Table 4. Incorrect detection results of the experimental model.

Sample NNP1 NNP2 NNP3 NNP4 NNP5 NNP6 NNP7

1 6 1 4 1 4 1 1
2 5 4 3 3
3 1 5 5
4 2 6 5
5 5 5
6 1
7 1
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Table 5. Comparisons of the detection results before and after the decision-level fusion.

Accuracy Decision-Level
Fusion Improved

NNP1 91.67%

100%

8.33%
NNP2 95.83% 4.17%
NNP3 95.83% 4.17%
NNP4 70.83% 29.17%
NNP5 95.83% 4.17%
NNP6 83.33% 16.67%
NNP7 79.17% 20.83%

Average 87.50% 12.50%

Figure A5 (Appendix A) and Figure 15 show the training process and testing results
of the steel frame model, respectively. The results showed that different CNN models had
different testing accuracies, where the lowest was 20% (for NNP5 and NNP7), the highest
was 82.5% (for NNP11), and the average was 48.46%. The networks with poor performance
were NNP3, NNP4, NNP5, NNP6, and NNP7, and the accuracy was only 20–25%. In this
study, the accuracy of the decision-level fusion strategy was improved to 85%; however,
the accuracy of the control experiment (data-level fusion) was only 55%. The detailed
detection results are shown in Table 6; the accuracy of the decision-level fusion strategy
was higher than that of any CNN trained by the signals of an individual acquisition point
(improvement of 2.5–65%, average 51.54%).

Figure 15. Detection results of the testing samples using the 13 networks.

Table 6. Comparisons of the detection results before and after the decision-level fusion.

Accuracy Decision-Level Fusion Improvement

NNP1 52.50%

85%

47.50%
NNP2 52.50% 47.50%
NNP3 22.50% 77.50%
NNP4 25.00% 75.00%
NNP5 20.00% 80.00%
NNP6 25.00% 75.00%
NNP7 20.00% 80.00%
NNP8 75.00% 25.00%
NNP9 57.50% 42.50%
NNP10 62.50% 37.50%
NNP11 82.50% 17.50%
NNP12 70.00% 30.00%
NNP13 65.00% 35.00%

Average 48.46% 51.54%

In general, the decision-level fusion of the prediction results of the multiple networks
was better than the prediction results of the fusion of the original data (data-level fusion),
as shown in Table 7. Compared with the data-level fusion, the proposed method improved
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the prediction accuracy by 10% for the numerical model, 16% for the experimental model
(bridge model), and 30% for the other experimental model (steel frame model). Meanwhile,
compared with the D–S evidence fusion strategy (Table 8), the proposed method improved
the prediction accuracy by 1.7% for the numerical model, 0% for the experimental model
(bridge model), and 75% for another experimental model (steel frame model). In particular,
the D–S evidence fusion strategy was invalid for the steel frame model. The results showed
that the computational efficiency (Table 9) of the proposed decision-level fusion was about
60% of the data-level fusion, while the efficiency of the D–S evidence fusion strategy was
lower than that of the proposed decision-level fusion.

Table 7. Comparisons of the accuracy with the control experiment (data-level fusion).

Numerical Model
(Bridge Model)

Experimental Model
(Bridge Model)

Experimental Model
(Steel Frame)

Data-level fusion 89.83% 83.33% 55.00%

Decision-level fusion 100.00% 100.00% 85.00%

Improvement 10% 16% 30%

Table 8. Comparisons of the accuracy with the D–S evidence fusion.

Numerical Model
(Bridge Model)

Experimental Model
(Bridge Model)

Experimental Model
(Steel Frame)

Decision-level fusion 100.00% 100.00% 85.00%

D–S evidence fusion 98.31% 100.00% 10.00%

Improvement 1.69% 0% 75%

Table 9. Comparisons of the computational efficiency with the three fusion strategies.

Numerical Model
(Bridge Model)

Experimental Model
(Bridge Model)

Experimental Model
(Steel Frame)

Decision-level fusion 721 s 350 s 1300 s

Data-level fusion 488 s 240 s 510 s

D–S evidence fusion 1073 s 369 s 1362 s

The eigen perturbation and Kalman-filter-based SDD methods can process the struc-
tural vibration response signals in real time and identify the structural parameters [10,44].
Figure 16 shows the observed, real, and Kalman filter values of a vibration signal; it shows
that the Kalman filter could effectively reduce the noise interference. The calculation
time for each vibration signal was 2.4 s; therefore, the computational time for the three
models (numerical bridge (472 samples), experimental bridge (72 samples), and steel frame
(120 samples)) were 1132 s, 173 s, and 288 s, respectively. By comparison, it was found
that the CNN had strong advantages in processing large-scale data (because more than
90% of the CNN’s time was spent in the training phase, once the network training was
completed, its speed in the detection phase was quite fast). This confirms that this CNN has
considerable advantages when used for a large amount of infrastructure monitoring data.
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Figure 16. The denoise results of the Kalman filter.

Furthermore, the results of the parameter identification (Figure 17, the spectrum
curves of the vibration signals of the six structural states) show that the structural damage
only caused small changes in the spectrum.

Figure 17. The spectrum curves of the different structural states.

4. Conclusions

In this study, a 1-D CNN was employed to detect the damage of a bridge and a steel
frame structure, and a novel fusion strategy (decision-level fusion) was used to fuse the
prediction results of multiple CNNs, which significantly improved the accuracy of the SDD.
Specifically, the vibration signal of each acquisition point was used to train a CNN, and the
prediction results of these CNN models were fused.

Based on the above results, the following conclusions were drawn:
(1) The proposed fusion strategy (decision-level fusion) could significantly improve the

prediction accuracy of the numerical model by 10% compared with the control experiment
(data-level fusion).

(2) The proposed fusion strategy (decision-level fusion) was also validated in the
experimental bridge model, and the accuracy was improved by 16% compared with the
data-level fusion strategy in the control experiment. This was also confirmed regarding the
damage detection of the long-span steel frame (improved by 30%).

(3) The proposed fusion strategy also performed better than any CNN trained by the
signals of an individual acquisition point.

(4) The proposed method was more competitive than the D–S evidence theory and a
Kalman filter.
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Appendix A

Figure A1. Acceleration signals from the numerical model.
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Figure A2. Training process and detection results. NNP#: network number.

Figure A3. Acceleration signals from the experimental model.
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Figure A4. Training process and detection results of the 7 CNNs.

Figure A5. Training process and detection results.



Sensors 2021, 21, 3950 20 of 21

References
1. Yan, Y.J.; Cheng, L.; Wu, Z.Y.; Yam, L.H. Development in vibration-based structural damage detection technique. Mech. Syst.

Signal Process. 2007, 21, 2198–2211. [CrossRef]
2. An, Y.; Chatzi, E.; Sim, S.-H.; Laflamme, S.; Blachowski, B.; Ou, J. Recent progress and future trends on damage identification

methods for bridge structures. Struct. Control Health Monit. 2019, 26, e2416. [CrossRef]
3. Pandey, A.K.; Biswas, M.; Samman, M.M. Damage detection from changes in curvature mode shapes. J. Sound Vib. 1991, 145,

321–332. [CrossRef]
4. Sung, S.H.; Koo, K.Y.; Jung, H.J. Modal flexibility-based damage detection of cantilever beam-type structures using baseline

modification. J. Sound Vib. 2014, 333, 4123–4138. [CrossRef]
5. Lu, Q.; Ren, G.; Zhao, Y. Multiple Damage Location with Flexibility Curvature and Relative Frequency Change for Beam

Structures. J. Sound Vib. 2002, 253, 1101–1114. [CrossRef]
6. Teng, S.; Chen, G.; Liu, G.; Lv, J.; Cui, F. Modal Strain Energy-Based Structural Damage Detection Using Convolutional Neural

Networks. Appl. Sci. 2019, 9, 3376. [CrossRef]
7. Cha, Y.; Buyukozturk, O. Structural Damage Detection Using Modal Strain Energy and Hybrid Multiobjective Optimization.

Comput. Aided Civ. Infrastruct. Eng. 2015, 30, 347–358. [CrossRef]
8. Ni, F.; Zhang, J.; Noori, M.N. Deep learning for data anomaly detection and data compression of a long-span suspension bridge.

Comput. Aided Civ. Infrastruct. Eng. 2020, 35, 685–700. [CrossRef]
9. Khuc, T.; Catbas, N. Completely contactless structural health monitoring of real-life structures using cameras and computer

vision. Struct. Control Health Monit. 2017, 24, e1852. [CrossRef]
10. Feng, G.; Yong, L. A Kalman-filter based time-domain analysis for structural damage diagnosis with noisy signals. J. Sound Vib.

2006, 297, 916–930.
11. Ghiasi, R.; Torkzadeh, P.; Noori, M. A machine-learning approach for structural damage detection using least square support

vector machine based on a new combinational kernel function. Struct. Health Monit. 2016, 15, 302–316. [CrossRef]
12. Yam, L.H.; Yan, Y.J.; Jiang, J.S. Vibration-based damage detection for composite structures using wavelet transform and neural

network identification. Compos. Struct. 2003, 60, 403–412. [CrossRef]
13. Mehrjoo, M.; Khaji, N.; Moharrami, H.; Bahreininejad, A. Damage detection of truss bridge joints using Artificial Neural Networks.

Expert Syst. Appl. 2008, 35, 1122–1131. [CrossRef]
14. Gonzalez, M.P.; Zapico, J.L. Seismic damage identification in buildings using neural networks and modal data. Comput. Struct.

2008, 86, 416–426. [CrossRef]
15. Chun, P.J.; Yamashita, H.; Furukawa, S. Bridge Damage Severity Quantification Using Multipoint Acceleration Measurement and

Artificial Neural Networks. Shock Vib. 2015, 2015, 789384. [CrossRef]
16. Lautour, O.; Omenzetter, P. Damage classification and estimation in experimental structures using time series analysis and pattern

recognition. Mech. Syst. Signal Process. 2010, 24, 1556–1569. [CrossRef]
17. Katunin, A.; Araújo dos Santos, J.V.; Lopes, H. Damage identification by wavelet analysis of modal rotation differences. Structures

2021, 30, 1–10. [CrossRef]
18. Dackermann, U.; Li, J.; Samali, B. Dynamic-Based Damage Identification Using Neural Network Ensembles and Damage Index

Method. Adv. Struct. Eng. 2010, 13, 1001–1016. [CrossRef]
19. Zhong, K.; Teng, S.; Liu, G.; Chen, G.; Cui, F. Structural Damage Features Extracted by Convolutional Neural Networks from

Mode Shapes. Appl. Sci. 2020, 10, 4247. [CrossRef]
20. Lin, Y.Z.; Nie, Z.H.; Ma, H.W. Structural Damage Detection with Automatic Feature extraction through Deep Learning. Comput.

Aided Civ. Infrastruct. Eng. 2017, 32, 1025–1046. [CrossRef]
21. Teng, S.; Liu, Z.; Chen, G.; Cheng, L. Concrete Crack Detection Based on Well-Known Feature Extractor Model and the YOLO_v2

Network. Appl. Sci. 2021, 11, 813. [CrossRef]
22. Yi, M.W.; Samali, B. Shake table testing of a base isolated model. Eng. Struct. 2002, 24, 1203–1215.
23. Yu, Y.; Wang, C.; Gu, X.; Li, J. A novel deep learning-based method for damage identification of smart building structures. Struct.

Health Monit. 2019, 18, 143–163. [CrossRef]
24. Abdeljaber, O.; Sassi, S.; Avci, O.; Kiranyaz, S.; Ibrahim, A.A.; Gabbouj, M. Fault Detection and Severity Identification of Ball

Bearings by Online Condition Monitoring. IEEE Trans. Ind. Electron. 2019, 66, 8136–8147. [CrossRef]
25. Kiranyaz, S.; Gastli, A.; Ben-Brahim, L.; Alemadi, N.; Gabbouj, M. Real-Time Fault Detection and Identification for MMC using

1D Convolutional Neural Networks. IEEE Trans. Ind. Electron. 2018, 66, 8760–8771. [CrossRef]
26. Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using

one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [CrossRef]
27. Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Inman, D.J. Wireless and real-time structural damage detection: A novel

decentralized method for wireless sensor networks. J. Sound Vib. 2018, 424, 158–172. [CrossRef]
28. Zhang, Y.; Miyamori, Y.; Mikami, S.; Saito, T. Vibration-based structural state identification by a 1-dimensional convolutional

neural network. Comput. Aided Civ. Infrastruct. Eng. 2019, 34, 822–839. [CrossRef]
29. Nemec, S.F.; Donat, M.A.; Mehrain, S.; Friedrich, K.; Krestan, C.; Matula, C.; Imhof, H.; Czerny, C. CT-MR image data fusion for

computer assisted navigated neurosurgery of temporal bone tumors. Eur. J. Radiol. 2007, 62, 192–198. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ymssp.2006.10.002
http://doi.org/10.1002/stc.2416
http://doi.org/10.1016/0022-460X(91)90595-B
http://doi.org/10.1016/j.jsv.2014.04.056
http://doi.org/10.1006/jsvi.2001.4092
http://doi.org/10.3390/app9163376
http://doi.org/10.1111/mice.12122
http://doi.org/10.1111/mice.12528
http://doi.org/10.1002/stc.1852
http://doi.org/10.1177/1475921716639587
http://doi.org/10.1016/S0263-8223(03)00023-0
http://doi.org/10.1016/j.eswa.2007.08.008
http://doi.org/10.1016/j.compstruc.2007.02.021
http://doi.org/10.1155/2015/789384
http://doi.org/10.1016/j.ymssp.2009.12.008
http://doi.org/10.1016/j.istruc.2021.01.010
http://doi.org/10.1260/1369-4332.13.6.1001
http://doi.org/10.3390/app10124247
http://doi.org/10.1111/mice.12313
http://doi.org/10.3390/app11020813
http://doi.org/10.1177/1475921718804132
http://doi.org/10.1109/TIE.2018.2886789
http://doi.org/10.1109/TIE.2018.2833045
http://doi.org/10.1016/j.jsv.2016.10.043
http://doi.org/10.1016/j.jsv.2018.03.008
http://doi.org/10.1111/mice.12447
http://doi.org/10.1016/j.ejrad.2006.11.029
http://www.ncbi.nlm.nih.gov/pubmed/17229539


Sensors 2021, 21, 3950 21 of 21

30. Ashraf, S.; Brabyn, L.; Hicks, B.J. Image data fusion for the remote sensing of freshwater environments. Appl. Geogr. 2011, 32,
619–628. [CrossRef]

31. Tang, Z.; Chen, Z.; Bao, Y.; Li, H. Convolutional neural network-based data anomaly detection method using multiple information
for structural health monitoring. Struct. Control Health Monit. 2019, 26, e2296. [CrossRef]

32. Ernesto, G.; Maura, I. A multi-stage data-fusion procedure for damage detection of linear systems based on modal strain energy.
J. Civil Struct. Health Monit. 2014, 4, 107–118.

33. Teng, S.; Chen, G.; Gong, P.; Liu, G.; Cui, F. Structural damage detection using convolutional neural networks combining strain
energy and dynamic response. Meccanica 2019, 55, 945–959. [CrossRef]

34. Huo, Z.; Zhang, Y.; Shu, L. Bearing Fault Diagnosis using Multi-sensor Fusion based on weighted D-S Evidence Theory. In
Proceedings of the 2018 18th International Conference on Mechatronics-Mechatronika (ME), Brno, Czech Republic, 5–7 December
2018; pp. 1–6.

35. Li, J.; Zhu, X.; Law, S.S. A two-step drive-by bridge damage detection using Dual Kalman Filter. Int. J. Struct. Stab. Dyn. 2020, 20,
2042006. [CrossRef]

36. Ying, L.; Feng, C.; Zhou, H. An algorithm based on two-step Kalman filter for intelligent structural damage detection. Struct.
Control Health Monit. 2015, 22, 694–706.

37. Xing, S.T.; Marvin, W. Application of substructural damage identification using adaptive Kalman filter. J. Civ. Struct. Health Monit.
2013, 4, 27–42. [CrossRef]

38. Sen, S.; Bhattacharya, B. Online structural damage identification technique using constrained dual extended Kalman filter. Struct.
Control Health Monit. 2017, 24, e1961. [CrossRef]

39. Lai, Z.; Lei, Y.; Zhu, S. Moving-window extended Kalman filter for structural damage detection with unknown process and
measurement noises. Measurement 2016, 88, 428–440. [CrossRef]

40. Al-Hussein, A.; Haldar, A. Novel Unscented Kalman Filter for Health Assessment of Structural Systems with Unknown Input. J.
Eng. Mech. 2015, 141, 04015012. [CrossRef]

41. Huo, Z.; Miguel, M.G.; Zhang, Y. Entropy Measures in Machine Fault Diagnosis: Insights and Applications. IEEE Trans. Instrum.
Meas. 2020, 69, 2607–2620. [CrossRef]

42. Nie, Z.; Ngo, T.; Ma, H. Reconstructed Phase Space-Based Damage Detection Using a Single Sensor for Beam-Like Structure
Subjected to a Moving Mass. Shock Vib. 2017, 2017, 5687837. [CrossRef]

43. Scherer, D.; Müller, A.; Behnke, S. Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In
Proceedings of the International Conference on Artificial Neural Networks, Thessaloniki, Greece, 15–18 September 2010.

44. Huang, J.; Li, D.; Zhang, C. Improved Kalman filter damage detection approach based on lp regularization. Struct. Control Health
Monit. 2019, 26, e2424. [CrossRef]

http://doi.org/10.1016/j.apgeog.2011.07.010
http://doi.org/10.1002/stc.2296
http://doi.org/10.1007/s11012-019-01052-w
http://doi.org/10.1142/S0219455420420067
http://doi.org/10.1007/s13349-013-0054-3
http://doi.org/10.1002/stc.1961
http://doi.org/10.1016/j.measurement.2016.04.016
http://doi.org/10.1061/(ASCE)EM.1943-7889.0000926
http://doi.org/10.1109/TIM.2020.2981220
http://doi.org/10.1155/2017/5687837
http://doi.org/10.1002/stc.2424

	Introduction 
	Materials and Methods 
	Numerical and Experimental Models 
	1-D Convolution Neural Network 
	Structural Damage Detection 

	Results and Discussion 
	Detection Results of the Numerical Model 
	Detection Results of the Experimental Model 

	Conclusions 
	
	References

