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Abstract: Food texture is one of the important quality indicators in foodstuffs, along with appearance
and flavor, contributing to taste and odor. This study proposes a novel magnetic food texture sensor
that corresponds to the tactile sensory capacity of the human tooth. The sensor primarily consists
of a probe, linear slider, spring, and circuit board. The probe has a cylindrical shape and includes a
permanent magnet. Both sides of the spring are fixed to the probe and circuit board. The linear slider
enables the smooth, single-axis motion of the probe during food compression. Two magnetoresistive
elements and one inductor on the circuit board measured the probe’s motion. A measurement system
then translates the measurement data collected by the magnetoresistive elements into compression
force by means of a calibration equation. Fundamental experiments were performed to evaluate
the range, resolution, repetitive durability of force, and differences in the frequency responses.
Furthermore, the sensor was used to measure seven types of chicken nuggets with different coatings.
The difference between the force and vibration measurement data is revealed on the basis of the
discrimination rate of the nuggets.

Keywords: food texture; force; vibration; magnetoresisitive; magnetic sensor

1. Introduction

Food texture is an important quality indicator in foods, alongside factors such as
appearance, taste, and odor [1–4]. Szczesniak defines texture as a sensory property aris-
ing from the response of the tactile senses to physical stimuli, and is a multi-parameter
attribute [5]. In order to evaluate food attributes, it is necessary to establish the physical
characteristics that occurred during the compression or fracture of given foodstuffs.

In terms of the evaluation of food attributes, texture profile analysis (TPA) has been
widely used for various foods. Working within the TPA framework, Szczesniak divided
the mechanical characteristics of physical properties into five basic parameters, namely:
hardness, cohesiveness, viscosity, springiness, and adhesiveness [6–8]. These parameters
were determined on the basis of measurement data and force versus time, and consist
of two time compression and decompression curves. Fracturability is also determined
from measurement data and entails a rapid drop in force. In general, instruments used
for TPA measure the force by load cell at low sampling frequencies of up to 100 Hz.
Hence, instruments with only load cells are insufficient for textures such as crispness and
crunchiness with fracturing. As these qualities are popular in many countries [9], a novel
texture sensor design is needed in order to measure the details of fractures.

Various studies have proposed methods and devices to measure the vibrations that
occur during fractures. Vibration data are suitable for the evaluation of detailed textures,
especially crispness and crunchiness [10]. Chen et al. analyzed the crispness of biscuits
by means of an acoustic envelope detector [11]. Meanwhile, Varela et al. revealed that the
crispness of almonds had a high correlation with the number of vibrations and height of
the vibration peaks [12]. Taniwaki et al. developed a measurement system equipped with
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a piezoelectric sensor and analyzed measurement data using the fast Fourier transforma-
tion [13]. Taniwaki et al. also assessed the correlation between mechanical and acoustic
characteristics [14]. In measuring the crispness of commercial potato chips, Salvador et al.
employed a load cell and microphone and measured force and sound data, which were
then subjected to a principal component analysis [15]. Akimoto et al. evaluated the wet
crisp texture of fruits based on vibration, which they measured using a device with a free-
running probe [16]. In turn, Sakurai et al. developed a measurement system for vertical and
horizontal vibrations, which comprised a swingarm device with multiple accelerometer
sensors that measured the vibration without the use of electric actuators [17].

The abovementioned studies revealed the importance of vibration for evaluating food
texture. However, the evaluation of texture by means of both force and vibration is not a
common practice by food manufacturers. We consider there to be two key problems in
this area. One is that there is no standardized evaluation method for food texture. If there
is sufficient measurement data, artificial intelligence-utilizing techniques may solve this
problem. Neural networks have been used to estimate food texture in terms of crispness
and crunchiness based on force and acoustic signals [18]. The other issue is that there is
no standard sensor for simultaneously measuring force and vibration. A standard sensor
could constitute an integrated-type device equipped with force and vibration sensors,
for instance.

In this study, we propose a novel magnetic food texture sensor that corresponds to the
tactile sense of the human tooth. We developed a magnetic food texture sensor that imitated
the structure of part of the tooth [19]. A urethane elastomer within the sensor was adopted
as the periodontal ligament beneath the tooth. However, the elastomer had low repetitive
durability. Therefore, we redesigned it to have higher durability. The new sensor primarily
consists of a probe, linear slider, spring, and circuit board. The probe is cylindrical in shape
and includes a permanent magnet. Both sides of the spring are fixed to the probe and
circuit board. The linear slider enables the smooth, one-axis motion of the probe during
food compression. Two magnetoresistive (MR) elements and one inductor on the circuit
board were used to measure the probe’s motion. The usage of the MR element and inductor
is based on the report that the periodontal ligament, which is under human and animal
teeth, has two types of mechanoreceptors with different response characteristics [20]. The
slowly adapting type has a function to produce sustained responses to static stimulation
by force. The rapidly adapting type produces transient responses to the onset and offset
of stimulation by vibration. The MR elements and the inductor in the texture sensor have
roles of slowly adapting and rapidly adapting, respectively. With respect to sensors using
a magnet, various tactile sensors were proposed [21–23]. They focused on the softness of
robotic skin and used soft materials as a probe or surface layer. One of their advantages
was a wireless structure between the deformation part and measurement part by using the
magnet. The texture sensor in this study has a common advantage of the wireless structure
and has a structural difference using the probe made from hard material, the linear slider,
and the spring. In the following section, the structure and calibration method of the sensor
are described. Fundamental experiments were performed to evaluate the sensor’s range,
resolution, repetitive durability, and frequency response. Moreover, the sensor is used to
measure seven types of chicken nuggets with different coatings. The difference between
the force and vibration measurement data is then revealed based on the discrimination rate
of these.

2. Materials and Methods
2.1. Magnetic Food Texture Sensor
2.1.1. Structure

The texture sensor developed for this study comprised four main components: A
probe, linear slider, spring, and circuit board. A cross-sectional view of the probe from the
perspective of the center is shown in Figure 1. The probe, which is made of acrylonitrile-
butadiene-styrene resin and produced by a 3D printer, has a cylindrical shape, a diameter
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of 10 mm and length of 33 mm, and contains a permanent magnet. The top and bottom
surfaces of the probe are flat. The weight of the probe is 2.5 g. Below the probe is an
industrial spring, both ends of which are fixed to the bottom of the probe and top of the
base plate. The linear slider (LM10UU, THK Co., Tokyo, Japan) has a ball bearing on
the inner surface and enables smooth vertical movements of the probe, as is displayed in
Figure 1. The circuit board is adhered to the base plate and an inductor (LQH43NN242K03L,
Murata Manufacturing Co., Kyoto, Japan)is soldered to it below the probe, and two MR
elements (AA003-02E, NVE Co., Minneapolis, MN, USA) are also soldered onto each side
of the inductor. The texture sensor is fixed to a motorized slider with a vertical inversion
capacity. The motorized slider compresses or breaks food at the tip of the probe. When this
occurs, the strength of the magnetic field with respect to the MR elements and inductor
changes as the probe displaces in the direction of the arrow shown in Figure 1. The output
voltage of the MR elements is proportional to the strength of the magnetic field. The
inductor generates an induced electromotive force that is proportional to the change in the
magnetic flux density in accordance with Faraday’s law of electromagnetic induction. The
texture sensor has a wireless structure between the probe and the sensor elements. This
structure has two advantages. First, the MR elements and inductor measure the motion of
the probe as the change of the magnetic field without joints and wire. Second, it is easy
to clean the sensor. Most food includes moisture and oil. As this structure separates the
probe from the sensor elements by the circuit board, there is no need to clean or replace the
sensor elements.

Figure 1. Cross-sectional view of the texture sensor.

2.1.2. Amplifier and Quantization Circuit

Depending on the displacement of the probe, the MR element and inductor output
static and dynamic voltages, respectively, relative to the strength of the magnetic field. As
the range of these voltage changes is small, the amplifier circuit amplifies the voltages of
the MR elements and inductor by 59.4 times and 5940 times, respectively. Due to the usage
of an inversion amplifier, the range of the amplified output of the MR element is from 3.8
to 1.0 V. Subsequently, a low-pass filter with a cutoff frequency of 4.8 kHz removes both
the random noise and aliasing noise of those voltages. The noise-removed voltages are
then converted into digital data by a microcomputer equipped with an AD conversion port.
The sampling frequency of the measurement is 10 kHz. The measurement data is then
transmitted to a desktop computer via the communication port of the microcomputer and



Sensors 2021, 21, 3310 4 of 14

USB cable. A prototype of this unit is shown in Figure 2. The right side of Figure 2 shows
the probe and linear slider. The left side of Figure 2 displays the amplifier and quantization
circuit. The circuit board integrates these components.

Figure 2. Prototype of the texture sensor. The circuit board includes an amplifier circuit and a
microcomputer with AD conversion ports.

2.1.3. Calibration and Range of Force

As the probe is supported by the spring, its displacement is proportional to the force
acting on the probe’s tip. The relationship between the displacement and voltages of the
MR elements is not linear. Hence, Equation (1) was determined by trial and error by adding
low-order terms and a constant term based on Coulomb’s law, as a calibration equation,
calculates the force F acting on the texture sensor’s probe:

F = a0 +
a1

v1
+

a2

v2
1
+

a3

v2
+

a4

v2
2

(1)

where ai(i = 0, . . . , 4) are coefficients determined by a calibration, and v1 and v2 are the
amplified voltage of the MR elements. In order to acquire the calibration data, determine
the compression length of the spring from the target force range, divide the length was
determined, then divided into 20 equal lengths, and measure the combination of the
force and the voltages of the MR elements at each compression length measured. The
reference force was measured by a load cell. The parameters of the calibration equation
were determined by means of the least-squares method using the calibration data.

We changed the force range of the texture sensor by using springs with different
spring constants. Therefore, four types of springs, 5.9, 24.52, 42.85, and 85.81 N/mm, were
used to construct the texture sensor, which were termed S6, S25, S43, and S86, respectively.
Assuming that each spring was compressed by 3 mm in S6, S25, and S43, and 2 mm in S86,
the force ranges of the texture sensor of S6, S25, S43, and S86 from each spring constant
were estimated to be 17.7, 73.56, 128.55, and 171.62 N, respectively.

Figure 3 shows a typical calibration result of the texture sensor using S25. In the
calibration process, the measurement system obtained the data set of the reference force by
the load cell and the output voltages by the texture sensor during the 2.5 mm pushing and
0.6 mm pulling and determined the coefficients of Equation (1). The root mean squared
error was 0.41 N and the determination coefficient R2 was 0.999. By using Equation (1), the
calibration with a low error was possible.
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Figure 3. Typical calibration result (n = 160). The positive and negative forces indicate the force
during pushing and pulling, respectively. The red line shows the approximation line.

2.2. Measurement System

A measurement system is shown in Figure 4 and primarily consists of a texture sensor,
motorized slider, stand mount, motor driver, control board, and desktop computer. The
motorized slider (LEY16DA, SMC Co., Tokyo, Japan) is fixed to the stand mount and
connected to the desktop computer via the motor driver (LECPAN1, SMC Co., Tokyo,
Japan) and control board (SMC-4DL-PE, Contec Co., Osaka, Japan). The operation of the
motorized slider is controlled by commands from the computer. The bottom-up texture
sensor attaches to the electric slider and the texture sensor then compresses or breaks up
the food in accordance with the slider’s movement.

Figure 4. Measurement system for the texture sensor.

2.3. Distance between the Measured Data Points

The measurement data of the force and vibration by the texture sensor are time series
data. In order to quantify the difference between the measurement data and the data to
be compared in the experiment, the dynamic time warping (DTW) distance was used [24].
The DTW enables temporal expansion and contraction and determines the correspondence
between data elements, minimizing the distance between the time series data. As the data
measured by the texture sensor varies over time depending on the individual samples,
the DTW distance is more suitable than the Euclidean distance for evaluating differences
between the data. In the experiment, the sample was compressed twice. In this case,
the force data was the waveform of two peaks, and the DTW could then calculate the
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appropriate DTW distance by associating the tops of these with each other. On the other
hand, as the vibration data is a waveform consisting of many pulses, the DTW could not
be applied as it was. Therefore, the DTW was applied to the data obtained by converting
multiple pulses into a waveform with several peaks through the sum of the movements.
In order to calculate the DTW distance from each set of measurement data, the data to be
compared was required. In the experiment, the texture sensor analyzed seven kinds of
chicken nuggets, and the average data from each kind was taken as the data to be compared.
DTW barycenter averaging (DBA) is an algorithm that determines the average of multiple
time series data points [25]. The average data profile for each type of chicken nugget was
determined by means of the DBA. The DTW distance between the measurement data
and the average indicates the degree of dissimilarity between them. Hence, the DTW
distance can be used to ensure that the texture sensor measures the same type of sample as
similar waveforms.

2.4. Preparation of the Chicken Nuggets

We prepared seven types of chicken nuggets with different coatings to be used as
the food samples. The chicken nuggets have the same meat paste inside. Since we can
design the mix of the coating and the texture sensor measures mainly the difference among
the coatings, we used chicken nuggets. Hereinafter, the seven kinds are referred to as
C1 through C7. The main ingredient was ground chicken leg meat. A food processor
rendered meat paste from the leg meat, and a mixed seasoning was then applied. All of the
nuggets were composed of the same meat paste. The paste was placed in molds to create a
uniformly cylinder nugget shape and then frozen at −40 ◦C. A mold-shaped nugget had a
size of 47 × 12 mm (in diameter and thickness) and weighed 20 g. Seven different mixtures
of a batter coating developed with flour were then coated onto the mold-shaped nuggets.
Three of the seven nugget samples were coated with breader breadcrumbs. Table 1 presents
the materials of the batter coating and breaders. After being coated, the nugget samples
were frozen at −40 ◦C. Table 2 compares texture sensations of seven chicken nuggets. We
prepared 20 samples for one kind of chicken nugget. In an experiment, all of the samples
were fried in vegetable oil at 180 ◦C for 3 min; their force and vibration were then measured
after a waiting period of 6 min at the room temperature. Table 3 presents the mean and
standard deviations of the coating thicknesses. Since these coatings have different physical
parameters, the texture sensor measures the difference as measurement data.

Table 1. Materials of the batter and breader mixes. The unit is g.

Materials of the Batter Mix C1 C2 C3 C4 C5 C6 C7

Wheat flour 70 80 40 20 80 80 10
Acetylated oxidized starch 30 10 25 0 20 20 0
Acid-treated starch 0 0 0 20 0 0 0
Oxidized starch 0 0 0 30 0 0 30
Pregelatinized cornstarch 0 0 0 0 0 0 20
Distarch phosphate 0 0 35 30 0 0 40
Dextrin 0 10 0 0 0 0 0
Paprika pigment 0.4 0.4 0.4 0.4 0.4 0.4 1
Leavening agent 0 0 0 0 0.3 0.3 0
Xanthan gum 0 0 0 0 0 0 0.1
Cold water 120 120 100 100 140 140 140

Materials of the Breader Mix C1 C2 C3 C4 C5 C6 C7

Wheat flour 90 60 - - - 0 -
Pregelatinized cornstarch 0 20 - - - 100 -
Distarch phosphate 0 20 - - - 0 -
Fat powder 10 0 - - - 0 -
Leavening agent 0.2 0 - - - 0 -
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Table 2. Texture sensations of seven chicken nuggets. Compared among nuggets, they were roughly
evaluated when blending materials of coating.

Index of Nuggets Texture Sensations

C1 Less both crispness and crunchiness in samples
C2 Repetitive crunchiness with a relatively weak force
C3 Continuous crispness with a relatively strong force
C4 Repetitive crunchiness with a relatively strong force
C5 Short crispness with a relatively weak force
C6 Continuous crispness with a relatively weak force
C7 Short crispness with a relatively strong force

Table 3. Mean and standard deviations of the thickness of the fried nuggets’ coatings. Different letters (a–c) indicate
significant differences (p < 0.05) among the samples (n = 20).

C1 C2 C3 C4 C5 C6 C7

Thickness mm 2.8 ± 0.5 a 3.2 ± 0.5 b 2.1 ± 0.3 c 2.6 ± 0.5 a 1.9 ± 0.4 c 3.3 ± 0.4 b 2.4 ± 0.5 ac

3. Experiments and Results
3.1. Fundamental Evaluation of the Magnetic Food Texture Sensor
3.1.1. Range

We performed experiments in order to check the texture sensor’s force range. In one
experiment, the motorized slider pushed the probe against an acrylic plate suitably placed
on the measurement system. As the distance pushed from the contact state of the probe was
2 mm, this corresponds to a displacement of the probe by 2 mm. After this displacement,
the motorized slider moved the texture sensor upwards until it was separated from the
plate. The texture sensor then measured the force during the motorized slider’s motion.
Figure 5 shows the force measured by the texture sensors, from S6 to S86. The vertical axis
represents the force calculated using the calibration formula, whereas the horizontal axis
represents the time. It took about 0.5 s from the start of pushing until the probe separated
from the plate. The maximum forces of each texture sensor were reached at about 0.25 s,
at which point the forces were about twice the spring constant. After separating from the
plate, S86 gradually approached 0 N, which indicates that it takes time for the spring to
return to its natural length. Therefore, this result reveals that the response characteristics of
S86 are not good. On the other hand, the other three sensors returned to 0 N at 0.5 s.

Figure 5. Force measured based on the 2 mm displacement of the probe of the four texture sensors
equipped with different springs.
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3.1.2. Resolution

As in the previous section, the texture sensor’s probe was pushed against the acrylic
plate by the motorized slider. Initially, the texture sensor was pushed 1 mm from its contact
state with the plate and force measured for 1 s. Then, additional pushes of 0.02 mm were
made and measured for 1 s a further five times. As a typical result, the relationship between
the pushed length of S43 and the force is displayed in Figure 6. Based on the measured
force, the mean and standard deviation of the force at each pushed length, and the mean of
the differences in force caused by the 0.02 mm displacement of the probe, were calculated.
The results are summarized in Table 4. According to Figure 6, the force linearly changed
with the 0.02 mm displacement. Moreover, the error bars of adjacent forces did not overlap,
and this tendency was the same for other sensors with different spring constants. With
respect to the mean of the force differences induced by the 0.02 mm displacement of the
probe shown in Table 4, it was observed that the larger the spring constant, the larger the
mean. However, the means of force difference of each texture sensor were smaller than
twice their standard deviations. This indicated that the resolution of the texture sensor was
smaller than the force difference caused by the 0.02 mm displacement of the probe, which
was less than 1% of the force range assumed in Section 2.1.3.

Figure 6. Relationship between the pushed length and the force of S43.

Table 4. Mean and standard deviations of the force at each pushed length and mean of the difference in force caused by the
probe’s 0.02 mm displacement. Each force had significant differences (p < 0.05) among forces in the same row (n = 10).

Sensor
Mean and Standard Deviation of Force in 1 s Intervals

Mean of Difference
1.00 mm 1.02 mm 1.04 mm 1.06 mm 1.08 mm 1.10 mm

S6 7.41 ± 0.05 7.56 ± 0.05 7.71 ± 0.05 7.84 ± 0.05 7.96 ± 0.05 8.17 ± 0.05 0.15
S25 29.17 ± 0.19 29.61 ± 0.19 30.30 ± 0.19 30.80 ± 0.18 31.57 ± 0.18 32.12 ± 0.18 0.59
S43 45.26 ± 0.20 45.93 ± 0.20 46.74 ± 0.19 47.49 ± 0.20 48.21 ± 0.20 48.88 ± 0.20 0.72
S86 79.54 ± 0.31 80.25 ± 0.32 81.60 ± 0.31 82.63 ± 0.30 83.94 ± 0.31 85.54 ± 0.32 1.20

3.1.3. Durability for Repetition

Each texture sensor from S6 to S86 was pushed against the plate by the motorized
slider, displacing the probe by about 1.5 mm, after which the force was measured; then, the
motorized slider lifted the texture sensor by 1.5 mm to return it to the contact state. This
process of operation and measurement was repeated 1000 times. Figure 7 shows the forces
measured the 1st, 5th, 10th, 50th, 100th, 500th, and 1000th times. The horizontal axis of the
graph is logarithmic. According to Figure 7, it was confirmed that the force did not change
in a particular direction over 1000 repetitions and remained almost constant.
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Figure 7. Representative force measured out of 1000 times by the four texture sensors.

3.1.4. Differences in the Frequency Response

In order to confirm the differences in response between the MR element and inductor,
a vibration generator periodically displaced the probe of the texture sensor. Vibrations were
made in the 1–2000 Hz frequency. Figure 8 shows the relationship between the frequency
and amplitude in terms of the voltage of the MR element and inductor of the texture sensor
with S43. As the vibration generator had a constant ampere for generating the vibrations,
the amplitude of the vibration length decreased. This decrease in vibration amplitude is
reflected in the decrease in the amplitude of the MR element, which began to decrease
from 10 Hz and was almost 0 at 200 Hz. On the other hand, the amplitude of the inductor
gradually increased from 10 Hz, reaching a maximum value of 3.5 V at 50 Hz; it was about
0.17 V at 500 Hz and 0.11 V at 1000 Hz. As the noise of the inductor voltage, when there
was no displacement in the probe, was about 0.02 V, the result means that even a vibration
of 1000 Hz could be measured. Comparing the MR element and inductor, the frequency
responses differed and the MR element sensitively responded to frequencies of 100 Hz or
less and the inductor to frequencies of 10 Hz or more and 1000 Hz or less.

Figure 8. Relationship between the frequency and amplitude in terms of the voltage of the MR
element and inductor in the vibration range from 1–2000 Hz.
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3.2. Analysis of Measurement Data of Chicken Nuggets
3.2.1. Measurements

The system used to measure the nugget samples operated using two-time compres-
sions. The degree of compression was 90%. The number of samples of each type of chicken
nugget was 20, and a total of 140 measurements were conducted. The typical force and
vibration data of the seven nugget samples are shown in Figure 9. With respect to the force,
the first peak indicates the response to the first compression and expresses the difference
of the coating. The second peaks in Figure 9 show almost the same height because the
coatings have broken by the first compression and the second one mainly compressed
the meat. If a coating of the sample had many small fractures from the compression, the
waveform of the first peak was repeated over small ups and downs, e.g., C3, C4, C6, and
C7. The higher first peak indicates the harder coating, e.g., of C3, C4, and C7. With respect
to the vibration, the number of voltage spikes refers to the number of vibrations, and their
heights represent the intensities of the vibrations. The C3, C4, and C7 samples featured
many vibrations. In particular, the vibration of C3 was large, which indicates that large
fractures occurred. The measurement data of each sample show the differences in the
respective textures of the nugget coatings.

3.2.2. Difference in the Measurement Data

First, the average data for each kind of nugget were calculated on the basis of the
measurement data. Second, the DTW distances between the seven average data and all
measurement data were determined by a round-robin protocol. It was expected that the
DTW distance between the average data and measurement data of nuggets with the same
coating would be lesser. Third, for some of the measurement data, the percentages were
calculated for when the DTW distance in the average data for nuggets with the same
coating was least compared to the DTW distances for the average data of other nuggets
with different coatings. Confusion matrixes of force and vibration are shown in Figure 10.
F1 scores of each nugget sample are also presented in Table 5. For force, all nuggets except
C2 and C6 had F1 scores above 0.5, and the mean of the percentage in the lower-right corner
of Figure 10a exceeded 50%. For vibration, only C4 and C7 had F1 scores higher than 0.5,
while the others had F1 scores lower than 0.5. The mean of the percentage in the lower-left
corner of Figure 10b was also lower than 50%. The average data of force captured the
features of each coating better than those of vibration.

(a) C1 (b) C2 (c) C3 (d) C4

(e) C5 (f) C6 (g) C7
Figure 9. Typical force and vibration data of seven nugget samples.
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(a) Force (b) Vibration
Figure 10. Confusion matrixes of force and vibration. The numbers and percentages were calculated for when the DTW
distance in the average data for nuggets with the same coating was least compared to the DTW distances for the average
data of other nuggets with different coatings. The green number indicates the percentage which the nugget index number
with the least DTW distance and the nugget index number of the average data matched. The red numbers indicate the
percentages that did not match.

Table 5. F1 scores of each nugget sample in Figure 10.

C1 C2 C3 C4 C5 C6 C7

Force 0.61 0.27 0.52 0.59 0.60 0.40 0.51
Vibration 0.48 0.47 0.31 0.56 0.43 0.39 0.53

4. Discussion

In this study, we developed a magnetic food texture sensor to simultaneously measure
force and vibration occuring by means of a probe. Using the prototype texture sensor, we
conducted a series of fundamental experiments to confirm the range, resolution, repetitive
durability of force, and frequency response. As Figure 5 shows, we confirmed the force
range of 10, 50, 80, and 150 N using four types of springs. These ranges correspond to, for
instance, sliced apples, raw green beans, raw pears, and raw carrots [1]. We can employ
the texture sensor’s full range by appropriately replacing the spring on the basis of the
object’s hardness. The spring of the texture sensor is composed of plated iron and affects
the magnetic field generated by the permanent magnet it contains. As the texture sensor
was calibrated to include the effect of the spring on the magnetic field, it is considered that
stable force measurement was even possible with the magnetic spring.

In the experiment conducted for the resolution, we confirmed the force and its error
by means of repetitive pushes of 0.02 mm. The resolutions of the four texture sensors were
less than 1% of the force range, and the error was less than the resolution. The force was
calculated from the voltages of the two MR elements using Equation (1). As the noise in
the voltage was small, the texture sensor had a small resolution. Even if the texture sensor
is equipped with a spring with a high spring constant, the common AD conversion ports in
the circuit board ensure that the resolution is almost constant, as the AD conversion ports
in the circuit board are common. This means that we can estimate the resolution of the
force when replacing the spring.
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With respect to repetitive durability, as Figure 7 displays, the force was almost constant,
with virtually no tendency to modulate up and down over 1000 repetitions of pushes.
This indicates that each sensor had sufficient durability for at least 1000 uses. However,
1000 tests are not enough for industrial applications, and for this about 10,000 tests will be
required. As the guaranteed number of compressions of the spring is 300,000, the texture
sensor could continue the measurement for 10,000 repetitions, but the durability of the
other components is not guaranteed. For instance, the probe was produced by a 3D printer,
and it may break after 1000 repetitions. Furthermore, the shape of the texture sensor’s
probe generally depends on the object of measurement. The probe used in this study
is cylindrical in shape, but wedge-shaped or wide and flat surfaces could be required.
Further confirmation of durability is therefore needed, including probes with shapes other
than cylindrical.

The texture sensor features two different elements. As shown in Figure 8, the MR ele-
ment responds with high sensitivity to frequencies of 100 Hz or less, whereas the inductor
responds to frequencies of 10–1000 Hz. As the instruments used in TPA mainly feature load
cells for measuring force, they are limited to measurements in the low-frequency band, such
as the MR element in this study. On the other hand, the texture sensor described herein
measures the displacement and vibration generated in a probe with different elements.
Some researchers have suggested the presence of rapidly adapting mechanoreceptors in the
periodontal ligament [20,26]. The range of their response frequencies has not been reported,
but when referring to the response frequencies of rapidly adapting mechanoreceptors in
the skin, Bolanowski et al. reported that the high-frequency range for the perception of
vibration was from 40 to 500 Hz [27]. The inductor of the texture sensor satisfied this range.
The frequency response of the inductor was considered suitable for measuring textures
with sudden fractures, such as arising from crispness and crunchiness qualities. In order
to evaluate fracturing textures, the combination of the MR element and the inductor will
be important.

To confirm the effectiveness of the texture sensor for the measurement of food, seven
kinds of chicken nuggets with different coatings were evaluated. As is shown in Figure 9,
there was some difference in the waveforms of force and vibration, but only on the basis
of differences in the coatings. Although the TPA only determines the physical properties
from the force data, it is considered difficult to evaluate textures because each sample has
individual differences. In this study, the average data on force and vibration for each type
of nugget was determined by means of DBA, and the DTW distance between the average
data and measured data was then calculated. As Figure 10 indicates, the DTW distance
between the average data and measured data of the same kind was least at the highest
percentage of 75% and the lowest of 20%. The mean percentages were 51.4% and 45.7%
for the force and vibration, respectively, which means that about half of the samples could
be discriminated when the DTW distance was used as an evaluation value. In Table 5,
the force F1 scores of C1, C3, and C5 were higher than the vibration, and vice versa for
C2. The others differed below 10 in terms of F1 score of force and vibration. This result
indicates that C1, C3, and C5 are better characterized by force data than vibration, and vice
versa for C2. In other words, the texture sensor that simultaneously measures force and
vibration captured different features of the textures of the coatings. In this experiment, the
evaluation was performed on the basis of the DTW distance, as the distance between the
two sets of data was calculated after expanding and contracting in the time direction and
aligning the peaks. As this is a rough comparison though, we would like to analyze and
compare the area of force and the numbers and heights of the vibration spikes in greater
detail in future research.

The main limitations of this study are as follows. The durability over 1000 repetitions
was investigated, but durability beyond this number and in accordance with aging could
not be evaluated. In order to quantify the features of the force and vibration, we employed
the DTW distance. Moreover, other features should be used, e.g., physical quantities and
the geometrical features of the waveform. The experiment dealt only with chicken nuggets
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with different coatings. The experimental results also depend on only the cylindrical probe.
However, it would be necessary to further evaluate the texture sensor for a wide range of
targets that also generate vibration, such as potato chips and crackers.

5. Conclusions

In this study, we developed a magnetic texture sensor equipped with an industrial
spring, a linear slider, and magnetic components. The range, resolution, repeatability
of force, and difference in the frequency response of the MR element and inductor were
evaluated via a set of experiments, and we outlined the texture sensor’s basic characteristics.
Moreover, the texture sensor measured seven kinds of chicken nuggets with different
coatings, and we confirmed that it was effective for capturing the features of the different
coatings on the basis of force and vibration data. In future research, we will develop a
method for texture evaluation based on both force and vibration data.
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