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Abstract: Radiation-related tissue injuries after medical radiation procedures, such as fluoroscopically
guided intervention (FGI), have been reported in patients. Real-time monitoring of medical radiation
exposure administered to patients during FGI is important to avoid such tissue injuries. In our
previous study, we reported a novel (prototype) real-time radiation system for FGI. However, the
prototype sensor indicated low sensitivity to radiation exposure from the side and back, although it
had high-quality fundamental characteristics. Therefore, we developed a novel 4-channel sensor with
modified shape and size than the previous sensor, and evaluated the basic performance (i.e., measured
the energy, dose linearity, dose rate, and angular dependence) of the novel and previous sensors. Both
sensors of our real-time dosimeter system demonstrated the low energy dependence, excellent dose
linearity (R2 = 1.0000), and good dose rate dependence (i.e., within 5% statistical difference). Besides,
the sensitivity of 0◦ ± 180◦ in the horizontal and vertical directions was almost 100% sensitivity for the
new sensor, which significantly improved the angular dependence. Moreover, the novel dosimeter
exerted less influence on X-ray images (fluoroscopy) than other sensors because of modifying a small
shape and size. Therefore, the developed dosimeter system is expected to be useful for measuring the
exposure of patients to radiation doses during FGI procedures.

Keywords: developed dosimeter system; disaster medicine; fluoroscopically guided intervention;
multi-channel sensor; medical radiation dose; radiation skin injuries; real-time radiation sensor

1. Introduction

Radiation-related tissue injuries after medical radiation procedures, such as fluoroscopically
guided intervention (FGI), have been reported in patients [1–14]. In addition, these procedures are
often performed repeatedly [4]. Thus, real-time monitoring of medical radiation exposure administered
to patients during FGI is important to avoid such tissue injuries. [15–20].

The International Commission on Radiological Protection (ICRP) provided recommendations
concerning optimizing patient doses using diagnostic reference levels (DRLs) because of increasing
concerns about skin radiation dose levels in FGI [2]. Furthermore, the ICRP has provided importance to
monitor, in real-time, whether the threshold doses for tissue reactions are being approached or exceeded
for radiation protection during FGI [3]. To protect radiation-related tissue injuries, the maximum
radiation tissue dose (MTD) measurement in real-time is essential.

Currently, the passive dosimeters (including thermoluminescent dosimeters (TLDs),
radiophotoluminescence glass dosimeters (RPLDs), and optically stimulated luminescence dosimeters
(OSLDs)) do not measure and monitor radiation doses in real-time [21,22]. On the other hand, although
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there are skin dose monitors (SDM; McMahon Medical, Los Angeles, California, USA) and patient
skin dosimeters (PSD; Unifors Co., Ltd., Billadal, Sweden) as real-time dosimeters, the SDM (only a
single channel sensor) sensor has been a toxic substance and sales stop, and the PSD sensor (3-channel
sensors), using a semiconductor, has been markedly visible on fluoroscopic images [22–24]. Thus,
no feasible real-time dosimeter with a multi-channel sensor is available for FGI procedures. Therefore,
we developed a novel radiation dosimeter with 4-channel real-time sensors. In this study, we evaluated
the usefulness of the developed real-time radiation dosimeter systems.

2. Materials and Methods

2.1. 4-Channel Real-Time Dosimeter System

Previously, we reported a photoluminescence real-time radiation dosimeter system using a red
emission phosphor (Y2O2S: EU, SM) with 4-channel nontoxic sensors for real-time monitoring of patient
MTD during FGI procedures [23–26]. Our developed, previous radiation sensor has demonstrated low
sensitivity to radiation from the side and back, although it had a marginal influence on X-ray images
and high-quality fundamental characteristics [25,26]. Thereby, in this study, we have significantly
improved the previous radiation sensor regarding the angular dependence by modifying the shape of
the phosphor from a disk to a circular cone (Figures 1 and 2). Our novel real-time radiation system
consists of a maximum of 4-channel nontoxic phosphor sensors, an optical fiber cable for 2.5 m,
a photodiode, and a digital display that indicates the radiation dose value, such as cumulative absorbed
dose (mGy) and absorbed dose rate (mGy/min) (Figures 3 and 4). The maximum 4-channel sensors can
measure the MTD by sticking to a patient’s skin undergoing FGI, whereas the SDM has only a single
sensor. Moreover, the novel dosimeter does not need to process the annealing (pre-processing) or
readout operation (post-processing), such as the TLDs, RPLDs, and OSLDs. Consequently, we expect
the widespread use of our novel dosimeter system for patient MTD measurement during FGI.
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2.2. Dosimeter Response Characteristics

The present study evaluated the basic characteristics of the newly developed 4-channel sensors,
such as uniformity and reproducibility among four sensors, energy-, dose-, and dose rate-dependence.
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An X-ray system for irradiation was used, the DHF-155H (Hitachi, Tokyo, Japan). To compare the
radiation dose measurement of our novel sensors, we used our previous sensor and the SDM. A 6-mL
thimble ion chamber (model 9015, Radcal Corporation, Monrovia, California, USA) was used as a
reference dosimeter, and was calibrated at Japan Quality Assurance Organization (JQA; Tokyo, Japan)
in a secondary standard irradiation field. The geometric arrangement of our manner was a distance of
100 cm from the source of the X-ray tube to the measurement dosimeter in free air. The irradiation field
was 20 cm in diameter on the surface of the dosimeters.

The uniformity of the novel four sensors was carried out without the calibrated factor at fixed
positions and at the same time for each measurement; these placed at approximately 2 cm intervals.
The reproducibility was sequentially executed by relocating each of the four sensors. The X-ray
conditions of these experiments used 80 kV tube voltage, 250 mA tube current, and 400 ms irradiation
time. These evaluated values were obtained from the coefficient of variation (CV) by ten measurements.

The energy dependence experiment of the dosimeters was carried out using 60, 70, 80, 90, 100, 110,
120, and 130 kV (respectively, 29.1, 30.6, 32.5, 34.3, 36.0, 37.8, 39.5, and 41.0 keV effective energy) tube
voltage, 250 mA tube current, and 400 ms irradiation time for the same exposure time. The evaluated
values were obtained by averaging three measurements for each dosimeter. The ion chamber results
were used as a reference and all the values were normalized to its 90 kV dose.

The dose dependence of the dosimeters was carried out using 80 kV tube voltage, 250 mA tube
current, and 400 ms irradiation time, in which the range of radiation exposure was from 0.2 to 470 mGy.
This evaluated value was obtained from one measurement for each dosimeter in comparison with the
value of the ion chamber.

The dose rate dependence of the dosimeters was carried out at 13 different measuring points,
with tube current ranging from 10 to 500 mA, under 80 kV tube voltage, and 400 ms irradiation time,
in which the range of radiation exposure rate was from 0.3 to 50 mGy/s. The evaluated values were
obtained by averaging three measurements for each dosimeter. The ion chamber results were used as a
reference and all the values were normalized to its 6.5 mGy/s dose.

2.3. Angular Dependence and Fluoroscopic Image

The X-ray unit used for angular dependent measurement and the fluoroscopic image was the
Infinix Celeve-I (Toshiba Medical Systems Corporation, Otawara, Japan).

The angular dependence of the dosimeters was carried out, measuring from 0◦ to ± 180◦ in the
horizontal and vertical axis, using 80 kV tube voltage, 50 mA tube current, and 5 ms irradiation
time conditions during 10 sec X-ray angiography in free air. This evaluated value was obtained
by comparing each 30-degree measurement with the value of the 0◦ measurement. Furthermore,
we determined the effect of backscattered radiation with and without 20 acrylic phantoms for the
novel and previous sensors at 60, 80, 100, and 120 kV tube voltage, 250 mA tube current, and 200 ms
irradiation time for the same exposure time. The evaluated values were obtained by averaging three
measurements for the novel and previous sensors. The values of each sensor were evaluated by a ratio
between the following: with acrylic phantoms (back scatterers) and without it.

To evaluate the image quality for each dosimeter, we observed the novel and previous sensors
and SDM placed on a chest phantom using a display monitor under 70 kV tube voltage, 61 mA tube
current, and 6.9 ms irradiation time for the fluoroscopic image as X-ray conditions.

The above evaluation methods of 2.2 and 2.3 were performed according to our previous study [25].

3. Results

3.1. Basic Characteristics

The uniformity of the 4-channel novel sensors indicated a CV of 5.2% (Table 1). The reproducibility
of each sensor indicated a CV of 0.3, 0.2, 0.2, 0.5% (ch.1, ch 2, ch 3, ch 4, respectively).
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Table 1. Uniformity of the 4-channel novel sensors.

Channel Number. ch. 1 ch. 2 ch. 3 ch. 4 Ave. SD CV

Measurements mGy mGy

1 3.88 4.18 4.27 3.87 4.05 0.205 0.051

2 3.84 4.16 4.25 3.82 4.02 0.220 0.055

3 3.85 4.17 4.25 3.83 4.03 0.216 0.054

4 3.86 4.17 4.26 3.84 4.03 0.214 0.053

5 3.86 4.18 4.26 3.84 4.04 0.216 0.054

6 3.87 4.18 4.27 3.85 4.04 0.214 0.053

7 3.87 4.18 4.26 3.85 4.04 0.211 0.052

8 3.87 4.17 4.26 3.86 4.04 0.205 0.051

9 3.87 4.18 4.27 3.87 4.05 0.208 0.051

10 3.87 4.18 4.27 3.87 4.05 0.208 0.051

Ave. 3.86 4.18 4.26 3.85 4.04 0.212 0.052

Uniformity
Ave.: average, SD: standard deviation, CV: coefficient of variation, mGy: unit of radiation dose.

Figure 5 shows the energy (tube voltage) dependence, where the novel and previous sensor and
SDM readings were normalized by the value of the ion chamber. Obviously, all three sensors perform
well while the tube voltage is larger than 90 kV. Mean error (ME) of larger data points than 90 kV
was +2.6, +0.1, −2.5% (respectively, novel, previously sensor and SDM). The previous sensor slightly
indicated better than the novel sensor and SDM.
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monitors (SDM).

Figure 6 shows the correlations between the measured absorbed dose (novel, previous sensors
and SDM) and the reference-absorbed dose (ion chamber measurement) as the dose-dependence in the
logarithmic expression. All radiation sensors have excellent determination coefficients (R2 = 1.0000),
although the SDM had slightly low sensitivity, below 1 mGy.

Figure 7 shows the dose rate dependence as relative values, where the novel and previous sensor
and SDM readings were normalized by the value of the ion chamber. Our radiation sensors indicated
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a remarkable dose rate dependence, although the SDM decreased by about 20% at low dose rates
(0.3–2 mGy/s).Sensors 2020, 20, x FOR PEER REVIEW 6 of 11 
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3.2. Angular Dependence and Fluoroscopic Image

The angular dependences are shown for the horizontal (Figure 8) and vertical (Figure 9) axis for
each dosimeter, normalized to the 0◦ measurement value. The novel sensor value of all angles was
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almost 100% sensitivity in both axes, except 270 degrees in the vertical axis. For with and without the
20 acrylic phantoms as back scatterers, the novel sensor indicated approximately 20% higher value
than the previous sensor in the medical X-ray range (Figure 10).
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Figure 11 shows the fluoroscopic images of the novel and previous sensors and SDM placed on
chest phantom. The optical fiber cables of 2.5 m of our sensors and SDM were invisible in fluoroscopy.
The novel sensor had a small size and shape, so it had less effect on X-ray images than the other
radiation sensors. Moreover, we can confirm it to be in the irradiated field because of being slightly
visible in the fluoroscopic images.
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4. Discussion

Radiation-related tissue injuries of patients during FGI procedures have been reported in the
literature [1,2]. It is essential for measuring radiation exposure in real-time to prevent deterministic
effects, such as radiation skin injuries [27–33]. Therefore, we developed a novel real-time radiation
system using a 4-channel radiation sensor, which allows the evaluation of maximum skin radiation
exposure in patients undergoing FGI procedures.

This study was performed to clarify the effectiveness of our novel radiation sensors experimentally.
Energy dependence of our novel and previous sensors had similar characteristics as the SDM for
energy dependence, although the sensitivity tended to decrease marginally at 60 kV and 70 kV tube
voltages. Consequently, our sensors need to use the energy calibration factor in the low-tube voltage
field. We found excellent determination coefficients between all real-time dosimeter measurements
and referenced ion chamber measurement from about 0.2–500 mGy (R2 = 1.0000). Both our radiation
sensors demonstrated almost no dose rate dependence; thus, indicating they can handle various dose
rates, and are highly useful (within 5% statistical difference). The sensitivity of the SDM decreased
by about 20% in a low dose rate field (0.3–2 mGy/s), as compared to the ion chamber. Compared to
the previous sensor, the angle dependence of the novel sensor improved dramatically, both in the
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horizontal and vertical axes (Figures 8 and 9). Moreover, as shown in Figure 10, it can be used to
accurately measure patient radiation exposure that includes back scattered radiation, such as FGI.
The shape of the phosphor of the new radiation sensor was modified from a disk to a circular cone, and
the size of that was slightly reduced from Φ1.4 × 1.2 mm to Φ1.0 × 1.2 mm (Figures 1 and 2). Therefore,
the novel sensor can emphasize constant sensitivity in all angles and be very useful for FGI, in which
fluoroscopy is performed in various directions.

In summary, the basic characteristics of the novel sensor were superior to other radiation sensors
used for measuring radiation doses in patients. Furthermore, it had less influence on the X-ray images
compared with the other radiation sensors because of modifying a small shape and size. We believe
that the novel sensor proved to be critically useful in a real-time radiation system for FGI procedures.

Our work has some limitations. The present study only examined a phantom study. Consequently,
we need to investigate not only the results of the phantom study but also the results of a clinical setting.
Therefore, in the future, we should apply our novel sensor in a clinical setting in a situation for high
doses and high dose rates, such as computed tomography.

5. Conclusions

The novel real-time radiation sensor we developed is expected to be useful for measuring the
exposure of patients to radiation doses. In particular, the new sensor has constant sensitivity from all
angles and does not clinically affect X-ray images by modifying shape and size. Therefore, the radiation
sensor has the potential for patient skin dose exposure monitoring during FGI procedures.
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