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Abstract: Most studies on light pollution are based on light intensity retrieved from nighttime light
(NTL) remote sensing with less consideration of the population factors. Furthermore, the coarse
spatial resolution of traditional NTL remote sensing data limits the refined applications in current
smart city studies. In order to analyze the influence of light pollution on populated areas, this study
proposes an index named population exposure to light pollution (PELP) and conducts a street-scale
analysis to illustrate spatial variation of PELP among residential areas in cites. By taking Shenzhen
city as a case, multi-source data were combined including high resolution NTL remote sensing
data from the Luojia 1-01 satellite sensor, high-precision mobile big data for visualizing human
activities and population distribution as well as point of interest (POI) data. Results show that the
main influenced areas of light pollution are concentrated in the downtown and core areas of newly
expanded areas with obvious deviation corrected like traditional serious light polluted regions (e.g.,
ports). In comparison, commercial–residential mixed areas and village-in-city show a high level of
PELP. The proposed method better presents the extent of population exposure to light pollution at a
fine-grid scale and the regional difference between different types of residential areas in a city.

Keywords: light pollution; NTL remote sensing; Luojia 1-01; residential area; population exposure to
light pollution

1. Introduction

With the rapid development of the economy and the change to a modern city lifestyle, people’s
demand for night lighting has increased in order to expand daytime activities. Due to the increasing
and disorderly use of light at night, light pollution has increasingly become a prominent environmental
issue. Back to the 1970s, scientists paid attention to light pollution at night against the background of
global urbanization [1]. Meanwhile, the development of remote sensing has provided an effective way
for observing urban light from space. Modern remote sensing technology has accelerated light pollution
research [2]. An existing study reviewed the commonly used data including nighttime light (NTL)
remote sensing images from the Defense Meteorological Satellite Program’s Operational Linescan
System (DMSP/OLS), Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National
Polar-orbiting Partnership (NPP) satellites, and night light sensor from the Luojia 1-01 satellite [3].

Focused on exposure to light pollution, a large number of studies have confirmed the effects of
light pollution on flora and fauna as well as human health. For instance, artificial light at night directly
affects the growth and phenology of plants, and is likely to impact the behavior of herbivores [4].
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Nighttime light, even very low-level illumination, can influence the habits of nocturnal animals (e.g.,
reducing the foraging activities of fruit-eating bats [5] and disrupting the life-histories in moths [6]).
This affects the processes of reproduction in wild animals [7,8], which then also influences the animal
population [9] and natural ecosystems [10]. Furthermore, nighttime light also has a great impact
on sleep in free-living animals like cavity-nesting birds [11]. Research on nocturnal primates has
shown that light pollution affects daily rhythms and behavior patterns such as the timing of seasonal
estrus [12,13]. Several studies have indicated that the disturbance of circadian rhythms caused by light
pollution is the main risk, especially given their influence on sleep at night in diurnal species as well as
humans [14,15]. By linking human diseases and the order of light pollution, previous studies have
found that there may be a causal relationship between light intensity and the incidence of breast cancer,
according to disease samples and NTL remote sensing data [16,17]. In addition, there is evidence
showing that the incidence of prostate cancer is significantly correlated with the intensity of light
pollution [18].

Most studies on light pollution have directly used the digital number (DN) value or radiance from
NTL remote sensing to express the degree of light pollution. Miguel et al. [19] combined NTL radiance
from DMSP/OLS images, population, and public lighting consumption statistics to analyze the change
of electricity consumption in Spain from 1992 to 2010, and found that the main light pollution comes
from public street lighting. Applying a time series of DMSP/OLS satellite images, Bennie et al. [20]
analyzed the contrasting trend in light pollution across Europe according to the change of brightness.
In China, the world’s largest developing country, NTL remote sensing based light pollution monitoring
and its spatial distribution trend from 1992 to 2012 was conducted according to the change of NTL
radiance at night. One conclusion is that the Pearl River Delta in the southern coast of China is a region
with relatively serious light pollution [21]. For smaller areas such as city-level scale analysis, some
other data sources including high resolution commercial satellite images [22] and aerial photos [23]
have been employed. The essence of these methods is the same as the use of NTL radiance to present
light pollution in cities.

From previous studies, artificial night sky brightness perceived by various remote sensing sensors
has been widely used to represent light pollution with less consideration of the impacts on densely
populated or urban residential areas. However, the same illumination intensity may have different
impacts when considering the location and population factor. In other words, there would be a certain
deviation if evaluating light pollution only by using NTL radiance from the perspective of the impact
of light pollution on human health.

In order to better illustrate the impact of light pollution on residential areas in cities, an index for
measuring the level of population exposure to light pollution was proposed in this study. As ideal
detectors of human behavior and population distribution [3,24], high-precision mobile data as well as
high-resolution NTL data from Luojia 1-01 NTL remote sensing satellite were integrated for analyzing
light pollution and its influence on populated areas at a fine grained resolution.

2. Study Area and Data

2.1. Study Area

Located in an area with serious light pollution, Shenzhen, a highly urbanized city in the Pearl River
Delta region, China, was chosen as the study area (113.43 ◦E~114.38 ◦E; 22.24 ◦N~22.52 ◦N). As the
forefront of China’s comprehensive reform, Shenzhen has become a major city and one of the economic
centers in South China. Furthermore, it is also characterized as a center for science and technology
innovation. The total land area of Shenzhen is 1,997.47 square kilometers. The permanent population
has reached to 13,026,600 [25]. With rapid economic development, the electricity consumption in
Shenzhen has increased by about six times in the past two decades [25].
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2.2. Data

2.2.1. High-Resolution NTL Remote Sensing Data

Luojia 1-01, the new generation NTL remote sensing data, were utilized in this study. The satellite
was launched on June 2, 2018. The design of Luojia 1-01 stresses the perception of nighttime light
at a finer spatial resolution of 130 m compared with traditional NTL remote sensing sensors like
DMSP/OLS. It is a low orbit satellite with a repeat period of 15 days. The local visiting time is around
10:00 pm. According to previous studies, Luojia 1-01 data show great potential in monitoring artificial
light pollution [3,26].

Considering the study area is located in South China where it is always cloudy and rainy, a
cloud-free image acquired in September, 2018 was selected and adopted for the analysis.

2.2.2. Mobile Big Data

The volume of mobile devices during night time in September, 2018 was collected to match the
NTL remote sensing data. The location information of active mobile devices was collected through
monitoring the mobile phone’s applications (apps). The active mobile device here means that the
status of one or more monitored applications are activated at least once during a certain period. Given
the activation of apps may not occur every day for some mobile devices, to reduce the omission of
non-active devices, an accumulating number was adopted based on a month of cumulative observations
of active mobile devices during night time from 10:00 pm to 6:00 am. Furthermore, the number of
devices counted repeatedly (i.e., the same devices with apps activated more than once) was excluded.
Higher positioning accuracy is provided by the mobile phone’s built-in global positioning system
(GPS) unit. Considering the privacy policy, all location data were aggregated into grids. For gridded
unit areas, their location information was encoded by the 7-bit GeoHash format, equivalent to the
ground resolution of approximate 150 m. The mobile data were provided by the TalkingData company
(Beijing, China), China’s leading third-party data provider.

After data cleansing, the original data encoded by GeoHash string were converted to a raster
data format with geographical latitude–longitude coordinates, and clipped with the administrative
boundary of Shenzhen municipality in ArcGIS software. Figure 1 shows the distribution of active
mobile devices at night in Shenzhen.
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2.2.3. Auxiliary

The auxiliary data include the fundamental geographical data, land cover data, and population
statistics from the statistical yearbook. The land cover data of the urban impervious area in 2018
were adopted, which were obtained from Tsinghua University. Furthermore, in order to analyze the
differences among various types of residential areas, the point of interest (POI) data of residential areas
were acquired from the Gaode Map, one of the most popular map providers in the Chinese market.
Nine hundred POIs covering different types of residential areas in Shenzhen were selected through the
Gaode application programming interface (API). The attributes of POI data include the name of the
place, category, address, geographic location information, code, etc. After preliminary processing such
as the elimination of type misclassification and redundant points within an analysis unit (i.e., the size
of a pixel), 871 samples were adopted. The spatial distribution of the residential samples is shown in
Figure 2.
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3. Methods

3.1. Data Pre-Processing

A geometric correction of the NTL remote sensing image was carried out by point-to-point
registration according to the existing road vector data. For a better illustration, DN values on the remote
sensing image were converted to radiance. According to [26], the following formula was adopted.

r = 5.2× 10−6
×DN3/2 (1)

where r presents the radiance, the unit of which is nW ·cm−2
·sr−1 and DN denotes the DN value for a pixel.

Considering the discrepancy between the spatial resolutions of multi-source data, NTL remote
sensing and mobile data were unified to the same spatial resolution of 150 m by the nearest neighbor
resampling method. Other auxiliary data such as urban impervious area and POI data were also
processed to the same unit of analysis.

3.2. Gridding Population Distribution

Mobile big data can reflect the daily living activities of the people in the city. Mobile data at night
revealed the population distribution as well as the population density in the grid. Zhao et al. [27]
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used economic density (i.e., Gross Domestic Product (GDP) per land area) to disaggregate the GDP
from provincial to pixel level, with the disaggregation process being generalized by a linear model.
Similarly, a linear model was adopted in this study to disaggregate Shenzhen’s total population based
on the population distribution. Given the huge diversity in population density among administrative
districts in Shenzhen, the transformation coefficient also varies for different districts. This coefficient is
based on the correlation between the total population and the sum of active mobile devices in each
district. From the annual statistics yearbook (2018), Table 1 shows the population by district and the
corresponding number of mobile devices. Gridded population density (Pi) was simulated after data
transformation by the following equation.

Pi =
Pregion

Mregion
×Mi (2)

where the Pregion is the total population in the district where grid cell i is located; Mregion is the sum of
active mobile devices in the same district; and Mi is the number of active mobile devices in grid cell i.

Table 1. Actual population statistics and the volume of active mobile devices in different districts.

District * Actual Population Number of Mobile Devices

Bao’an 3,149,000 1,012,949
Dapeng 146,100 29,647
Futian 1,561,200 544,395
Guangming 596,800 185,975
Longgang 2,278,900 955,800
Longhua 1,603,700 621,306
Luohu 1,027,200 370,078
Nanshan 1,424,600 583,802
Pingshan 428,000 66,134
Yantian 237,200 45,472

Note: Population statistics is updated to the end of the previous year. * Statistics of Shen-Shan Special Cooperation
Zone (enclaves) is not included.

3.3. Population Exposure to Light Pollution

To consider the impact of light pollution on humans, an index called the population exposure
to light pollution (PELP) was proposed in this study. The index considers both NTL radiance and
gridded population density and is defined by the formula as follows:

PELP = Ri × Pi (3)

where Ri is the NTL radiance at grid cell i; and Pi is the population density represented by population
in grid cell i.

3.4. Analyzing Spatial Pattern of Population Exposure To Light Pollution (PELP)

Gridded PELP values for the entire study area were calculated according to Equation (3). Regional
differences in the 10 administrative districts are depicted. Both average and maximum values are
compared among the districts. The analysis of variance (ANOVA) test was adopted to determine if
there was a statistically significant difference between the averages.

Given that light pollution mainly affects the night living environment of settlements, the differences
of the level of PELP in different residential areas were investigated. According to the properties of POI
data, four categories were analyzed, namely high-rise dwelling (H), middle and low-rise dwelling
(M), village-in-city (V), and dormitory (D). Furthermore, commercial–residential mixed (C) type was
utilized as a contrast. Due to the existence of the misclassification of residential buildings in the POI
data compared with field investigation, the 871 POI samples were reclassified into the above five classes.
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Table 2 illustrates the original type codes in Gaode Map and the corresponding types adopted in this
study. Analysis of variance (ANOVA) was also adopted to test if there was a significant difference
among the averages of those classes.

Table 2. A look-up table for residential types adopted in this study and original type codes in Gaode
Map point of interest (POI) data.

Origin Code in Gaode Map Type of Residential Areas Type Code Sample Size

120201|120203|120302 Commercial-residential mixed (C) 0 8
120203|120300|120301|120302|120303 High-rise dwelling (H) 1 761

120300|120301|120302 Middle and low-rise dwelling (M) 2 33
120300|120302 Village-in-city (V) 3 62

120303 Dormitory (D) 4 7

Furthermore, several areas traditionally considered as serious light polluted areas such as the
airport and container terminals were analyzed as typical cases.

4. Results

4.1. Spatial Distribution of PELP in Shenzhen

To conduct a street-scale analysis of light pollution, the PELP value for each grid cell was calculated.
Considering that even very low NTL radiance would lead a higher PELP, if there is a huge population,
a safety threshold for non-dangerous levels of brightness was adopted. The maximum NTL radiance
of rural areas with vegetation based on the urban impervious area data were utilized as the threshold.
Pixels with radiance below the threshold were not considered to be affected by light pollution. Figure 3
illustrates the spatial distribution of PELP in Shenzhen City. The PELP values were divided by 1000 in
the following figures for a better display effect.Sensors 2020, x, x; FOR PEER REVIEW 7 of 12 
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Figure 3. Spatial distribution of population exposure to light pollution (PELP) in Shenzhen. (A) Bao’an
District, (B) Nanshan District, (C) Futian District, (D) Luohu District.

For a comparison of different regions, Figure 4 shows the regional difference in PELP among the
10 administrative districts in Shenzhen. The 95% confidential intervals for the averages are shown



Sensors 2020, 20, 2728 7 of 12

as error bars in this figure. The ANOVA test results indicate a significant difference among districts
(F-value = 187.12, p < 0.01). From the statistical results, Futian and Luohu Districts have high levels
of population exposure to light pollution in terms of average PELP. Furthermore, newly developed
regions including Bao’an and Longhua Districts also had a higher risk of exposure to light pollution.
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4.2. The Impact of Light Pollution on Different Residential Areas

According to the categorized residential areas, the maximum and average values of PELP for each
type were calculated and are shown in Figure 5. The 95% confidential intervals for the averages are
illustrated in Figure 5. The ANOVA test results indicate a significant difference among the five classes
(F-value = 3.44, p < 0.01). Considering that the sample sizes of commercial–residential mixed and
dormitory types were too small to present a statistical difference, an ANOVA test of the other three
types was conducted, and a significant difference of average PELP among them was observed (F-value
= 5.85, p < 0.01). From the results, village-in-city had the highest level of PELP in terms of average
PELP. The average PELP of high-rise dwellings was larger than that of middle and low-rise dwelling.
Furthermore, compared with the single function region of residential areas, commercial–residential
mixed type also had a high level of PELP.
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4.3. Typical Region Analysis

Several typical regions traditionally considered to be seriously light polluted (Figure 6a) were
selected including port areas (e.g., cruise port and container ports) and the airport. A qualitative
comparative analysis was conducted by simply using NTL radiance and PELP. The results are shown
in Figure 6 with the areas bounded in red lines. As for the areas of serious light pollution determined
by traditional methods, there was no significant difference of the level of PELP compared with the
surrounding areas except for the airport region (Figure 6b). Due to the presence of night flights, a
certain number of passengers and ground crew appeared in this area. The level of PELP was higher
than that of the surrounding areas and formed an island effect.Sensors 2020, x, x; FOR PEER REVIEW 9 of 12 
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5. Discussion

5.1. NTL Radiance vs. PELP

Unlike the direct use of remote sensing radiance to express light pollution in cities, PELP obviously
highlights the influence of nighttime light pollution on densely populated areas. When the population
is small, even if the radiance is high, the index will be lower, whereas when the radiance and the
population are both high, the index will be very high. For the case of Shenzhen, high exposure level
areas were concentrated in Futian, Luohu, Nanshan, and Bao’an Districts, which had better economic
development and high population density, while low exposure levels were located in the areas with
low-level commercial development and low population density such as Yantian District and Dapeng
New District. Both maximum and average values of PELP indicate that the regional difference was
significant. Thanks to the introduction of the population factor, the proposed PELP index was more
in line with the traditional definition of light pollution, that is, the influence of light pollution on
people [1]. This is also more in line with people’s conventional understanding of the harm of nighttime
light pollution. For example, high-level light illumination far away from residential areas has less
impact on people, while the light from commercial centers or outdoor billboards around residential
areas will cause more serious discomfort. From Figure 6, the port and airport areas had high level
illumination. If using NTL radiance to assess light pollution, those areas have a high hazard level of
light pollution, while in fact, the light in those areas have little influence since fewer residential areas
are nearby. The deviation was significantly reduced when adopting PELP. Meanwhile, residential
areas near the commercial areas like the commercial–residential mixed areas had a higher level of
PELP (Figure 5).

It should be pointed out that a previous study presented a lit population indicator [27], whose
calculation formula is very similar to that of the PELP proposed in this study. For a lit population,
NTL radiance is treated as a measurement of GDP per capita, and multiple gridded population is
used to calculate GDP density (i.e., GDP per pixel). Despite the same form, the physical meaning and
calculation parameters of these two indices are different.

5.2. Differences in Residential Areas

The application of high-resolution NTL remote sensing data and high-precision positioning mobile
data makes a street-scale analysis of the level of PELP possible. Accordingly, investigation of the
differences among different residential areas could be carried out. From the perspective of sample
distribution, most POI samples belonged to high-rise dwelling and presents as the most common type
of residential buildings in Shenzhen. Its level of PELP was higher than that of middle and low-rise
dwellings, but lower than that of village-in-city. Middle and low-rise dwellings were concentrated
in the suburbs or those areas far away from downtown, where the environment is quiet and the
population density is relatively low. The village-in-city is another case with high dense population and
very high brightness during the night. As a special case in the rapid development of urbanization,
the village-in-city consists of many rental rooms and accommodates a large number of the floating
population like migrant workers. As such, the level of PELP can be rather high.

In contrast, the commercial–residential mixed type had a higher level of PELP, because the Internet,
information technology (IT), and related industries in Shenzhen are highly developed and night
life is relatively rich in those areas. The commercial–residential mixed type implies a high density
population, where there are high intensity lighting facilities. Therefore, according to the PELP index,
the differences between residential types are exaggerated. It should be noted that the smaller sample
size of commercial–residential mixed and dormitory types may cause a deviation to some extent.
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5.3. Limitation and Known Issues

For a wide scope of light pollution study, three forms of light pollution are referred to, namely sky
glow (or upward light flux), glare, and light trespass [28]. Current studies on remote sensing light
pollution are focused on upward light flux due to the limitation of observations. Therefore, the light
pollution at night discussed in this study mainly refers to this issue.

In addition, the estimation model of population density in a grid was based on mobile data and
was adjusted by the population in statistics. For the statistical yearbook, the only permanent population
is considered for the official census count, and does not include the floating population. Considering
Shenzhen is a migrant city, possible uncertainties may come from the deviation in population density
estimation. Furthermore, the modifiable areal unit problem (MAUP), which is well-known for scale and
zonation issues [29,30] may occur when aggregating point data (e.g., mobile data and population) into
areal unit (e.g., grid or pixel). This means that it may yield different analysis results when aggregating
and analyzing the population distribution at different spatial resolutions.

6. Conclusions

This study proposed an index to quantify the level of population exposure to light pollution
based on integrating high-resolution NTL remote sensing and high-precision mobile phone data. The
spatial distribution pattern of light pollution in Shenzhen was illustrated at a street scale level. The
regional differences between administrative districts as well as different types of residential areas were
analyzed. By introducing the population factor, it turns out that the proposed method could well
reflect the impact of light pollution on populated areas, and significantly reduce the deviation such
as light polluted regions with low-density population. A large proportion of young people and city
vitality has made the nighttime light pollution become worse. Among the different types of residential
areas, the commercial–residential mixed type had a high level of population exposure to light pollution.
Furthermore, the village-in-city’s level of PELP was also higher. This study had a positive promoting
effect on urban construction and energy consumption in smart city management. For a further study,
analysis of multi-temporal NTL remote sensing and mobile data could be conducted to monitor the
dynamics of population exposure to light pollution.
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