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Abstract: Due to the rapid penetration of the Internet of Things (IoT) into human life, illegal access
to IoT resources (e.g., data and actuators) has greatly threatened our safety. Access control, which
specifies who (i.e., subjects) can access what resources (i.e., objects) under what conditions, has
been recognized as an effective solution to address this issue. To cope with the distributed and
trust-less nature of IoT systems, we propose a decentralized and trustworthy Capability-Based Access
Control (CapBAC) scheme by using the Ethereum smart contract technology. In this scheme, a smart
contract is created for each object to store and manage the capability tokens (i.e., data structures
recording granted access rights) assigned to the related subjects, and also to verify the ownership and
validity of the tokens for access control. Different from previous schemes which manage the tokens
in units of subjects, i.e., one token per subject, our scheme manages the tokens in units of access
rights or actions, i.e., one token per action. Such novel management achieves more fine-grained and
flexible capability delegation and also ensures the consistency between the delegation information
and the information stored in the tokens. We implemented the proposed CapBAC scheme in a locally
constructed Ethereum blockchain network to demonstrate its feasibility. In addition, we measured the
monetary cost of our scheme in terms of gas consumption to compare our scheme with the existing
Blockchain-Enabled Decentralized Capability-Based Access Control (BlendCAC) scheme proposed
by other researchers. The experimental results show that the proposed scheme outperforms the
BlendCAC scheme in terms of the flexibility, granularity, and consistency of capability delegation at
almost the same monetary cost.

Keywords: Ethereum Blockchain; Internet of Things; Capability-Based Access Control (CapBAC)

1. Introduction

Thanks to the maturation and commercialization of the Internet of Things (IoT), recent years have
witnessed explosive growth of smart devices (e.g., appliances, wearables, and industrial equipment)
connected to the Internet. It was reported that over 200 billion IoT devices will be connected to form
an extremely huge IoT network by 2020 [1]. Although these devices make our lives more convenient
and intelligent, they are vulnerable to illegal access by malicious users, posing significant threats to
our personal and property safety [2]. For example, malicious users may know the contents of private
conversations inside a home by illegally accessing some appliances [3–6]. In addition, malicious users
may also be able to gain illegal access to the control unit (e.g., brake and accelerator) of a self-driving car
to cause severe accidents [7]. Access control, which explicitly or implicitly specifies who (i.e., subjects)
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can access what resources (i.e., objects) under what conditions, has been identified as an effective
solution to preventing unauthorized access [8,9]. Therefore, our research focuses on the access control
issue in the IoT.

1.1. Access Control

1.1.1. Common Models

Commonly-used access control models include Role-Based Access Control (RBAC),
Attribute-Based Access Control (ABAC), and Capability-Based Access Control (CapBAC). In the
RBAC model [10,11], a specific role is assigned to each subject. In addition, permissions to perform
some operations on certain devices are assigned to each role. By doing this, permissions are assigned to
subjects. Grouping access permissions by roles simplifies the management of access control compared
to assigning access permissions to each subject individually. In the ABAC model [12,13], determining
whether access is allowed or denied is based on policies, which are statements that combine the
attributes of subjects, objects, actions, and dynamic context (e.g., time and location information) to
achieve dynamic access control.

In the CapBAC model [14,15], each subject is associated with a capability, i.e., a token that stores
the access rights of the subject. When accessing an object, each subject needs to deliver his or her
token to the object owner. The owner then decides if the subject can access the object by checking
the validity of the token. Two main operations in CapBAC are capability delegation and capability
revocation. Delegation means that a subject delegates all or part of his/her access rights to another
subject. Revocation means that a subject revokes the access rights he/she has delegated to avoid the
abuse of the access rights.

1.1.2. Centralized vs. Decentralized

Traditionally, centralized access control schemes, which usually rely on a central server for all the
access control-related processing including access right assignment, management (e.g., update and
revocation), and verification, have been the mainstream schemes in the field of access control [13,16,17].
Despite the ease of management, the server in these schemes turns out to be a single point of failure
and may destroy the access control system once it suffers from man-made/natural disasters or is
compromised by adversaries [18]. Besides, it is usually difficult for centralized access control schemes
to cope with the large-scale and distributed nature of IoT systems [19]. Therefore, to overcome the
above limitations of centralized access control schemes, research efforts have been devoted to the
design of decentralized access control schemes for the IoT [20].

In decentralized access control schemes, the majority of the system nodes instead of a single
server are responsible for the access control-related processing. The key to the proper operation of
decentralized access control schemes is that all nodes must reach a common consensus on the data
for access control such as assigned rights of subjects, access policies, and verification results. Such
consensus can ensure robust and trustworthy access control and must be resistant to any tampering
as well, i.e., no one can deceive others by tampering with the access control data. Recently, the
emerging blockchain technology has been proved as one of the most promising mechanisms for
reaching common consensuses in a distributed environment, thanks to its successful application in
cryptocurrency systems, such as Bitcoin [21]. This is why there is an increasing interest in applying the
blockchain technology to achieve decentralized and trustworthy access control for the IoT.

1.2. Blockchain and Smart Contract

Blockchain was originally invented as a distributed and tamper-resistant ledger for cryptocurrency
systems to store the financial transfer data (i.e., transactions). Figure 1 illustrates the data structure of
blockchain and the blockchain system built on a Peer-to-Peer (P2P) network. The blockchain consists
of a collection of blocks, and each block contains a hash of transactions (i.e., the root of Merkle tree)
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and the hash of its previous block. All blocks are shared by all nodes in the P2P network. The most
appealing feature of the blockchain is its ability to reach consensuses on its states (e.g., transaction
history and balances) among its participants by using cryptographic hash functions, even in the
presence of attackers.
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Figure 1. Blockchain system.

The common consensus is achieved based on the mining process, which is the process of
generating new blocks by some special nodes called miners. In this process, each miner first collects a
set of transactions from its transaction pool and generates a Merkle tree (as shown in Figure 1) using
these transactions. The miner then includes the set of transactions, the Merkle tree, the hash of the
previous block, and an arbitrary number called nonce into the block to generate. After including
all necessary information into the block, the miner finally keeps calculating the hash of the block by
varying the value of the nonce, until it finds a valid hash value that satisfies a pre-defined condition,
for example, the leading n bits of the hash must be zeros. The miner that first finds a valid block wins
in this process and this block will be broadcast to all the other nodes in the network. Each node then
verifies the validity of the received block and then includes the block into its own blockchain if the
block is valid. In this way, the common consensus is achieved.

In addition to transactions, executable programs called smart contracts can also be stored on
current blockchains such as Ethereum [22,23], transforming the blockchains from pure distributed
databases to hybrid distributed storage and computing platforms. In Ethereum, smart contracts are
special accounts, whose information is stored in the State root field of block headers. A smart contract
usually consists of variables as its states and functions called Application Binary Interfaces (ABIs) to
view and change the states. The ABIs are stored in the Codehash field (as shown in Figure 2) of the
contract, which is the hash of the program code. The variables are stored by the Storage root field, i.e.,
the hash of the variables. In addition, a smart contract also contains a Nonce field, which records the
number of smart contracts created by this contract, and a Balance field, which is the balance of this
contract. Each ABI is usually triggered by sending a transaction to the contract to change the variables.
The transaction is broadcast in the P2P network, and every node that receives the transaction will also
execute the ABI to verify that the results are correct. In this way, the consensus on the states of the
variables can be reached.

Thanks to its appealing features, the blockchain technology has been applied to the IoT to
transform the service provision mechanism from traditional Service-oriented Architecture (SoA) to
novel blockchain-based microservice architectures [24,25]. In addition, the blockchain also affects
many other fields of the IoT, such as access control which is introduced in Section 2, data sharing, and
business models [26].
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Figure 2. Data Structure of Ethereum Blockchain.

1.3. Research Objective

The goal of our research is to implement distributed and trustworthy access control for the IoT
using Ethereum smart contracts. In particular, we focus on the CapBAC model. Despite the drawback
of low context-awareness as pointed out by the authors of [9,27], the CapBAC model can ensure the
critical principle of least privilege, i.e., each subject uses the least amount of privilege (i.e., access
rights) necessary to finish its job. In addition, the CapBAC model allows subjects to delegate access
rights from one to another for flexible and spontaneous access control. Recently, some initial attempts
have been made to implement access control using the blockchain technology [28–45]. Among these
schemes, the Blockchain-Enabled Decentralized Capability-Based Access Control (BlendCAC) scheme
in [28] is the one most related to our scheme. We introduce the BlendCAC scheme including its main
idea and limitations as well as our contributions in Section 3. For the introduction of other schemes,
please refer to the related work in Section 2.

The remainder of this paper is organized as follows. Section 4 introduces the proposed CapBAC
scheme, Section 5 presents the implementation details of the proposed scheme, and Section 6 evaluates
the monetary cost of the proposed scheme in terms of gas consumption and also compares the monetary
cost of the proposed scheme with that of the BlendCAC scheme. Finally, we conclude this paper in
Section 7.

2. Related Work

In [29], a Bitcoin-like blockchain was implemented to achieve access control in a smart home
application based on the Access Control List (ACL) model. The authors deployed a local blockchain
in each home to store the ACL that controls the access requests from inside and outside of the home.
Since the blockchain is maintained only by a single miner and the critical mining process is eliminated,
the access control in each home becomes centralized and untrustworthy. The authors of [30] used
the Bitcoin transactions to store access policies for an existing ABAC scheme. In the ABAC model,
each policy combines the attributes of subjects, objects, actions, and context to provide dynamic
and fine-grained access control. When receiving an access request, the ABAC scheme retrieves the
related policies from the blockchain to perform the access control. Similar to Francesco et al. [30],
the Bitcoin transactions were used to store the tokens of the CapBAC model by Ouaddah et al.
[31]. By sending transactions among the subjects, the capability tokens can be delegated from one
subject to another. When accessing an object, the subject passes its own capability token to the object
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owner, who then performs the access control by checking the validity of the token. In their next
study, Francesco et al. [32] considered smart contracts to enforce access control policies.

Recently, Ethereum smart contract-based access control schemes have attracted considerable
attentions. In [33], an ACL-based IoT access control framework was designed using multiple smart
contracts. Each contract stores an ACL and the corresponding access control ABI for one subject–object
pair. The authors also provided implementations to demonstrate the feasibility of the framework.
In [34], an extended version of the scheme in [33] was designed with slight modification. In [35],
a smart contract was deployed to maintain the roles assigned to each user in an RBAC model, such that
any service provider can verify the users’ ownership of roles when providing services. A CapBAC-like
scheme was proposed in [36] to manage access control for data sharing in IoT systems, where oracles
are used to connect blockchain, data hosts, and users for data accessing. Another CapBAC-like scheme
was proposed in [37] for handling the access control in information-centric networks. An ABAC
scheme was proposed in [38], which stores the URL links of policies on the blockchain and also deploys
a smart contract for access control. When accessing an object, a subject sends the link of the related
policy to the smart contract, which then retrieves the policy from external databases to achieve the
access control. However, adversaries may be able to tamper with the polices without changing the
URL links, resulting in untrustworthy access control. To address this issue, a novel ABAC framework
was proposed in [39], which directly stores the policies as well as the attributes of subjects and objects
on the blockchain. A similar idea was adopted in [40,41] but with different realizations.

Access control based on other blockchain realizations has also been investigated. For example,
in [42], the authors proposed an ABAC framework based on the permissioned Hyperledger Fabric
blockchain, while, different from Yutaka et al. [39], only the attributes are stored on the blockchain and
no smart contracts are used for processing access requests. By integrating attribute-based encryption
with blockchain, the authors of [43] proposed another ABAC-like scheme based on a multi-layer
blockchain architecture. A conceptual design of blockchain-based ABAC scheme was provided in [44],
while the authors presented no implementations.

In addition to access control, there also exist some other alternative methods that can prevent
unauthorized access to some extent, such as authentication [46], which deals with authenticating
the identity of resource users, and intrusion detection [47], which prevents unauthorized users from
entering IoT systems. These methods are usually combined with access control to provide full
protection to IoT resources.

3. BlendCAC Scheme

To manage the authorized actions (i.e., access rights) of the subjects for each object, the BlendCAC
scheme defines two types of tokens: Identity-based Capability (ICap) and Identity-based Delegation
Certificate (IDC). An ICap token records the authorized actions (e.g., read, write, and execute) of a
subject and an IDC token records the delegation relationships of the authorized actions among the
subjects. The following expressions illustrate the data structures of an ICap token and an IDC token of
a certain subject S, respectively.

ICapO[VIDS] = {OP}, (1)

IDCO[VIDS] = {VIDP, {VIDCh}, Dep}, (2)

where the meanings of the symbols are described in Table 1.
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Table 1. Symbols in ICap and IDC Tokens.

Variable Meaning

O The associated object.
VIDS Identifier (ID) of the subject S.

OP A set of authorized actions (e.g., read, write, and execute).

VIDP
ID of the parent subject that delegated
the authorized actions to VIDs.

{VIDCh}
ID of descendant subjects to which the VIDs delegates
part or all of the authorized actions .

Dep Depth of the IDC in the delegation tree.

Using these tokens, the BlendCAC scheme manages the capabilities of subjects and their
delegation relationships for each object by a delegation tree. Figure 3 shows an example of the
delegation tree with three subjects A, B, and C. This tree shows that subject A, the owner of the object,
delegates its read and write rights to subject B and exe (i.e., execute) right to subject C. The parent
subjects of B and C are set as A due to the delegation. Consider now the case where B needs to delegate
its read right to C. In this case, should A or B be the parent subject of C? We can see that neither A nor
B as the parent subject can record all the delegation information completely. A similar problem arises
to the Dep information. As a result, a subject cannot obtain rights from more than one subject due to
the contradiction/ambiguity about the delegation information. In addition, to complete a delegation,
the related ICap and IDC tokens must be updated synchronously. However, this requirement cannot
always been satisfied in the blockchain system, due to the difference between the time instants when
the two transactions for updating the tokens are included into the blockchain.
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Figure 3. Cont.
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Figure 3. Delegation Tree in the BlendCAC Scheme.

To address the above limitations of the BlendCAC scheme, we propose a novel smart
contract-based CapBAC scheme with more fine-grained capability management and more flexible
capability delegation. More specifically, we first define the capability tokens in units of authorized
actions, i.e., in the manner of one token per action instead of one token per subject as in the BlendCAC
scheme. Second, we use one type of token to summarize the information of capabilities and delegation
relationship so as to update these information simultaneously. Finally, we manage the delegation
relationship of the subjects by a delegation graph instead of the delegation tree in the BlendCAC scheme
to enable more flexible capability delegation. Compared with the BlendCAC scheme, the proposed
scheme also provides the functionality of adding new authorized actions. A conference version of this
paper can be found in [48].

4. Proposed CapBAC Scheme

This section introduces the proposed CapBAC scheme including the structure of the capability
token, the delegation graph, and the main functions.

4.1. Capability Token Structure and Delegation Graph

We first revise the capability token structure by splitting the capability tokens of the BlendCAC
scheme into multiple ones based on the authorized actions with each being associated with an action.
Thus, each token can uniquely be identified by the ID of the subject VIDS and an action OP, as shown
in the following expression.

CAPSO[VIDS][OP]={VIDP, {VIDCh}, Dep, DR, RR}, (3)

where the meanings of O, C, VIDP, {VIDCh}, and Dep are described in Table 1.
Note that our scheme uses the Ethereum account addresses as the ID information of both subjects

and objects. The field DR indicates whether the owner of the token (i.e., VIDS) can further delegate it
to other subjects. Similarly, the field RR indicates whether the subject VIDS can revoke the delegated
tokens from the descendant subjects in {VIDCh}. This structure allows each subject to own multiple
tokens and to flexibly delegate authorized actions to and from multiple subjects. In addition, we can
use only one type of tokens for each object to manage the capabilities of the subjects and construct a
delegation graph for managing the delegation relationships.

Figure 4 illustrates a simple example of the delegation graph for an object O with three subjects
A, B, and C. Subject A, the owner of the object, has three tokens with authorized actions read, write,
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and exe, and delegates the read and write tokens (respectively, exe token) to subject B (respectively,
C). Again, we consider the case where B needs to delegate its read token to C. Because each token is
independent of the others, the delegation causes no contradiction or ambiguity about the delegation
information. After the delegation, C is appended to the set of descendant subjects (i.e., {VIDCh}) of
the read action of B, and B becomes the parent subject of C in terms of the read action. Accordingly, the
depth of the delegated read token of C is increased by 1 compared with that of B. To manage the tokens
and delegation graph, we deploy a smart contract on the Ethereum blockchain, the main functions of
which are described in the following section.
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Figure 4. Delegation Graph of the Proposed CapBAC Scheme.
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4.2. Main Functions

The proposed CapBAC scheme provides the following main functions including token creation,
token delegation, token revocation, and token verification, which are introduced as follows.

4.2.1. Token Creation

Different objects require different sets of authorized actions. When the current set of actions is not
enough to support new applications, some new actions may be needed. In this case, the function of
token creation can be used. The smart contract provides a createAction() ABI for this function. Only the
owner of the objects has permissions to execute this ABI. When executing this ABI, the owner needs to
send a transaction containing the information defined in (3).

4.2.2. Token Delegation

Token delegation is a fundamental and critical function of CapBAC schemes to support flexible
and spontaneous access. Subjects can gain access rights through the tokens delegated by other subjects
without the intervention of the owner, improving the scalability of the access control scheme. The
smart contract provides a delegation() ABI to enable the token delegation. Only the owner of the token
can execute this ABI by sending a transaction with the required information.

4.2.3. Token Revocation

When the delegator (i.e., the subject that delegates the token) of a token decides that the current
owner no longer has access permissions, it can revoke the token to avoid token abuse. The smart
contract provides two ABIs, i.e., singleRevocation() and allChildrenRevocation(), to support the token
revocation. The singleRevocation() ABI revokes the tokens from the children of the delegator, while the
allChildrenRevocation() ABI revokes the tokens from all the descendants.

4.2.4. Token Verification

When accessing an object, a subject needs to hand the related token to the object’s owner, which
then performs the token verification to confirm that the subject has the required access rights. The smart
contract provides an accessRequest() ABI for the token verification. Any subject can execute this ABI by
offering the required information such as the subject’s ID and the action to perform via a transaction.
The transaction will be mined, included into a block and broadcast to most of the nodes in the system.
During this process, each node that receives this transaction will execute the ABI to confirm whether
the subject has the required access rights. This ensures that no nodes can deceive others with wrong
processing results, achieving robust and trustworthy access control. After the verification of the token,
the results will be returned to both the subject and the object.

5. Implementation

In this section, we implement the capability, delegation graph, and functions introduced in
Section 4 to demonstrate the feasibility of the proposed CapBAC scheme [49].

5.1. Ethereum Private Network

As shown in Figure 5, we built a private Ethereum blockchain network using one MacBook Pro
(CPU: 3.1 GHz Intel Core i5, Memory: 8 GB), one MacBook Air (CPU: 1.8 GHz Intel Core i5, Memory:
8 GB) and two Raspberry Pis (CPU: 1.4 GHz ARM Cortex-A, Memory: 1 GB). One Pi works as the
object and the other works as the subject. The MacBook Pro plays the role of the owner entity of the
object. To form a private Ethereum blockchain network, each device maintains a local copy of the
blockchain and interacts with the blockchain (e.g., send transaction and obtain access result) through
a JavaScript program based on the web3.js package [50]. The MacBook Pro and MacBook Air serve
as miners in this private Ethereum blockchain network. We created Ethereum accounts addressA,
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addressB, and addressC for the MacBook Pro, MacBook Air, and the subject Raspberry Pi, respectively,
the information of which is summarized in Table 2.

Blockchain

Blockchain

Blockchain

IoT device

Subject
address B
（miner）

Owner
address A
（miner）・Access Control

・Manage Right

・Access Control
・Manage Right

・Access Control
・Manage Right

Blockchain

・Access Control
・Manage Right

Subject
address C

Figure 5. Experiment Environment.

Table 2. Ethereum Addresses of the Subjects.

Variable Address

addressA 0x9bE252c f 45F6daa4680edeC081d7A1Bc1a92Cd6 f
addressB 0xF59c4b f 63FEB4ce4d f 4cD0E5 f acAE2eA95448e85
addressC 0x28bBa96539A24a98b3e0e3d00F4C02e201c3b080

5.2. Token Creation

At the beginning of the experiment, the owner entity with address addressA registered a smart
contract to store and manage the capability tokens and the delegation graph. The owner entity then
created new tokens by executing the createAction() ABI. Figure 6a shows the information returned by
calling the getCap() ABI via the javaScript program after the owner entity created a new read token for
the subject addressA (i.e., the owner entity). The token states that the subject addressA has read right to
the object. It can also delegate this token to other objects and revoke the token from its descendants.
At this point, the token has depth (depth = 0) and maximum depth (maxDepth = 5), which means
that the token can be further delegated to at most five generations. In addition, we can see that the
token has no parents and no children. Figure 6b shows the result of calling the getCap() ABI to query
a token (i.e., the write token) that does not exist or has not been created on the blockchain. We can
see that all fields are set as “empty,” since the javaScript program cannot fetch any information from
the blockchain.
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(a) Token Information for a Newly-Created read token.

(b) Token Information for a Non-Existent write token.

Figure 6. Token Creation by the Owner Entity addressA.

5.3. Token Delegation

After creating new tokens, the owner entity addressA then delegated the tokens to other subjects.
Figure 7a,b show the token information of the subject subjectB before and after the owner entity
delegates the read token to it, respectively. We can see that the right field of the read token changes from
false to true after the delegation, which means that the delegation successfully delivers the read right to
the subject addressB. In addition, the depth, maxDepth, and parent fields are changed accordingly. Note
that the fields of “delegationRight: true” and “revocationRight: true” indicate that the subject addressB
can delegate the token to other subjects and revoke the token when necessary.

(a) Token Information of addressB before Delegation.

(b) Token Information of addressB after Delegation.

Figure 7. Delegation of read Token from Subjects addressA to addressB.
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5.4. Token Revocation

Suppose that the subject addressB further delegated the read token to another subject addressC. At
this point, the token information of the subjects addressB and addressC is shown in Figure 8a. When the
token delegator (i.e., subject addressA) decides to revoke the token from the subject addressB but allow
the subject addressC to keep the token, the delegator executes the singleRevocation() ABI. Figure 8b
shows the token information after the execution of the ABI, where only the token information of subject
addressB is deleted. Note that the parent of subject addressC is changed from addressB to addressA,
and thus the depth is also decreased by one. On the other hand, if the delegator wants to revoke the
tokens from both subjects addressB and addressC, the delegator executes the allChildrenRevocation()
ABI. Figure 8c shows the token information after the execution of the ABI, where the token information
of both subjects is deleted.

(a) Token Information of addressB and addressC before
Revocation.

(b) Token Information of addressB and addressC after
singleRevocation().

(c) Token Information of addressB and addressC after
allChildrenRevocation().

Figure 8. Revocation of read Token.
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5.5. Token Verification

After receiving the read token, the subject addressB can pass the token to the smart contract to
verify that it has the read right when it wants to read the object. Figure 9a depicts the result when the
subject addressB sent the read request. The result shows that the subject addressB is allowed to read
the object. For comparison, Figure 9b depicts a rejected execution request when the subject addressB
does not own the corresponding token.

(a) Read Request.

(b) Execution Request.

Figure 9. Access Result When Subject addressB Sends Requests.

6. Monetary Cost Evaluation

The Ethereum blockchain system requires users to pay some fee for issuing a transaction. This fee
will be paid to the miner who includes the transaction into the winning block, i.e., the block created by
the winner of the mining competition. Note that users usually need to issue a transaction to execute an
ABI of a smart contract. This means that users have to pay some transaction fee for using the functions
provided by our access control system. Ethereum uses Ether as the unit for measuring the transaction
fee, which is about 160 US dollars as of 10:00 JST, January 16, 2020.

In general, the transaction fee TxFee of calling an ABI can be expressed in the following
equation [23].

TxFee = gas× gasPrice, (4)

where gas is Ethereum’s unit for measuring the computing and storage resources required to perform
the actions of ABIs, and gasPrice, measured in Ether/gas, is the price for each unit of gas.

When issuing a transaction, the sender needs to specify the gas price he/she wants to pay for the
transaction. Because the total gas amount of transactions included in a block cannot be larger than
8 million (called gas limit), miners prefer to including transactions with higher gas price into their
blocks to gain more reward. Consequently, transactions with higher gas price are faster to appear in
the blockchain in general.

Because the gas price varies with senders, this study measured the amount of gas instead of
Ether used by each ABI and used this amount as the metric for evaluating the proposed access control
scheme. In addition, to compare our scheme with the BlendCAC scheme in [28] in terms of the gas
cost, we also measured the amount of gas consumed by the ABIs of the latter, including createAction(),
delegation(), and allChildrenRevocation(). Table 3 shows the variables used in the measurement of the
gas cost.



Sensors 2020, 20, 1793 14 of 20

Table 3. Variables in Measurement of Gas.

Variable Meaning

len() The number of characters or the array element.
Act Specified action name by transaction sender.

Op[] The array of actions used in BlendCAC.
Des The number of the descendants of the specified address.

6.1. Token Creation

When the owners of an object create a token, they need to send a transaction specifying the new
token’s action name. The length of the action name affects the storage resources and gas used by
the createAction() ABI. Thus, we consider three patterns of the input action name, namely pattern1,
pattern2, and pattern3, with lengths of 3, 4, and 5, respectively. Table 4 shows some examples of the
three patterns as well as the amount of gas used by each example.

Table 4. Gas Used in createAction() ABI.

Pattern1 Pattern2 Pattern3
Act Gas Act Gas Act Gas

“exe” 123,902 “read” 123,966 “write” 124,030
“end” 108,902 “Edit” 108,966 “start” 109,030
“GET” 108,902 “POST” 108,966 “read2” 109,030

We can see that the first token creation of each pattern uses about 15,000 more gas than the
subsequent ones. This is because the createAction() ABI needs to initially allocate some memory for
tokens and the subject address VIDS, which consumes some extra gas. By comparing the three patterns,
we can observe that the amount of used gas increases by 64 as the length of the action name increases
by one character. The relationship between the amount of used gas and the length of input action
names can be expressed by

gas = 108710 + 64× len(Act) + 15000× 1 f irst time, (5)

where 1 f irst time is an indicator function, which equals 1 for the first time of token creation. We can also
observe that the gas consumption of the token creation is independent of the number of tokens created
since the second creation, i.e., remains constant as the latter increases. In the following measurements,
we set the length of the action name to 4.

In the BlendCAC scheme, the OP’s (i.e., actions) are managed by an array. Thus, as the number of
OP’s increases, a larger array is needed and more computing resource will be used as well. Table 5
shows the relationship between the amount of gas and the length of the OP array (i.e., len(Op[])),
which can be expressed by

gas = 49438 + len(Op[])× 2336 + 14997× 1 f irst time, (6)

Comparing the results in Table 5 and the pattern2 column of Table 4, we can observe that when
the number of actions is small, the creation of one token by the proposed scheme usually consumes
more gas than that of the BlendCAC scheme (see the token "read" in both tables for an example). This
is because the tokens in the proposed scheme contain more information than those in the BlendCAC
scheme (i.e., contain not only the information for access control but also the relationship of delegation),
thus requiring more gas. However, as the number of actions increases above a threshold, the creation
of one token by the proposed scheme consumes less gas than that of the BlendCAC scheme. This is
because the gas cost of token creation of the BlendCAC scheme increases almost linearly as the number
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of actions (i.e., the length of the OP array len(Op[])) increases, while that of the proposed scheme
remains constant.

Table 5. Gas Used in BlendCAC’s createAction() ABI.

len(Op[]) Act Gas

0 “read” 64,435
1 “edit” 51,774
2 “POST” 54,110
3 “exe2” 56,446

6.2. Token Delegation

When the delegation() ABI is called by the delegator to delegate a token to a delegatee, the ABI
creates a token associated with the delegatee’s address and then stores the delegatee’s address in the
VIDCh filed of the delegator’s token. Because the storage of a token is fixed in size and so is the address,
it can be predicted that the delegation() ABI consumes a constant amount of gas. We measured the
amount of gas used by the delegation() ABI and summarize the results in Table 6. In this measurement,
a token is delegated from addressA to addressB, then from addressB to addressC, and finally from
addressC to addressD. In addition, the token of addressC is further delegated to addressE and addressF,
respectively. The amount of gas used for each delegation in the first case is 162, 386, and that in the
second case is 147, 386. The difference of 15, 000 gas is due to the initial cost for allocating storage
for the VIDCh field of the token of addressC. That is, when addressC delegates its token to addressD,
15, 000 gas is required to create the VIDCh field, while when addressC delegates its token to addressE
and addressF afterwards, the VIDCh field already exists and thus no gas is required. The amount of
gas consumed by the delegation() ABI can be expressed by

gas = 147386 + 15000× 1 f irst delegation, (7)

where 1 f irst delegation is the indicator function, which equals 1 if the delegator delegates its tokens for
the first time. Equation (7) indicates that the token delegation consumes a constant amount of gas.

Table 6. Gas Used in delegation() ABI.

Delegator Delegatee Gas

addressA addressB 162,386
addressB addressC 162,386
addressC addressD 162,386
addressC addressE 147,386
addressC addressF 147,386

Table 7 shows the gas consumption of the same delegations using the ABI of the BlendCAC scheme.

Table 7. Gas Used in BlendCAC’s delegation() ABI.

Delegator Delegatee Gas

addressA addressB 171,509
addressB addressC 171,509
addressC addressD 171,509
addressC addressE 156,509
addressC addressF 156,509
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The amount of gas consumed by the delegation of the BlendCAC scheme can be expressed by the
following equation:

gas = 156509 + 15000× 1 f irst delegation, (8)

which shows similar gas consumption to the token delegation of the proposed scheme. However,
by comparing Equations (7) and (8), we can see that the token delegation of the BlendCAC scheme
consumes more gas than that of the proposed scheme. This is because, when delegating a token, the
former needs to modify the states of two tokens, i.e., the capability token (ICap) and the delegation
certificate token (IDC).

6.3. Token Revocation

When the singleRevocation() ABI is called by the delegator to revoke a token specified by the input
address, it performs three tasks: (1) rewriting the VIDCh filed of the revoked token’s parent token
and also the VIDP field of the revoked token’s children token; (2) deleting the revoked token from
the storage; and (3) decrementing the dep field of each descendant token of the revoked token by one.
Tasks (1) and (2) are expected to consume a constant amount of gas because of the fixed storage size
of addresses and the token, while the amount of gas used by Task (3) is expected to be dependent
on the number of the descendant tokens. We evaluated the gas consumption of the singleRevocation()
ABI when the number of the descendant tokens is 0, 1, 2, 3, and 4, respectively. Table 8 shows the
results, from which we can find the following relationship between the amount of gas used by the
singleRevocation() ABI and the number of the descendant tokens Des:

gas =

{
40, 329, Des = 0,
60, 540 + (4, 119× Des), otherwise.

(9)

Table 8. Gas Used in singleRevocation() ABI.

Des Gas

0 40,329
1 64,659
2 68,778
3 72,897
4 77,016

The above expression shows that the amount of gas used by the singleRevocation() ABI increases
almost linearly as the number of the descendant tokens increases.

When the allChildrenRevocation() ABI is called to revoke all the descendant tokens, two tasks will be
performed: (1) deleting a specified address from the VIDCh field of the parent token; and (2) deleting
the token at the specified address and all the descendant tokens. Similar to the singleRevocation()
ABI, Task (1) is expected to consume a constant amount of gas, while the amount of gas used by
Task (2) depends on the number of descendant tokens. We measured the gas consumption of the
allChildrenRevocation() ABI for the cases with 0, 1, 2, 3, and 4 descendant tokens, respectively.

Table 9 summarizes the results, from which we deduce the following linear relationship between
the amount of gas used by the allChildrenRevocation() ABI and the number of descendant tokens Des:

gas = 37021 + (22106× Des). (10)
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Table 9. Gas Used in allChildrenRevocation() ABI.

Des Gas

0 37,021
1 59,127
2 81,233
3 103,339
4 125,445

Note that only the allChildrenRevocation() ABI is provided by the BlendCAC scheme, thus we
compare the gas consumption of the token delegation of both schemes based on this ABI. Table 10
shows the gas consumption by the allChildrenRevocation() ABI of the BlendCAC scheme.

Table 10. Gas Used in BlendCAC’s allChildrenRevocation() ABI.

Des Gas

0 32,009
1 51,156
2 70,303
3 89,450
4 108,597

Similarly, we have the following relationship between the gas consumption and number of
descendant tokens Des:

gas = 19147× Des + 32009. (11)

The comparison between Tables 9 and 10 shows that our scheme consumes more gas than the
BlendCAC scheme in terms of the revocation of all the descendant tokens. This is because the amount
of data to be deleted has increased by managing the capability tokens in units of actions.

Table 11 compares the asymptotic gas consumption of the functions provided by the proposed
scheme and the BlendCAC scheme, when the number of descendant tokens Des becomes extremely
large, e.g., when they are applied in a large-scale IoT system. The results show that the proposed
scheme consumes less gas than the BlendCAC scheme in terms of the token creation, and has the same
order of magnitude of gas consumption in terms of token delegation and token revocation from all
descendants. It should be noted that the BlendCAC scheme can achieve only simple delegation but
our scheme can also provide flexible delegation in the same ABI. In addition, the proposed scheme
provides a new function, i.e., single token revocation.

Table 11. The gas used in ABIs.

Functions Our Scheme BlendCAC

Token creation O(1) O(len(Op[]))

Simple delegation
O(1)

O(1)

Flexible delegation -

All children revocation O(Des) O(Des)

Single revocation O(Des) -

7. Conclusions

In this paper, we focus on the critical access control issue for IoT resources. In particular, we aim
to solve the problems of delegation ambiguity and inconsistency existing in a blockchain-based IoT
access control scheme called BlendCAC proposed by other researchers, to provide more fine-grained
and flexible access control. This paper proposes a CapBAC scheme by using Ethereum smart contracts
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to store and manage the capability tokens. Compared with the existing BlendCAC scheme, this scheme
achieves more fine-grained access control and more flexible token management by defining capability
tokens in units of actions and using a delegation graph to store the token delegation relationship
among the subjects. Experiments based on a local Ethereum blockchain were conducted and the results
demonstrate the feasibility of the scheme. We also conducted experiments to evaluate the monetary
cost of the proposed scheme in terms of gas consumption. The experimental results show that the
proposed scheme consumes no more gas than the BlendCAC scheme. However, low privacy of access
rights is the main drawback of the proposed scheme, since the tokens are stored in the blockchain
without being encrypted. Thus, one of our future works is to address this issue. Another limitation of
this paper is that we fail to implement the proposed scheme in real-world IoT systems and prove that
it can fulfill the security goals. We will consider these issues in our future work.
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