
sensors

Article

An Automatic Bearing Fault Diagnosis Method
Based on Characteristics Frequency Ratio

Dengyun Wu 1,2, Jianwen Wang 3, Hong Wang 2, Hongxing Liu 2, Lin Lai 2 , Tian He 3

and Tao Xie 1,*
1 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China;

wudyziyu@163.com
2 Science and Technology on Space Intelligent Control Laboratory, Beijing Key Laboratory of Long-Life

Technology of Precise Rotation and Transmission Mechanisms, Beijing Institute of Control Engineering,
Beijing 100194, China; hongwang1981@163.com (H.W.); liuhongxingcn@163.com (H.L.);
lailinabc@sina.com (L.L.)

3 School of Transportation Science and Engineering, Beijing 100191, China; zy1813322@buaa.edu.cn (J.W.);
hetian@buaa.edu.cn (T.H.)

* Correspondence: xietao@hit.edu.cn; Tel.: +86-451-8641-7891; Fax: +86-451-8641-7891

Received: 5 February 2020; Accepted: 28 February 2020; Published: 10 March 2020
����������
�������

Abstract: Bearing is a key component of satellite inertia actuators such as moment wheel
assemblies (MWAs) and control moment gyros (CMGs), and its operating state is directly related to
the performance and service life of satellites. However, because of the complexity of the vibration
frequency components of satellite bearing assemblies and the small loading, normal running bearings
normally present similar fault characteristics in long-term ground life experiments, which makes it
difficult to judge the bearing fault status. This paper proposes an automatic fault diagnosis method for
bearings based on a presented indicator called the characteristic frequency ratio. First, the vibration
signals of various MWAs were picked up by the bearing vibration test. Then, the improved ensemble
empirical mode decomposition (EEMD) method was introduced to demodulate the envelope of
the bearing signals, and the fault characteristic frequencies of the vibration signals were acquired.
Based on this, the characteristic frequency ratio for fault identification was defined, and a method for
determining the threshold of fault judgment was further proposed. Finally, an automatic diagnosis
process was proposed and verified by using different bearing fault data. The results show that
the presented method is feasible and effective for automatic monitoring and diagnosis of bearing faults.

Keywords: rolling bearings; automatic fault diagnosis; envelope analysis; characteristics frequency ratio;
ensemble empirical mode decomposition

1. Introduction

Moment wheel assemblies (MWAs) and control moment gyros (CMGs) have been widely used
in satellite attitude control and large angle slewing maneuvers over the years. High-speed rotating
systems are supported by a pair of angular contact ball bearings with different sizes and capacities [1].
As reliability is of paramount importance, bearings with high precision class are selected. As one
of the critical components, bearing failures lead to partial and total mission failure or performance
degradation of the satellite [2,3]. Satellite in-orbit failure statistics show that a large part of satellite
failures come from the attitude and orbit control sub-system, and more than half of these failures are
caused by the bearings [4]. Therefore, long-life experiments of ball bearings on the ground become
an essential and effective solution, and effective methods for the diagnosis of the operating conditions
of bearings in MWAs are required [5].

Sensors 2020, 20, 1519; doi:10.3390/s20051519 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8763-6508
http://www.mdpi.com/1424-8220/20/5/1519?type=check_update&version=1
http://dx.doi.org/10.3390/s20051519
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 1519 2 of 12

For rolling bearings under highspeed and low loading conditions such as MWAs bearings, local
scratching damage caused by skidding is a common failure [6]. When the bearing component’s surface
is locally damaged, the high-frequency impact response between components during the operation
will be excited [7,8] and the vibration signals exhibit an amplitude modulation phenomenon that
combines the characteristic frequency of the bearing defect with the structural resonances [9]. Therefore,
as a sensitive and effective method [10], vibration measurements are widely used to detect bearing
defects in the fields of aviation [11], transportation [12], energy [13], and other fields. Among many
diagnostic methods, the envelope detection (ED) method is one of the most commonly used and effective
methods in vibration-based bearing fault diagnosis [14,15], which was presented by Mechanical
Technology Inc. in the early 1970s [16] and was originally called the high frequency resonance
technique [17].

So far, more attention has been paid to the research on bearing fault diagnosis. A review
of envelope detection was presented by Randall et al. [18] and Tyagi et al. [19], and envelope
detection is being continuously improved to diagnose weaker fault information under strong noise.
Klausen et al. [20] presented a method for analyzing multiple narrow bands and bearing faults could
be detected autonomously by a narrow-band envelope spectrum-based algorithm. The accelerated life
test has verified the performance of the proposed method. Feng et al. [21] studied the performances
of several envelope detection methods for extracting fault features with wireless sensor nodes,
which showed that the spectral correlation and short-time RMS (root mean square) based methods
can well reveal the simulated three types of bearing faults with a significantly improved computation
speed. Tyagi et al. [19] aimed to address the problem of traditional envelope detection being highly
sensitive to the envelope window, and employs a particle swarm optimization method to select
the most optimum envelope window to band pass the vibration signals induced by fault rolling
element bearings. In order to determine an informative spectral frequency band for generating
an enhanced/squared envelope spectrum, Wang et al. [22] proposed a simple and fast guideline
and conducted an experiment to highlight its superiority by comparing it with the fast Kurtogram.
Tsao et al. [23] introduced empirical mode decomposition to select an appropriate resonant frequency
band for characterizing the characteristic frequencies of bearing faults by using the envelope analysis
subsequently, and the experimental results showed that the proposed method can diagnose the bearing
fault types efficiently and correctly.

The methods above-mentioned are mainly aimed at the diagnosis of early bearing failure on
the ground. However, for space bearings, certain fault characteristics can also be captured in normal
bearings. The problem at this time is not to extract earlier fault characteristics, but to distinguish
the characteristics between normal and fault bearings. Moreover, the envelope spectrum contains
rich information, thus manual identification requires professional knowledge and experience of
the diagnostic staff and a large workload. To solve these problems, based on the bearing vibration
experimental data, this paper proposes a method for calculating the characteristic frequency ratio,
which is used to quantitatively evaluate bearing failures, and automatic fault diagnosis and quantitative
diagnosis processes are further proposed.

The rest of this paper is organized as follows. First, a vibration test of an MWA’s bearing assembly
is carried out in Section 2, which provides the data for the envelope analysis. In Section 3, an improved
envelope analysis method is presented based on the ensemble empirical mode decomposition (EEMD)
method to acquire the fault features of the vibration signals. In Section 4, the method of the characteristic
frequency ratio is put forward and in Section 5, the proposed method is verified by using different
bearing fault data. Finally, the conclusions are drawn in Section 6.

2. Experimental Data Acquisition

Figure 1 shows the experimental device of the satellite flywheel bearing assembly. The assembly’s
rotor is supported by a pair of angular contact ball bearings. The inner ring of the bearing is connected
to the fixed shaft, and the rotating housing supported by the outer ring is connected to the drive motor.
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Therefore, the inner ring of the bearing is fixed and the outer ring rotates. The accelerometer was
mounted on one end (top) of the fixed shaft. Due to the higher resonance frequencies of the components,
a higher vibration signal sampling frequency of 25,600 Hz was used during testing. The normal bearings
and various fault bearings that actually occur during long-term testing had be tested, and the data in
various states were obtained to study the automatic diagnosis method. Some of the damage bearing
elements are shown in Figure 2.
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Figure 2. Damage elements of bearings. (a) The scratched inner ring. (b) The scratched ball.

Figure 3a,b show the time-domain waveforms and their spectrum diagrams of normal bearings.
It can be seen from Figure 3 that the vibration signal components of the normal bearing are
relatively complicated.
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For a stationary inner ring (fr) and rotating outer ring, the fundamental frequencies are derived
from the space bearing geometry as follows:

Rolling element rotational frequency

fb =
(

Dm

2Db

)1−
(Dbcosα)2

D2
m

 fr (1)

Ball pass frequency of inner ring (BPFI)
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(Z

2

)(
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)
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Ball pass frequency of outer ring (BPFO):
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2

)(
1 +
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)
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Fundamental train frequency relative to inner ring:
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(1

2

)(
1−
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)
fr (4)

The characteristic frequencies of the defect bearing can be defined as the fundamental frequencies
and their multiple frequencies.

According to the calculation formulas of the characteristic frequencies of bearing failures,
the characteristic frequencies of the local damage of each component under 3000 rpm are shown in
Table 1.

Table 1. Characteristic frequencies of the local damage of bearing elements at different speeds.

Fault Elements
Rotating Speed 3000 rpm

fip 356.1 Hz

fop 243.9 Hz

fb 124.7 Hz

fic 29.7 Hz

3. Fault Feature Extraction Method Based on Improved Envelope Detection Method

3.1. The Proposal of the Method

In the vibration test, the vibration signal collected by the sensor contains not only the bearing fault
information, but also a large amount of background noise. The ED technique involved band passing
the vibration signal while keeping the central frequency of the pass band at one of the resonances,
and its diagnostic performance will degrade if the selected central frequency and bandwidth of
the bandpass filter is not optimum. The selection of the envelope window is a hot topic in the field
of bearing fault diagnosis. Some adaptive screening methods such as the local mean decomposition
(LMD) and the empirical mode decomposition (EMD) have been introduced to select frequency bands
automatically, and have achieved good results in bearing diagnosis [23,24]. In order to overcome
the mode mixing of EMD, the ensemble empirical mode decomposition (EEMD) was presented and can
extract the weak impact component more effectively [25]. Here, the improved EEMD method was
introduced to select appropriate IMFs for the envelope analysis of bearing fault diagnosis. At present,
the EEMD-based bearing diagnosis method mainly focuses on the diagnosis of a single fault such
as the pitting or spalling of the ground bearing component. Therefore, a few studies have selected



Sensors 2020, 20, 1519 5 of 12

the most sensitive IMF to extract fault features according to the kurtosis of the IMF, and have achieved
good results.

For MWA bearings, local scratch damage due to skidding is a common failure. As a result,
the raceways and balls are often scratched against each other at the same time, which often results in
local failures. Moreover, it usually presents a coupled fault. At the beginning, because the damage is
minor and is a multi-faults form, not only the denoising method but also the demodulation method
with less loss of fault information is needed. Therefore, in the case of a coupled fault, the IMFs that
respond to the faults should be fully selected for further processing. Therefore, a multi-IMFs selection
method should be proposed based on a new standard. Here, an improved EEMD method based on
kurtosis for IMF selection is introduced to extract the fault features, which is described below.

For an IMF component, let the ith time series point be xi. Then, the kurtosis K of the IMF to be
defined as

K =
1
N

N∑
i=1

[xi − µ

σ

]4
(5)

where N is the length of the time series point; µ is the mean value; and σ is the standard deviation of
the IMF.

If the probability density function of the IMF satisfies the normal distribution, the kurtosis K = 3
regardless of the variance. If the IMF component contains the shock signal caused by the damage,
the shock component will increase the probability density of the vibration signal with a larger amplitude,
and the corresponding K will be greater than three. Therefore, any IMF with a kurtosis greater than
three may contain fault information. Moreover, it is possible that different faults result in different IMF
components. Therefore, it is possible to select all IMFs with a K greater than three for further processing
without losing fault information [20]. In this paper, IMFs with a K greater than three are added together
to reconstruct a new signal, and the signal is then used to extract the fault feature frequencies based on
envelope analysis. Thus, a coupling fault diagnosis method for light-load aerospace rolling bearings
was introduced based on EEMD and kurtosis and be described as follows:

(1) The vibration signal of the bearing assembly was obtained by the experimental device.
It is worth pointing out that the sampling frequency of the bearing assembly vibration needs to meet
a certain oversampling rate. Given that the resonance frequencies of the bearing components are
generally high, 25,600 Hz was used in this study.

(2) Then, the EEMD was used to decompose the test signal into a set of IMF components. The signal
to be analyzed needs a certain length of time. In this paper, signals with a length of 1 s and about
50 cycles were selected.

(3) The kurtosis for each IMF component was calculated. All IMFs with a kurtosis greater than
three were added to reconstruct a new signal.

(4) The Hilbert transform was used to process the reconstructed signal to obtain its envelope
signal, and the envelope spectrum of the bearing failure was calculated from the envelope signal by
Fourier transform.

(5) The envelope spectrum was analyzed and the fault type of the rolling bearing according to
the characteristic frequency of the fault was estimated.

3.2. The Verification of the Method

For MWA bearings, local scratching damage caused by skidding is a common failure. Therefore,
the raceway and the ball are often stabbed at the same time, so it is a coupling fault. Here, we took
the scratching damage as the diagnosis object.

Figure 4 shows the fault feature extracting results of the ball–inner ring scratching. According to
Table 1, when the rotational speed of the rolling bearing was 3000 rpm, the theoretical fault characteristic
frequency of the inner ring was 356.1 Hz while that of the ball was 124.7 Hz. In Figure 4, the envelope
spectrum of a single inner ring fault signal contains the fault characteristic frequency of the bearing
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inner ring (357 Hz, very close to the theoretical value of 356.1 Hz) and its second harmonic frequency
(751 Hz). The ball characteristic frequencies (126 Hz and 251 Hz) can also be seen in Figure 4.
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The fault feature extracting results of the ball–outer raceway scratching is shown in Figure 5.
The theoretical fault characteristic frequency of the outer ring was 243.9 Hz while that of the ball was 124.7 Hz.
In Figure 5, the envelope spectrum contains the fault characteristic frequency of the bearing’s outer ring
(245 Hz, very close to the theoretical value of 243.9 Hz) and its second harmonic frequency (490 Hz).
The ball characteristic frequencies (251 Hz, nearly twice of the characteristic frequency) can also be detected
in Figure 5.
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Figure 5. The ball–outer raceway scratching fault. (a) The time domain waveform; (b) envelope
detection based on improved EEMD.

In order to verify the adaptability of the method, the scratched ball was replaced by a normal
ball. The measured vibration signal and the envelope spectrum are shown in Figure 6. In Figure 6,
the envelope spectrum contains only the fault characteristic frequency of the outer ring and its multiple
frequencies (246 Hz, 491 Hz and 735 Hz).
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Based on the points discussed above, the improved EEMD can diagnose the faults accurately
regardless of whether it is a single fault or coupling fault.

Aiming at the vibration signals of normal bearings as shown in Figure 3, the results processed by
the improved EEMD method are shown in Figure 7. It can be seen that although the larger frequency in
the envelope spectrum is not the characteristic frequency, some frequency components closely related
to the characteristic frequency of the bearing are still visible. This means that the bearing condition
needs to be judged based on the expert’s experience, which brings difficulties to the real-time health
monitoring of space bearings for long life. Therefore, a method for distinguishing between a faulty
and a normal bearing is needed, and in particular, a method capable of automatic diagnosis.
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4. The Automatic Fault Diagnosis Method Based on Characteristic Frequency Ratio

Based on the conclusions in Section 3, it is evident that the fault feature information extracted by
the improved EEMD method is clear and accurate, which can diagnose the coupled faults effectively at
different speeds. However, in this method, the fault characteristic frequencies still have to be detected
in the envelope spectrum by the use of the method, which is limited by the experience and knowledge
of testers to some extent in practical applications.
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It can also be concluded from Section 3 that the amplitude or energy of the characteristic frequencies
in the envelope spectrum is relatively high under fault conditions, thus the characteristic frequency
ratio is proposed in this paper, which can be used to determine the fault automatically by calculating
the amplitude index of the characteristic frequency of the envelope spectrum.

4.1. The Characteristic Frequency Ratio

Aea =
1

Ne

Ne−1∑
i=0

Ae( fi) (6)

where Aea is the average value of the spectrum, and Ne is the number of spectral lines of the analysis
bandwidth in the envelope spectrum.

During the actual operation of the bearing assembly, due to the rotating speed instability caused by
skidding fault and the error between the calculated parameters and the actual parameters, the calculated
fault characteristic frequencies usually deviate from the corresponding actual characteristic frequencies.
Hence, Aed is calculated as

Aed =
1
ne

ne∑
i=1

max[Ae(i fd − ∆ f ), Ae(i fd − ∆ f + fss), · · · , Ae(i fd), · · · , Ae(i fd + ∆ f − fss), Ae(i fd + ∆ f )] (7)

where fss is the frequency resolution and ∆f is the frequency interval for searching characteristic frequencies.
Considering the deviation of fd from the theoretical value and the difference between

the characteristic frequencies, ∆f was set as 2 Hz.
Then, the characteristic frequency ratio δA can be defined as

δA =
Aed
Aea

(8)

The value of δA can be used to judge whether there is a fault and the severity of the fault.

4.2. Automatic Bearing Fault Diagnosis Process Based on δA

The specific calculation process of the automatic bearing fault diagnosis method based on
the characteristic frequency ratio is shown in Figure 8.
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(1) Signal decomposition and reconstruction. Decompose and reconstruct the bearing vibration
signals based on the improved EEMD method proposed in Section 3.

(2) Characteristic frequency extraction. Resonant demodulate the reconstructed signal to obtain
the envelope spectrum.
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(3) Calculate the characteristic frequency ratio of the envelope spectrum according to Equations (6)–(8);
(4) Automatic diagnosis: Comparing the obtained results with threshold dlimit and observing

whether the various characteristic frequency ratios exceed the limits and the extent of the limits to
determine whether the bearing element has failed.

5. Determination of Automatic Discrimination Threshold

The fault discrimination threshold of the characteristic frequency ratio is very crucial for
the automatic fault diagnosis of bearings. Theoretically, δA = 0 means that there is no fault
characteristic line in the envelope spectrum, which indicates no damage in the bearing. However,
according to the analysis results in Section 3, the characteristic frequency line of a normal bearing
is generally not zero. In light of this situation, the actual bearing vibration data were utilized in
this paper to establish the discrimination threshold of the characteristic frequency ratio. According
to the diagnosis process, the characteristic frequency ratio is calculated for normal bearing data,
outer ring fault, ball-inner ring scratching fault, and ball-outer ring scratching fault, which is prepared
to find the determination method of the discrimination threshold.

In order to have practical significance, 30 samples were used for each condition, and the envelope
spectrum ratios were calculated. The average value of the obtained characteristic frequency ratios
is shown in Table 2. It can be seen from Table 2 that the ratios of the normal bearings were small,
and the average value was less than 2. When a bearing fault occurs, the characteristic frequency
ratio of the corresponding fault component increases significantly, and the smallest reached 3.573
(corresponding to the ball in the ball–outer ring scratching fault). Another phenomenon is that when
there is a fault, the characteristic frequency ratio corresponding to the non-faulty element will also rise,
for example, the ball ratio in the outer ring fault condition increased to 2.438. In terms of the distribution
of the averages of the ratios, it seems easy to determine whether there is a fault. However, considering
the dispersion of the data, the ratios were analyzed based on the box-plot method, as shown in Figure 9.

Table 2. The characteristic frequency ratios of bearings in various states (average value).

Fault Types
Elements

Inner Ring Outer Ring Ball

Normal 1.667 1.617 1.553

Outer ring 2.173 7.682 2.438

ball-inner ring scratching 4.251 1.526 9.302

ball-outer ring scratching 1.608 8.735 3.573
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It can be seen from Figure 9 that it is intuitive and effective to distinguish normal and fault bearings
according to the characteristic frequency ratio. For normal bearing data, various fault characteristic
frequency ratios are low, in contrast, the fault characteristic frequency ratio will be significantly high.
For the ball–outer ring scratching, the increase of the ball characteristic frequency ratio is not very
significant; while under the outer ring failure, the ratio rises significantly, resulting in the lower limit
of the ratio in the ball–outer ring scratching fault being higher than the one in the outer ring fault.
According to Figure 9, the upper boundary without fault was 3.48 and the lower boundary with
the fault was 2.88. Data between the two boundaries will result in misjudgment. Statistics showed
that the two conditions of normal and ball–inner ring coupling were completely correct. There were
six groups of data recognition errors in the outer ring fault with an accuracy rate of 93.3% (84/90).
There were 16 sets of data errors during the ball–outer ring coupling recognition, with an accuracy rate
of 82.2% (74/90). Overall, the accuracy rate was 93.89% (338/360).

Therefore, it is difficult to determine the threshold for fault diagnosis effectively, and false alarms
or missed alarms are inevitable. As such, the method needs to be improved in order to enhance
the recognition effect.

In order to enhance the discrimination effect, it is necessary to solve the problem where
a characteristic frequency ratio corresponding to non-faulty components will also rise. Here, a processing
method is proposed: Take the minimum value of ratios (inner ring, outer ring, and ball) of each set
of data as the reference denominator, and all the characteristic frequency ratios are divided by this
value to obtain a new ratio result. In this way, the rise shift effect of the ratios corresponding to
non-faulty elements is corrected to a certain extent. The data is re-settled according to this process
and the resulting box-plot is shown in Figure 10. It can be seen from Figure 10 that the lower bounds
of the ratios of all faults were above the upper bounds of the characteristic frequency ratios of all
non-faulted elements, so the judgment threshold can be well determined at this time. The threshold can
be determined as needed such as the maximum quartile of the non-faulty element (1.31), the maximum
upper bound of the non-faulty components (1.53), the minimum quartile of the fault element (1.98),
and the minimum lower bound of the fault element (1.58). In this paper, the threshold was determined
to be 1.31, which was the largest quartile of non-fault elements. In all fault situations, the accuracy of
fault identification using this method reached 100%. In this way, the characteristic frequency ratio can
be used to diagnose bearing faults automatically and locate faulty components.
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6. Conclusions

This paper introduced an improved EEMD envelope detection method and characteristic frequency
ratio for automatic bearing fault diagnosis. By comparing the diagnosis results under different fault
conditions, the following conclusions can be obtained:

Damage due to the scratching between two components of space bearings with light loading
is commonly a coupling fault. The improved EEMD method can carry out the diagnosis of single
and coupled faults effectively without the loss of fault information. However, certain characteristic
frequency components can also be detected in normal bearings with light loading.

The proposed characteristic frequency ratio method is intuitive and effective to distinguish normal
and fault bearings. For normal bearing data, various fault characteristic frequency ratios are lower,
while for fault bearing data, the fault element’s characteristic frequency ratio will be significantly
larger. However, the characteristic frequency ratio of non-faulty elements will also increase. Although
the increase is much smaller than that of faulty components, it sometimes overlaps with the ratio of
weak faults.

When the minimum ratio is used to weight all ratios, the corrected characteristic frequency ratios
of non-fault components will be suppressed. At this time, the lower boundary of all the fault elements’
ratios are above the upper boundary of all the characteristic frequency ratios of the non-faulty elements.
Thus, the fault can be distinguished from the non-fault effectively.

The method proposed in this paper can be used to realize the automatic identification of bearing
faults, and is practical for different types of faults. It is suitable for monitoring bearings in long-term
tests and can also provide references for other diagnosis fields using the envelope spectrum.
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