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Abstract: A digital elevation model (DEM) can be obtained by removing ground objects, such as
buildings, in a digital surface model (DSM) generated by the interferometric synthetic aperture
radar (InSAR) system. However, the imaging mechanism will cause unreliable DSM areas such as
layover and shadow in the building areas, which seriously affect the elevation accuracy of the DEM
generated from the DSM. Driven by above problem, this paper proposed a novel DEM reconstruction
method. Coherent Markov random field (CMRF) was first used to segment unreliable DSM areas.
With the help of coherence coefficients and residue information provided by the InSAR system,
CMRF has shown better segmentation results than traditional traditional Markov random field (MRF)
which only use fixed parameters to determine the neighborhood energy. Based on segmentation
results, the hierarchical adaptive surface fitting (with gradually changing the grid size and adaptive
threshold) was set up to locate the non-ground points. The adaptive surface fitting was superior to
the surface fitting-based method with fixed grid size and threshold of height differences. Finally,
interpolation based on an inverse distance weighted (IDW) algorithm combining coherence coefficient
was performed to reconstruct a DEM. The airborne InSAR data from the Institute of Electronics,
Chinese Academy of Sciences has been researched, and the experimental results show that our
method can filter out buildings and identify natural terrain effectively while retaining most of the
terrain features.

Keywords: coherence coefficient; DEM; DSM; hierarchical adaptive surface fitting; InSAR; markov
random field; residue

1. Introduction

An interferometric synthetic aperture radar (InSAR) has the ability of acquiring a large-area and
high-precision digital surface model (DSM) in all-times and all weather. The information of a digital
elevation model (DEM) is required for many applications, therefore it is necessary to reconstruct a
DEM from a DSM by removing the above-ground objects such as buildings. The DEM reconstruction
is involved in photogrammetry [1,2], laser detection and ranging (LiDAR) [3–6], or InSAR [7–10].
Many methods have been proposed in this subject especially in the field of LiDAR [6], however
reconstruction research based on InSARs is relatively rare. The main reason is that the accuracy of
an InSAR DSM is lower than that of LiDAR due to the unique side looking imaging mechanism of
synthetic aperture radar (SAR). For example, in an InSAR DSM, there can be a lot of layover and
shadow areas in the building scene and the interferometric phase inversion of these areas are not
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reliable, which may generate a lot of points with incorrect extreme elevations in an InSAR DSM.
Therefore, the reconstruction of an InSAR DEM is more challenging than that of LiDAR data.

Wang and Mercer [7] proposed an InSAR DEM reconstruction method based on image pyramid.
Each level needs to be reconstructed in this algorithm, thus the error in the middle level will affect the
next level, which is prone to error accumulation. Jiang [8] combined the slope information and the
image pyramid method to filter non-ground points by calculating the slope between the candidate
points. Zhang and Tao [9] proposed a surface-fitting-based method of an InSAR DEM reconstruction.
The DEM is generated from InSAR DSM by extracting candidate ground points in a fixed-size grid,
adjusting points with a distance of more than the given threshold from fitted surface, and and using
ground points for interpolatio. These methods assume that the point with the minimum elevation in
the fixed-size grid is the ground point, without considering the unreliable DSM points with the large
spike noise belonging to layovers and shadows in the InSAR building areas. When the local minimum
points fall into these unreliable DSM areas, extreme points are selected as the ground points, causing
significant errors in the DEM reconstruction. Therefore, to avoid the adverse effects of these areas on
ground points selection, it would make sense to segment the unreliable DSM area before selecting the
ground point. At the same time, the selection of grid size and threshold in surface fitting may also
significantly affect the reconstruction of the DEM. When the grid size is too large, some ground details
will be lost, and the terrain will be smoothed. When the grid size is too small, the local minimum point
will fall into the building, resulting in reduced DEM reconstruction accuracy.

Unreliable DSM areas mainly include the layover and shadow in a building scene, which can be
segmented by the intensity of pixel gray because of their different brightness in SAR images. Due to
the existence of speckle noise and complex texture characteristics of ground objects, the segmentation
results are not satisfactory in the general image segmentation algorithm. To improve segmentation
performance, the spatial relationship is usually considered. Markov random field (MRF) is recognized
in the field of image segmentation due to its ability to utilize spatial context information [11], and it
has been widely applied in SAR image segmentation [12–14]. In a traditional MRF, the ability of
the neighborhood energy to describe the spatial correlation is insufficient, and the fixed parameter
causes the neighborhood pixels to have the same impact on the central pixel. Moreover, the context
information is not fully utilized [15,16], therefore the segmentation result is prone to misclassification
points. In this paper, considering the potential of interferometric information and the coherence
coefficient and residue information are incorporated into the traditional MRF model for improving
segmentation performance.

Based on the above discussion, this paper proposed a DEM reconstruction method based on
unreliable DSM area segmentation and hierarchical adaptive surface fitting. The contributions of this
paper can be summarized as follows:

(1) In order to avoid the influence of the extreme points in the unreliable DSM areas when performing
DEM reconstruction, segmentation based on the intensity of pixel gray levels in the InSAR
amplitude image (which is helpful for the selection of ground points) was firstly used to identify
the unreliable DSM areas for improving the performance of the subsequent DEM reconstruction.

(2) In order to improve the segmentation performance, we considered the potential of InSAR data
information, such that this paper combined the coherence coefficient and residue information of
interferometric phase with the neighborhood energy of the MRF, and the full use of contextual
relationship was achieved by using the interferometric information between neighboring pixels.

(3) In the general surface fitting-based method, the fixed grid size and threshold will affect the
filtering accuracy. Therefore, a new idea of progressively reducing the grid size and setting
the adaptive threshold is proposed. It can realize the step-by-step filtering of ground points
and the preservation of terrain detail information. At the same time, inverse distance weighted
(IDW) interpolation with coherence coefficient is performed for completing the reconstruction of
the DEM.
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The rest of the paper is organized as follows. In Section 2, details of the proposed method are
described. The experimental results and discussion are in Section 3, and Section 4 is the conclusions.

2. Proposed Method

2.1. Unreliable DSM Areas Segmentation with Coherent Markov Random Field (CMRF) Method

2.1.1. Image Segmentation Based on a MRF Model

A MRF model regards an image as a points set S, and the segmentation label X is a random field
corresponding to S. The spatial relationship between neighboring pixels is constructed by defining
neighborhood cliques η= {ηi j: (i, j) ∈ S,ηi j ∈ S}. According to Bayesian theory, we need to find the
estimate of segmentation label XMAP that maximizes the posterior probability distribution:

X̂MAP = argmaxP(X|Y) = argmax
P(Y|X)P(X)

P(Y)
= argmaxP(Y|X)P(X) (1)

where X is the segmentation label, and Y is the observation image. According to the equivalence of
MRF and Gibbs Random Field (GRF), which can be proved by the Hammersley-Clifford theorem and
the Gibbs theorem, the posterior probability distribution can be represented as:

P(X = x|Y = y) = Z−1 exp(−U(x|y)) (2)

where U is the energy function; and Z denotes the normalizing constant. From Equation (2), it can
be seen that maximizing the posterior probability P(X|Y) means minimizing energy function U(x|y).
Moreover U(x|y) which is called posterior energy in this letter can be decomposed into Equation (3)

U(x|y) = U(y|x) + U(x)
= −

∑
s

ln p(ys|xs) +
∑

c∈Vs

Vc(x) (3)

where Vs is a set of all neighborhood cliques; U(y|x) denotes the likelihood energy which represents
the contribution of the pixel itself to the energy; and U(x) denotes the neighborhood energy. Vc(x) is
expressed as Equation (4) [17]:

Vc(x) =
{

0 xi = x j
β xi , x j

(4)

where xi is the segmentation label of pixel i; x j is the segmentation label of pixel j which is neighboring
pixel of i; and β is a parameter to control the contribution between U(y|x) and U(x), which is usually
determined by experience.

As shown in Equation (3), the likelihood energy is related to the likelihood function of pixels.
According to the imaging structure and pixel gray of the building scene in the SAR image, the following
three classes are determined, and the unreliable DSM areas include the layover and shadow areas.

(1) Layover areas: The characteristics of this area are scattered signals of targets at different positions
overlapping at the same distance resolution unit, causing high brightness in the SAR image.

(2) Shadow areas: This area is characterized by an extremely low backscattered signal strength,
which is caused by steep terrain or occlusion by towering targets.

(3) Background areas: The other areas which don’t belong to the layover or shadow in the scene are
grouped into the background, which mainly includes roofs, trees, and bare ground.
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A Fisher distribution model is used to describe the probability distribution of building scenes in
high-resolution SAR images by Tison [18], and it can be described as follows:

pFisher(u) =
Γ(L + M)

Γ(L)Γ(M)

L
Mµ

( L
Mµu)

L−1

(1 + L
Mµu)

L+M , L > 0, M > 0 (5)

where L and M represent the shape parameters; µ denotes the weight parameter; and Γ is the
Gamma function.

After selecting areas of different classes defined above as the supervising information, we can
estimate the parameters as follows:

M =
4R1 − 3R2 − 1
2R1 −R2 − 1

(6)

L =
2(R1 −R2)

−R1 + 2R2 −R1R2
(7)

µ = m1
2(R1 −R2)

4R1 − 3R2 − 1
(8)

where R1 = m2/(m1 ∗m1), R2 = m3/(m1 ∗m2), and m1, m2, m3 are the statistical histogram central
moments of corresponding orders.

Therefore, according to the estimated Fisher probability distribution corresponding to Equation
(5) and the neighborhood energy shown in Equation (4), the class label can be obtained by the
following formula:

X̂ = argminU(x|y)
= argmin(−

∑
s

ln p(ys|xs) +
∑

c∈Vs

Vc(x)) (9)

These class labels are firstly obtained by the initial segmentation, and then the labels are updated
iteratively. The neighborhood energy is related to the class labels of the neighboring pixels, and the
likelihood energy is determined by the probability distribution function of the pixel values. The
pixel value and neighboring label are used to calculate the posterior energy of a single pixel, and the
label with the minimum energy value is used as the segmentation result. Finally, iterative solution is
performed until the energy is stable.

2.1.2. CMRF Segmentation

In the traditional MRF model, when the center pixel label and the neighborhood pixel label are
the same, the neighborhood energy is a certain value, and when the labels are different, it is zero. This
results in the adjacent pixels having the same effect on the center pixel [15], therefore it cannot fully
utilized the contextual information. Driven by this problem, this paper redefined the neighborhood
energy model of MRF based on the coherence coefficient and residue information to make full use of
the contextual interferometric information.

The coherence coefficient is used to evaluate the quality of the InSAR interferogram, which is
defined as follows [19]:

γ =

∣∣∣E[s1s2
∗]
∣∣∣√

E
[
|s1|

2
]
E
[
|s2|

2
] (10)

where s1 and s2 are the interferometric complex image pair; and E represents mathematical expectation.
The interferometric coherence is an elemental parameter for InSAR applications, which is estimated
by comparing the radar echo across several nearby radar images pixels [20]. The related coherent
change detection (CCD) [21], maximum-likelihood (ML) CCD [22], and ML-polarimetric InSAR-CCD
(ML-PolInSAR-CCD) [23] are important applications of satellite earth observation. The coherence
coefficient is related to the characteristics of the scatterers. For example, pixels which belong to shadow



Sensors 2020, 20, 1414 5 of 18

area tend to have low a coherence coefficient because the scattering signal in these areas is dominated
by noise, while the coherence coefficient in other areas is usually higher than shadow. This property
can be used to distinguish different classes [24]. Meanwhile, the coherence coefficient usually shows
consistency and uniformity in areas with pixels belonging to the same category, which can be used to
further improve the performance of image segmentation. This paper defines a coherence coefficient
distance that measures the difference in coherence between the central pixel and the neighboring pixels,
and it is expressed as follows:

D = |γi − γ j| (11)

where γi is the coherence coefficient of the pixel i; and γ j is the coherence coefficient of pixel j, which is
the neighboring pixel of i.

Furthermore, the residue information of the interferometric phase is also helpful for SAR image
segmentation. Under ideal conditions, the absolute value of the phase gradient should be less than
π. However, due to the existence of low scattering areas such as shadow, smooth roads, and water,
etc., the absolute value of the wrapped phase gradient may be greater than π. This is called the phase
discontinuity point and is known as residue [25]. The residue distribution in the interferometric phase
image is obtained according to the following formula:

ψ1 = W(ϕi, j+1 −ϕi, j)

ψ2 = W(ϕi+1, j+1 −ϕi, j+1)

ψ3 = W(ϕi+1, j −ϕi+1, j+1)

ψ4 = W(ϕi, j −ϕi+1, j)

R = ψ1 +ψ2 +ψ3 +ψ4

(12)

where ϕi, j represents the wrapped phase at the pixel (x, y); and W represents the wrapped phase
operator. When R > 0 it is a positive residue, otherwise it is a negative residue, and R = 0 is the normal
point. The residues are caused by phase discontinuity in low-scattering areas such as shadows. If both
points are residues, they are likely to be divided into shadows, thus residue information can be helpful
for segmenting InSAR amplitude images.

Considering the effects of coherence coefficient and residue information, if the coherence coefficient
distance is small and both points are residues, the possibility of being divided into the same class is
greater, and vice versa.

More specifically, when the class labels are the same between the center pixel and the neighboring
pixel, a small coherence coefficient distance should mean low neighborhood energy, which may increase
the probability of being identified as the same class for the two pixels. Meanwhile, if the center pixel
and the neighboring pixel are both residues, the corresponding neighborhood energy should be lower
than the energy that the two points are not both residues, and it is more likely to be classified into the
same label. When the class labels are different between the center pixel and the neighboring pixel, the
opposite is true. Based on the above analysis, the improved neighborhood energy form is as follows:

Vc−CMRF(x) =


(1− e−αD)β xi = x j r(xi) , r(x j)

(1− e−µαD)β xi = x j r(xi) = r(x j)

(e−αD
− 1)β xi , x j r(xi) , r(x j)

(e−µαD
− 1)β xi , x j r(xi) = r(x j)

(13)

where α is a constant greater than zero and it is used to control the shape of the curve; µ is the weighting
coefficient of the residue information; and r(xi) = r(x j) means that both xi and x j are residues, and
r(xi) , r(x j) means the opposite. Figure 1 shows a curve of the neighborhood energy as a function of
coherence coefficient distance and residue information.
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residue information.

Therefore, Equation (3) is represented as Equation (14) in the CMRF model:

UCMRF(x|y) = −
∑

s
ln p(ys|xs) +

∑
c∈Vs

Vc−CMRF(x) (14)

Equation (9) is represented as Equation (15):

X̂ = argminUCMRF(x|y)
= argmin(−

∑
s

ln p(ys|xs) +
∑

c∈Vs

Vc−CMRF(x)) (15)

2.2. DEM Reconstruction Based on Hierarchical Adaptive Surface Fitting

2.2.1. Reconstruction Method Based on Surface Fitting

After removing the points of the unreliable DSM areas, the lowest points of the grids which don’t
belong to the unreliable DSM areas are used for surface fitting to realize DEM reconstruction. Zhang [9]
took the local minimum points in a given grid as the candidate ground points, which were further
optimized by surface fitting. Assuming that the terrain surface is a complex spatial surface, and it can
be approximated by a quadric surface, as shown in the following equation:

z = a0 + a1x + a2y + a3x2 + a4y2 + a5xy (16)

where z represents the value of DEM; and x, y represent the horizontal and vertical coordinates of the
candidate ground points, respectively. According to the least squares method, the parameters of the
surface equation can be determined by the following equation:

A = (MTPM)
−1
(MTPZ) (17)

where A = [a0, a1, · · · , a5]
T, Z = [z1, z2, · · · , zn]

T. M, and P are described as follow:

M =


1 x1 y1 x1

2 x1y1 y1
2

1 x2 y2 x2
2 x2y2 y2

2

...
...

...
...

...
...

1 xn yn xn
2 xnyn yn

2

 (18)
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P =


p1 0

p2
. . .

0 pn

 (19)

where p1, p2, · · · , pn are the weights of the corresponding points. This paper considers that all points
have the same effect on surface fitting, therefore p1 = p2 · · · = pn = 1, and n is the number of points
used for fitting. If the difference between the actual elevation and the fitted elevation is greater than
the given threshold, the point is filtered out; otherwise, the original value remains unchanged.

Considering the continuity of the terrain, this paper added the neighborhood grids, and the fitting
surface of each grid is obtained based on the minimum points which exclude the detected unreliable
DSM points of the 3 × 3 neighborhood grids, as shown in Figure 2. The left part represents the original
DSM data, and the red grid is surrounded by its 3 × 3 neighborhood grids. The point in each grid in
the right part is the local lowest point of the grid, which cannot be the detected DSM unreliable point.
These points in the right part are fitted to the surface of the red grid by Equation (16). The surface
fitting using the minimum points of the neighborhood grids can maintain the characteristics of the
terrain as much as possible.
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Figure 2. Fitting process with minimum points in neighborhood grids.

In the surface fitting-based method, the choice of grid size is important. As shown in Figure 3,
when the grid size is set to a large value such as l1, the lowest point will not fall near the ridge,
thus it is difficult to completely retain the true terrain at the ridge during subsequent surface fitting.
When the grid size is set to a small value such as l2, the lowest point will fall on the roof of the building,
and the fitted terrain will deviate from the real terrain, resulting in incomplete filtering of the buildings.
At the same time, the threshold in the filtering process is not changed adaptively, which will affect the
reconstruction result.
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Figure 3. Ground points selection for a steep terrain area with buildings. In part (a), buildings and
terrain are shown in different colors. In parts (b) and (c), dashed lines define the grid cells for ground
points selection; the red and blue circles represent the lowest points, and the blue lines represent the
initial terrain constructed with the lowest points.
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2.2.2. Hierarchical Adaptive Surface Fitting

In order to solve the above problem, this paper proposed a hierarchical adaptive surface fitting
method. Inspired by Zhang [9], the performance of the algorithm is improved by the following process.

(1) Hierarchical surface fitting: In the first iteration, the DSM data is first divided evenly by relatively
large-sized grids, and then the minimum elevation points in each grid that are not the unreliable
DSM areas are used as candidate ground points. The candidate ground points are compared
with the surface obtained by fitting the candidate ground points in the 3 × 3 neighborhood grids.
If the difference between the elevation of the candidate ground point and the fitted surface is
greater than the threshold, the candidate point will be marked as non-ground points. Due to
the large mesh size in the first iteration, it cannot represent the true topographic relief well, and
the threshold should be set relatively loosely, filtering out buildings with large elevation values.
In order to further locate potential non-ground points, we continuously reduce the size of the
mesh and repeated the above steps until the mesh size is less than the preset minimum. Figure 4
shows a schematic diagram of the hierarchical surface fitting process.

(2) Determination of adaptive threshold: As mentioned above, considering the influence of grid size
and elevation variance, this paper proposed a method for adaptively determining the threshold,
which is shown in the Equation (20). The basic idea is that smaller grid size and variance of
elevation difference usually correspond to a more reliable fitting result, which means that the
threshold should be relatively strict. Conversely, with the increase of grid size and variance, its
ability to represent real terrain is weakened, indicating that the fitted terrain has large deviations
and the threshold should be relatively loose.

T = µ1 × l + µ2 × σ
2 (20)

where l represents the grid size; and σ2 represents the variance of elevation difference. µ1 and µ2

represent the weights of the grid size and variance of elevation difference, respectively.
(3) Interpolation with Coherence-Coefficient-Based IDW: After the ground points have been acquired

by hierarchical surface fitting, the next step is to perform the interpolation with discrete ground
points. In this study, the IDW algorithm was selected to interpolate the ground DEM, and it
determines the weighting coefficient of ground points based on the distance between the known
ground point and the interpolation point. This algorithm searches for ground points within the
initial area, and if the number of ground points meets the set threshold, the search is stopped
and then the weight of the searched ground points is calculated and interpolation is performed;
otherwise the search radius is increased and the search is continued until the condition is satisfied.
Figure 5 shows the algorithm execution diagram. When calculating the elevation of the red box,
which is the point to be interpolated, search for ground points around it. If the number of black
boxes representing the ground points reaches the set threshold, the distance between each ground
point and the point to be interpolated is calculated, and then the weight ωi−IDW is obtained by
Equation (21).

ωi−IDW =

1
di

2

N∑
n=1

1
dn2

(21)

where di is the distance between the ground point i and the point to be interpolated; and N is
the number of points participating in the calculation. Finally, the product of the weight and the
elevation of ground point is summed to obtain the elevation of the point to be interpolated.
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Considering the influence of the coherence coefficient, we combine the coherence coefficient and
the inverse distance to improve the determination of the weight. The weight ωi of the ground point i is
expressed as follows:

ωi =

qi
di

2

N∑
n=1

qn
dn2

(22)

where qi is the coherence coefficient of ground point i. The elevation of the point to be interpolated is
estimated with the weighted sum:

h =
N∑

i=1

ωihi (23)

where h represents the elevation of the point to be interpolated; and hi represents the elevation of the
ground point i.

As mentioned above, a DEM reconstruction method based on unreliable DSM area segmentation
and hierarchical adaptive surface fitting was proposed in this method. As shown in Figure 6, in this
method, an InSAR amplitude image is segmented initially, and the InSAR coherence coefficient and
residue of interferometric phase are plugged into the neighborhood energy of the MRF model. Then we
construct the likelihood energy and find the class labels that minimize the sum of the likelihood energy
and the neighborhood energy as the segmentation result of the unreliable DSM areas. Next, the DSM is
divided by a uniform grid and the minimum points of each neighborhood grids, which do not belong
to the unreliable DSM area such as building layover and shadow, are used to fit a quadratic elevation
surface. The difference between the true elevation and the fitted elevation is then calculated, and the



Sensors 2020, 20, 1414 10 of 18

points that are higher than the designed adaptive threshold are filtered out. Then the grid size changes
step-by-step, iteratively filtering out the non-ground points. The surface fitting and filter is iterated in
turn until the filter effect is not significantly different, or the filtering is stopped when the max number
of iterations are met. Finally, the IDW interpolation combining the coherence coefficient is performed
for completing the reconstruction of the DEM.
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3. Results

3.1. Testing Data

In this paper, the InSAR data used for experimental verification was obtained by the Ku-band
frequency modulation continuous wave (FMCW) InSAR system of the Institute of Electronics, Chinese
Academy of Sciences in November 2015. The relative flight altitude of this experimental carrier aircraft
was 1500 m, the incidence angle was 45 degrees, and the step size of DSM was 0.06 m. The experimental
area was located in Jishan County, Yuncheng City, Shanxi Province, and belongws to hilly terrain
where the buildings were densely distributed, and the terrain height was between 340 m and 420 m.
The laser detection and ranging (LiDAR) bald earth DEM data from the same region was used as the
reference DEM.

In this experimental data, three sites with buildings densely distributed were selected to evaluate
the reconstruction results. Figure 7 shows the optical images of experimental areas.

3.2. The Segmentation Result of CMRF-Based Unreliable DSM Areas

According to Equations (6)–(8), the parameters of Fisher distribution were calculated in three
areas, and the results are shown in Table 1. Thus, the likelihood energy could be obtained. Then
the image was initially segmented, and its neighborhood energy could be calculated according to
Equation (4). Finally, we found the class labels that minimize the sum of the likelihood energy and the
neighborhood energy. This process needs to be iteratively calculated. An amplitude image of buildings
was selected in the test sites for experiments, and the experimental results are shown in Figure 8.
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Figure 7. Optical image of experimental and evaluation areas. (a) Optical image of experimental areas.
(b–d) Optical image of Site A to B.
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Table 1. Estimations of Fisher distribution.

Class M L µ

Layover 10.15 2.05 21.52
Shadow 12.31 5.21 3.72

Background 16.03 3.59 8.17

Sensors 2020, 19, x FOR PEER REVIEW 12 of 18 

 

 
(d) 

Figure 7. Optical image of experimental and evaluation areas. (a) Optical image of experimental areas. 

(b–d) Optical image of Site A to B. 

3.2. The Segmentation Result of CMRF-based Unreliable DSM Areas 

According to Equations (6)–(8), the parameters of Fisher distribution were calculated in three 

areas, and the results are shown in Table 1. Thus, the likelihood energy could be obtained. Then the 

image was initially segmented, and its neighborhood energy could be calculated according to 

Equation (4). Finally, we found the class labels that minimize the sum of the likelihood energy and 

the neighborhood energy. This process needs to be iteratively calculated. An amplitude image of 

buildings was selected in the test sites for experiments, and the experimental results are shown in 

Figure 8. 

Table 1. Estimations of Fisher distribution. 

Class M  L    

Layover 10.15 2.05 21.52 

Shadow 12.31 5.21 3.72 

Background 16.03 3.59 8.17 

The building scene is shown in Figure 8a. Figure 8b,c are the segmentation results using 

traditional MRF and CMRF, respectively, where green represents layover and blue represents 

shadow, and red represents background areas. 

(a) (b) (c) 

Figure 8. (a) The buildings in interferometric synthetic aperture radar (InSAR) amplitude image, and 

(b,c) the segmentation results based on traditional Markov random field (MRF) and coherent Markov 

random field (CMRF), respectively. 

110°56′ 10″ E 110°56′ 20″ E 110°56′ 30″ E

35°36′ 50″ N

35°36′ 40″ N

35°36′ 50″ N

35°36′ 40″ N

110°56′ 10″ E 110°56′ 20″ E 110°56′ 30″ E

1

2

3

4

5

6

104

x

y

a
z

im
u

th

range

1       2       3       4       5       6   410

1 2 3 4 5 6 1
0

4

x

y

1

2

3

x

ya
z

im
u

th

range

1

2

3

x

y

1

2

3

x

y

backgroundlayover

1

2

3

x

y

shadow

1

2

3

x

y

1

2

3

x

y

backgroundlayover

1

2

3

x

y

shadow

az
im

u
th

range

Figure 8. (a) The buildings in interferometric synthetic aperture radar (InSAR) amplitude image, and
(b,c) the segmentation results based on traditional Markov random field (MRF) and coherent Markov
random field (CMRF), respectively.

The building scene is shown in Figure 8a. Figure 8b,c are the segmentation results using traditional
MRF and CMRF, respectively, where green represents layover and blue represents shadow, and red
represents background areas.

It can be seen from Figure 8b that segmentation results generated by traditional MRF contain
lots of holes and misclassifications. As shown in Figure 8c, the CMRF method detected most of the
unreliable DSM areas and gave a better visual effect. The reason is that the introduction of coherence
coefficient and residue can help the classifier make use of the interferometric information and better
segment the InSAR amplitude image.

3.3. The DEM Reconstruction Result

In order to verify the effectiveness of hierarchical surface fitting, Figure 9 shows the first filtering
result and the third filtering result. The ground and non-ground points of first filtering results are
shown in Figure 9b,e,h, and the third filtering results are shown in Figure 9c,f,i, where blue represents
the ground points and red indicates non-ground points. It can be seen from Figure 9b,e,h that some
non-ground points are not detected in the first filtering, and some ground points are mistakenly
classified as non-ground points, indicating that the grid size and the threshold of first filtering is too
large. Therefore some non-ground points have not been filtered out, and the large grid size has lost the
terrain detail information, causing some fluctuating ground points to be misidentified as non-ground
points. The third fitting had detected more non-ground points than the first fitting, and the number
of misjudging points was less, which means that buildings can be filtered out step-by-step while
maintaining terrain features, indicating the effectiveness of hierarchical surface fitting.

To verify the effectiveness of the proposed method, experiments were performed using three
test sites. In order to illustrate the necessity of unreliable DSM areas segmentation and hierarchical
adaptive surface fitting, the methods compared in this paper were the original surface fitting, CMRF +

surface fitting, and CMRF + hierarchical adaptive surface fitting. The experimental results are shown
in Figure 10, and the comparison of altimetric profiles are shown in Figure 11.
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Figure 9. Hierarchical surface fitting results. (a), (d), and (g) are the InSAR digital surface model (DSM);
(b), (e), and (h) are the first surface fitting results; and (c), (f), and (i) are the third surface fitting results.

Figure 10g–i show the DEM reconstruction results of the surface fitting method and the
corresponding altimetric profiles are shown as a red line in Figure 11. It can be seen that the
original surface fitting method had incorrect extreme values shown in the black rectangle, and the
buildings were not completely filtered. This is because the unreliable DSM areas were not segmented
in advance. Therefore some points of these areas were selected as ground points, and these points may
be the extremely low points, or the higher points due to improper selection of grid size, thus causing
the deviations in the interpolation result using ground points.

The results of the CMRF + surface fitting method are shown in Figure 10j–l, and the corresponding
altimetric profiles are shown as a yellow line in Figure 11. Since the unreliable DSM areas were
segmented first, and the lowest points in the grids were prevented from falling into these areas,
the reconstruction results had fewer extreme values and the buildings were removed more thoroughly
compared to surface fitting-based method, but there were still some buildings that had not been removed.
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Figure 10. Visual comparison of before and after processing of the InSAR DSM, where (a–c) are
the original DSMs, (d–f) are the reference DEMs obtained by laser detection and ranging (LiDAR),
(g–i) are the reconstructed DEMs based on surface fitting, (j–l) are the reconstructed DEMs based on
coherent Markov random field (CMRF)+surface fitting, and (m–o) are the reconstructed DEMs based
on proposed method.
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Figure 11. Altimetric profile comparison between the DSM, the reconstructed DEM based on different
methods, and the reference DEM, where (a–c) are the altimetric profiles of experimental results
corresponding to Site A–C. The profile position is at the red dashed line in Figure 10g–i.
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The results of the proposed method in this paper are shown in Figure 10m–o, and the corresponding
altimetric profiles are shown as a purple line in Figure 11. It was observed that the buildings had been
completely filtered out and details of the undulating terrain had been retained. The reason is that
the proposed method can gradually filter out the buildings and retain most of the ground points by
keeping the grid size gradually smaller and setting the adaptive threshold, achieving the fine DEM
reconstruction. Comparing the reconstruction results with the reference DEM of LiDAR in Figure 10d–f,
the results of the proposed method are more accurate than other approaches. It confirms that the
proposed method improves the performance of an InSAR DEM reconstruction.

3.4. Quantitative Evaluation

In order to quantify the performance of the proposed method, the three test sites were evaluated
for accuracy, and the experimental methods including surface fitting, CMRF + surface fitting, and the
methods proposed in this paper were used for evaluation. The reconstructed elevation was compared
with the reference elevation to obtain the absolute elevation difference of each point, and finally the
statistical values were calculated as the quantitative evaluation metrics of the DEM reconstruction
result, such as the maximum difference (Max), the minimum difference (Min), and the root mean
square error (RMSE) of the difference which can be expressed by Equation (24):

RMSE =

√√√√ n∑
i=1

(Hi −Zi)
2

n
(24)

where Hi is the elevation of reconstructed DEM for pixel i; Zi is the corresponding elevation of reference
DEM; and n is the number of the pixels involved in the calculation. The comparison results are shown
in Table 2.

Table 2. Accuracy evaluation result.

Method
Min/m Max/m Root Mean Square Error (RMSE)/m

Site A Site B Site C Site A Site B Site C Site A Site B Site C

surface fitting 0.98 1.23 1.64 19.42 15.58 12.6 4.87 5.04 3.98
Coherent Markov Random

Field (CMRF)++surface 0.81 1.01 1.33 3.12 3.79 5.18 2.32 2.76 2.84

the proposed 0.62 0.87 0.67 2.08 1.3 1.03 1.09 0.95 0.97

For the surface fitting algorithm, as shown in Figure 11, the maximum difference between the red
line and the green line was the evaluation index Max, and the maximal Max in the three test sites was
up to 19.42 m and the maximum RMSE was 5.04 m. This is because the unreliable DSM areas were
not filtered in advance, which lead to the wrong selection of the extreme points as the ground points,
as shown in the lowest point of the red line in Figure 11 and the gap between the reconstruction result
and the real result is relatively large. In the CMRF + surface fitting, as shown by the yellow line in
Figure 11, the Max was significantly reduced, showing the necessity of CMRF segmentation, while root
mean square error (RMSE) was further reduced, and the reconstruction performance was improved.
Compared with the above two methods, as shown in the comparison between the purple line and
the green line in Figure 11, the CMRF + hierarchical adaptive surface fitting method proposed in this
paper has obvious advantages in both indicators. The RMSEs of each test site were about 1 m and the
Maxs were between 1 m and 2 m. The performance was significantly improved, which confirms the
effectiveness of the proposed method.

4. Conclusions

In this paper, we proposed a new InSAR DEM reconstruction method in order to accurately
extract a DEM from DSM generated by an InSAR system. The unreliable DSM areas were segmented
in advance at the selection of ground point. Experiments show that the improved CMRF segmentation
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method was more accurate than the MRF method. Then, the hierarchical adaptive surface fitting can
be used to mark ground points and non-ground points step-by-step, making the reconstruction result
more accurate. The comparison results proved the superiority of the proposed algorithm qualitatively
and quantitatively. However, there is still room for improvement. On the one hand, the hierarchical
adaptive surface fitting can consider more interferometric phase information. On the other hand,
the acceleration of the interpolation calculation may need further research.
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