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Abstract: The Distance Vector-Hop (DV-Hop) algorithm is the most well-known range-free localization
algorithm based on the distance vector routing protocol in wireless sensor networks; however, it is
widely known that its localization accuracy is limited. In this paper, DEIDV-Hop is proposed,
an enhanced wireless sensor node localization algorithm based on the differential evolution (DE) and
improved DV-Hop algorithms, which improves the problem of potential error about average distance
per hop. Introduced into the random individuals of mutation operation that increase the diversity
of the population, random mutation is infused to enhance the search stagnation and premature
convergence of the DE algorithm. On the basis of the generated individual, the social learning part of
the Particle Swarm (PSO) algorithm is embedded into the crossover operation that accelerates the
convergence speed as well as improves the optimization result of the algorithm. The improved DE
algorithm is applied to obtain the global optimal solution corresponding to the estimated location
of the unknown node. Among the four different network environments, the simulation results
show that the proposed algorithm has smaller localization errors and more excellent stability than
previous ones. Still, it is promising for application scenarios with higher localization accuracy and
stability requirements.

Keywords: wireless sensor networks; DV-Hop; differential evolution; node localization

1. Introduction

Wireless sensor networks (WSNs) are a form of network formed by freely organizing and
combining tens of thousands of sensor nodes through wireless communication technology. It is a
wireless network composed of several static or mobile sensors in a self-organizing and multi-hop way,
aimed at exchanging the information processed by cooperative detection of perceived objects in the
coverage area of the transmission network to users [1,2]. The wireless sensor has a far-reaching impact
on human life and production as it integrates sensors, micro-electro-mechanical systems, and network
communication technology [3–5]. At present, it has attracted significant attention from academia and
industry and has become the focus and highlight of international competition. Localization technology
is an essential supporting technology in wireless sensor networks where the estimated location
information is crucial. A wide range of applications that require these easy-to-deploy, low-cost sensors
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well suited in WSNs includes military, agricultural, intelligent transportation, and environmental
protection [6–11].

Although GPS can locate accurately, it is unrealistic to equip all micro sensor nodes with GPS
in WSNs due to their high price and limited usage environment. Also, the localization accuracy
of GPS in indoor and other complex environments may not be satisfactory [6]. Therefore, it is a
challenging task to design an intelligent and effective localization algorithm under restricted conditions.
Presently, research aims to take advantage of the interaction and connection between sensor nodes to
achieve the goal of localization [12–14]. On the basis of the need to measure the distance between the
actual nodes in the localization process, it can divide the localization algorithm into a range-based
localization algorithm and a range-free localization algorithm [15,16]. The former needs to measure the
absolute distance or azimuth between adjacent nodes and utilize the actual distance between nodes
to calculate the localization of unknown nodes; such algorithms include time-of-arrival (TOA) [17],
time-difference of arrival (TDOA) [18], angle of arrival (AOA) [19], and received signal strength indicator
(RSSI) [20]. Regarding the latter, it is based on the network connectivity between nodes, utilizing the
estimated distance between nodes to calculate the localization of nodes without measuring the actual
distance between them; it includes algorithms Centroid [21], Distance Vector-Hop (DV-Hop) [22],
Amorphous [23], Multi-Dimensional Scaling-programming (MDS-MAP) [24], and Approximate Point
in Triangle Test (APIT) [25].

Range-free algorithms have the advantages of being low-cost, with low power consumption robust
anti-measurement noise ability, and has simple hardware equipment; they can provide acceptable
localization accuracy and, consequently, have attracted much attention in recent years [26]. DV-Hop,
as one of the distributed localization methods based on distance vector routing and localization,
is an algorithm that has attracted significant attention due to its simplicity and low equipment
requirements [27].

There are two types of sensor nodes in WSNs: the anchor node with a known location, and the
unknown node, the one to be located [28,29]. The purpose of the localization algorithm is to calculate
the location of the unknown nodes in various ways. DV-Hop comprises three steps: the first step is that
all nodes in the network get a hop-count value from the anchor nodes; next is calculated the average
distance per hop for all anchor nodes; then, the estimated distance is obtained by multiplying the
average distance per hop and the minimum hop-count value. Finally, the third step is to compute the
localization of the unknown node according to the least-squares method [30,31], when the unknown
node retrieves an estimated distance from three or more anchor nodes. The DV-Hop algorithm is easily
implemented, and the localization accuracy it attains mainly depends on the estimated accuracy of
average distance per hop and hop-count value between nodes. As known, the calculation error of the
average distance per hop and the estimation error of hop-count value are the two primary sources of
the estimation distance error.

On the basis of the abovementioned discussions, a wireless sensor node localization algorithm
based on the improved DV-Hop and differential evolution (DE) algorithms is proposed in this paper,
namely DEIDV-Hop. It can effectively reduce the localization error of nodes without increasing
network traffic and hardware, and consists of three steps: the first two steps estimate the distance
between unknown nodes and anchor nodes throughout information such as the average distance per
hop and hop-count value, and the third step uses DE to determine the location of unknown nodes.

The main contributions of this paper include:

• The equation formula for calculating the average distance per hop of anchor nodes is improved.
The minimum mean square error criterion more excellent to calculate the average distance per
hop, and the average distance per hop of anchor nodes is obtained by applying its average value.

• DE algorithm has the defects of search stagnation and premature convergence; this improves the
mutation formula and introduces random variation. In the crossover operation, the social learning
part of the particle swarm optimization algorithm is introduced, and the heuristic information
carried by the group optimal value is used to permit the current individual to learn from the group
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optimal individual, which is then intersected with the mutation vector. With the improvement
of mutation operation and crossover operation of the basic DE algorithm, the diversity of the
population is enhanced as well as information of the optimal individual in the population is
effectively used to raise the efficiency of the algorithm.

• To validate and show the effectiveness of the proposed algorithm, the proposed DEIDV-Hop
algorithm is evaluated under four different network environments. In comparison with known
algorithms, DV-Hop, PSODV-Hop [32], and GSODV-Hop [33], experimental results show that the
proposed DEIDV-Hop algorithm has smaller localization errors and greater stability, yet more
suitable for application scenarios with higher localization accuracy and stability requirements.

The remainder of this paper is organized as follows. In Section 2, we summarize the related
work, while in Section 3 we introduce the original DV-Hop and DE algorithms. The target algorithm
DEIDV-Hop is presented in Section 4, then experimental results and performance evaluation are
given in Sections 5 and 6. Finally, the concluding remarks and future work direction of this paper are
provided in Section 7.

2. Related Work

The range-free algorithm has several advantages: it is low cost and has low power consumption
and simple hardware. DV-Hop localization algorithm has become an economical yet exceptionally
important localization algorithm due to its simple algorithm, high coverage, and good feasibility
that converts the estimated distance between nodes into the product of hop-count value and average
distance per hop [32–34]. Even so, the disadvantage is that the localization accuracy is not good
enough; accordingly, improvements in the localization accuracy are the key issues to this research.
In this section, we introduce some related work of the DV-Hop localization algorithm.

Chen et al. proposed to estimate the distance of hop-count based on the value of neighbors in the
same block [35]; to reduce the localization error, this study used weighted node distance to calculate
the final location of nodes. Omar et al. used RSSI values to estimate the distance between the anchor
node and the adjacent sensor node in one hop; such an estimated distance is applied to replace the
average distance per hop in the original algorithm [31]. As a sensor node is located, it is elevated to act
as an additional anchor node for subsequent use in other sensor nodes since the availability of the
additional anchor node improves the accuracy of locating the remaining sensor nodes. Zhao et al.
proposed a DV-Hop algorithm based on local weighted linear regression [35], where the unknown
nodes attempt to estimate their locations by using nearby anchor nodes that maintain the proportional
relationship between the geometric distance and the average distance per hop. The kernel method to
improve the localization accuracy by increasing the weight of adjacent anchor nodes is applied.

Besides traditional optimization algorithms, many meta-heuristic algorithms to improve the
localization algorithm have been considered, as they are competent to increase the accuracy of the
original localization algorithm. Peng et al. proposed a genetic-based localization algorithm to improve
the localization accuracy and convergence speed, limiting the feasible population region when the
initial population was created. Three anchor nodes as the center to construct three squares are applied,
in which the shadow area of the intersection of three squares is the overall workable area of the
unknown nodes, and the initial population is generated randomly in the functional area. Singh et al.
applied an improved algorithm for localization and then used particle swarm optimization to refine
the results [36]. Zhao et al. proposed an improved localization algorithm based on hybrid chaotic
strategy [10]. Harikrishnan et al. used the differential evolution algorithm to minimize localization
error in wireless sensor network [12], while Cui et al. improved the values of hop-count by the values
of common single-hop nodes between adjacent nodes and converted the discrete hop-count values into
more accurate continuous values [37]. The differential evolution algorithm is introduced to achieve the
optimal global solution corresponding to the estimated location of unknown nodes although it induces
vast time overhead and energy consumption while improving the localization accuracy.
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3. Distance Vector-Hop (DV-Hop) and Differential Evolution (DE) Algorithms

In this section, the process of the DV-Hop and DE algorithm is briefly introduced.

3.1. DV-Hop Algorithm

The three steps of the DV-Hop algorithm are discussed as follows.

Step 1: Flooding

In this step, all anchor nodes broadcast data packets with their localizations to their neighbors
and hop digital segments are initially set to zero. The structure of the data packet is

{
id, xi , yi, hi

}
,

including identifier id, the coordinate of the anchor node i is (xi, yi), hi the minimum hop-count value
from the anchor node i, and the initial value of hi is zero. Once the neighbor node receives a packet
with a smaller hop-count value from a particular anchor node, the localization of the anchor node
is recorded and adds “1” to the hop-count value before sending it to other neighbor nodes [38–41].
Packets with high hop-count values are defined as obsolete information to be ignored. As soon as this
step is completed, each one of the unknown nodes in the network retrieves the value of the minimum
hop-count for each anchor node.

Step 2: Distance Estimation between Nodes

In this step, the distance between each node is estimated. First, it calculates the average distance
per hop of each anchor node. For the anchor node, it uses Equation (1) to calculate the average distance
per hop:

HopSizei =

∑
i, j

di, j∑
i, j

hi, j
(1)

where di, j =

√(
xi − x j

)2
+

(
yi − y j

)2
, (xi, yi) and

(
x j, y j

)
represent the location of anchor nodes i and j,

and hi, j represents the minimum hop-count value in anchor nodes i and j.
After calculating HopSizei, each anchor node broadcasts its HopSizei in the system through

controlled flooding. Equation (2) is used to determine the estimated distance between the unknown
node and the anchor node i.

du,i = HopSizei × hu,i (2)

where hu,i represents the minimum value of hop-count between anchor node i and unknown node u.

Step 3: Estimate the Location of Nodes

In step 3, it is required to find out the location of all unknown nodes. For the unknown node u,
the multilateration method [38] is used to estimate its location.

Let (xu, yu) be the location of the unknown node u and (xi, yi) be the location of the anchor node,
where i = 1, 2, · · · , m. Therefore, the distance between unknown nodes u and m anchor nodes is
specified by the following equation:

(x1 − xu)
2 + (y1 − yu)

2 = d2
1

(x2 − xu)
2 + (y2 − yu)

2 = d2
2

· · · · · ·

(xm − xu)
2 + (ym − yu)

2 = d2
m

(3)
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Equation (3) can be extended to:
x2

1 − x2
m − 2(x1 − xm)xu + y2

1 − y2
m − 2(y1 − ym)yu = d2

1 − d2
m

x2
2 − x2

m − 2(x2 − xm)xu + y2
2 − y2

m − 2(y2 − ym)yu = d2
2 − d2

m
· · · · · ·

x2
m−1 − x2

m − 2(xm−1 − xm)xu + y2
m−1 − y2

m − 2(ym−1 − ym)yu = d2
m−1 − d2

m

(4)

The above Equation (4) can be expressed in matrix form as AX = B, where A, X and B are
expressed by Equations (5)–(7), respectively.

A =


2(x1 − xm) 2(y1 − ym)

2(x2 − xm) 2(y2 − ym)

· · · · · ·

2(xm−1 − xm) 2(ym−1 − ym)

 (5)

B =


x2

1 − x2
m + y2

1 − y2
m + d2

m − d2
1

x2
2 − x2

m + y2
2 − y2

m + d2
m − d2

2
· · · · · ·

x2
m−1 − x2

m + y2
m−1 − y2

m + d2
m − d2

m−1

 (6)

X =

[
xu

yu

]
(7)

It utilizes the least square method to solve the equation. The coordinate location of the unknown
node u is calculated:

X =
(
ATA

)−1
ATB (8)

3.2. Differential Evolution Algorithm

Differential evolution (DE) algorithm is a new evolutionary computing technology [13], designed
to keep the population-based global search strategy of the evolutionary algorithm utilizing real coding,
i.e., a simple mutation operation based on difference and one-to-one elimination mechanism to update
the population that reduces the complexity of genetic algorithm operation.

3.2.1. Initialization

DE uses NP D-dimensional real-valued parameter vectors as the population of each generation,
and the t − th generation is denoted as xt

i =
[
xt

i,1, xt
i,2, · · · , xt

i,D

]
. Let the boundary of the parameter

variable be x(L)j < x j < x(U)
j , the initial value of the i− th individual is generated by Equation (9).

x0
i, j = x(L)j +

(
x(U)

j − x(L)j

)
∗ rand[0, 1] (9)

where rand[0, 1] represents a uniform random number generated between [0, 1], i = 1, 2, · · · , NP,
j = 1, 2, · · · , D.

3.2.2. Mutation

For each target individual xt
i , where i = 1, 2, · · · , NP, its mutant vt+1

i is generated by randomly
select individuals that are used as the parent basis vector (rand) and a difference vector is used to
generate the mutant individuals:

vt+1
i = xt

r1
+ F

(
xt

r2
− xt

r3

)
(10)

Among them, r1, r2 and r3 represent random numbers and different unequal natural numbers in
the range [1, NP]. F ∈ [0, 2], as F represents the scaling factor.
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3.2.3. Crossover

The target individual xt
i and variant individuals vt+1

i are crossed to generate an experimental

individual ut+1
i =

[
ut+1

i,1 , ut+1
i,2 , · · · , ut+1

i,D

]
. The crossover process is shown in Equation (11).

ut+1
i, j =

 vt+1
i, j , i f r j ≤ CR or j = rnbr_i

xt
i, j, otherwise

(11)

where r j is the j − th random number between [0, 1]; rnbr_i is the random natural number between
[1, D]; CR is the crossover rate, CR ∈ [0, 1].

3.2.4. Selection

DE uses the greedy operation to select between xt
i and ut+1

i , and generate the next generation of
the individual xt+1

i :

xt+1
i =

 ut+1
i , i f f

(
ut+1

i

)
> f

(
xt

i

)
xt

i , otherwise
(12)

where f (·) is the objective function. Given that the optimization problem in this paper is in minimization
form, the selection condition is f

(
ut+1

i

)
≤ f

(
xt

i

)
. The overall flow chart of the DE algorithm is shown

in Figure 1.
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4. Proposed DEIDV-Hop Algorithm

4.1. Goal

Given that the distance between the unknown node and the anchor node is an estimated value, the
error is significant in the DV-Hop localization algorithm. In the original localization algorithm, it uses
the unbiased estimation criterion to calculate the average distance per hop, and the estimation error
of the average distance per hop achieved through this method is zero. However, the error complies
with the Gaussian distribution. According to the parameter estimation theory, as the cost function
of estimating the sub-error, it is more reasonable to use the mean square error than use only the
variance or deviation. Therefore, the calculation formula of the average distance per hop is improved
in this investigation.

4.2. Process of Flooding

Flooding, as a classic routing algorithm, is the simplest and most reliable one. Nevertheless,
it excessively occupies network resources and generates a large amount of communication overhead,
making routing and link resources inefficient.

The routing algorithms involved in the first and second step of the DV-Hop algorithm in this
paper are based on the Flooding, including the original DV-Hop algorithm. To reduce network
communication overhead, reduce network energy consumption as well as to extend the network life
cycle, the EEDCF routing algorithm [42] is considered and applied.

4.3. Process of Calculating the Average Distance per Hop

From the traditional method on the unbiased estimation criterion to calculate the average distance
of per-hop HopSizei, let the value of the Equation (13) be zero.

f1 =
1

m− 1

m∑
i, j

(
di, j −HopSizei · hi, j

)
(13)

The minimum mean square error criterion is used to calculate the average distance per hop, and
calculated by minimizing the Equation (14).

f2 =
1

m− 1

m∑
i, j

(
di, j −HopSize′i · hi, j

)2
(14)

Let ∂ f2
∂HopSize′i

= 0, the estimated average distance per hop based on the minimum mean square

error criterion can be obtained as:

HopSize′i =

m∑
i, j

hi, jdi, j

m∑
i, j

h2
i, j

(15)

The average distance per hop is determined through Equation (16):

HopSize′′ =

∑m
i=1 HopSize′i

m
(16)

After calculating HopSize′′ , each anchor node broadcasts its average distance per hop HopSize′′

in the system through controlled flooding. When the unknown node u retrieves information from
the anchor node i, it uses Equation (17) to determine the distance between the unknown node u and
anchor node i.

d′u,i = HopSize′′ × hu,i (17)
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4.4. Improvement of Differential Evolution Algorithm

In the basic differential evolution algorithm, three different individuals are randomly used to carry
out mutation, crossover and individual update. This method is relatively simple, however, the update
of individuals is unsighted without using the information of the optimal individuals obtained in the
algorithm search that reduces the efficiency of the algorithm. Therefore, in the improved algorithm,
the social part of PSO is introduced into the basic differential evolution algorithm. By learning from
the optimal individual Xg =

(
xg1, xg2, · · · , xgn

)
in the population, the updated individual can obtain

the optimal individual heuristic information and promote the convergence speed of the algorithm.
With the introduction of the heuristic information of the global optimal individual, individuals

tend to converge to the global optimal individual with the operation of the algorithm, leading to the
convergence of individuals and the decline of population diversity. To improve the global searching
ability of the algorithm, the diversity of the population and the global searching ability are increased
by improving the mutation and crossover operation, and they are presented next.

4.4.1. Crossover

In the basic differential evolution algorithm, the target individual xt
i and the mutant individual

vt+1
i are crossed to generate the experimental individual ut+1

i . In the improved algorithm, the social
learning part of the particle swarm optimization algorithm is introduced to make the current individual
xt

i learn from the optimal individual xt
best of the group, and the results are crossed with the mutation

vector vt+1
i . By using the heuristic information carried by the group optimal value, the optimization

efficiency of the algorithm is improved. The cross operation is as follows:

ut+1
i, j =


vt+1

i, j , i f r j ≤ CR or j = rnbr_i

xt
i, j + rand[0, 1] × c×

(
xt

best − xt
i, j

)
, otherwise

(18)

where c = 2. xt
i, j + rand[0, 1]× c×

(
xt

best − xt
i, j

)
, and signifies that an individual xt

i learns from the optimal

individual xt
best of the population.

4.4.2. Selection

In the improved differential evolution algorithm, the diversity of the population and the global
search ability are increased by carrying out small probability random variation on the variation vector.
The operation of mutation is as follows:

vt+1
i =

 x(L)j + rand[0, 1] ×
(
x(U)

j − x(L)j

)
, i f rand[0, 1] ≤ Pr

xt
r1
+ F×

(
xt

r2
− xt

r3

)
, otherwise

(19)

Pr is the probability of random variation. When the random number rand[0, 1] is higher than
the random mutation probability Pr, the mutation operation mode of the basic difference evolution
algorithm is adopted; random mutation is carried out, if otherwise.

4.5. Differential Evolution Algorithm Implementation

In this paper, an optimized mathematical model is established by taking into consideration the
distance between the unknown node and the anchor node, the location estimation process is simplified
to minimize the optimization problem, and next, DE is used to provide a solution for the optimization
model. First, the objective function is defined as:

f (xu, yu) = Min
m∑

i=1

∣∣∣∣∣√(xu − xi)
2 + (yu − yi)

2
− d′u,i

∣∣∣∣∣ (20)
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Among them, (xu, yu) is the coordinate of the unknown node, (xi, yi) is the coordinate of the
anchor node, and d′u,i is the estimated distance between the unknown node u and the anchor node i.

According to the aim function f (xu, yu), the fitness function is expressed as:

f itness(xu, yu)

=
n∑

u=1

(
1

hu,i

)2
f (xu, yu)

=
n∑

u=1

(
1

hu,i

)2( m∑
i=1

∣∣∣∣∣√(xu − xi)
2 + (yu − yi)

2
− d′u,i

∣∣∣∣∣)
(21)

4.6. Complete DEIDV-Hop Algorithm

By combining Sections 3 and 4, this paper proposes an enhanced DV-Hop algorithm based on DE
called DEIDV-Hop, with the corresponding pseudo-code depicted in Algorithm 1.

The flow of the algorithm follows with DEIDV-Hop initializing network parameters and generating
simulated network topology (random or grid topology) yet utilizing the shortest path method to
retrieve the hop-count value between nodes, corresponding to lines 1–13. After that, the information
on a hop-count value between nodes is retrieved, and the average distance per hop is calculated by
Equation (16). Next, the estimated distance between unknown nodes and anchor nodes is calculated
according to line 15. As the third step and corresponding to lines 16–36, the DE algorithm is utilized to
estimate the location of unknown nodes by initializing the parameters of DE and have the maximum
number of iterations set. It mutates the target individual selection Equation (18) in line 22, and Equation
(19) is used for the cross operation to obtain test individuals in lines 23–25. The greedy criterion is used
to select the next generation of individuals for the target and experimental individuals in lines 27–31;
finally, the optimal individual in the group is the estimated location of the unknown node at the end of
the iteration.
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Algorithm 1: The procedure of DEIDV-Hop

1: Initialization: total number of nodes N, Percentage p of anchor nodes, communication radius R;
2: Input: Parameter settings of DEIDV-Hop and the experimental area;
Parameter settings of DEIDV-Hop: see Table 1
Experimental area is 100 × 100 m2

3: Network deployment nodes to generate simulated network topology;
4: Calculate the hop-count value hi, j according to the shortest path algorithm
5: for k = 1 to N
6: for i = 1 to N
7: for j =1 to N
8: if short_path(i,k) + short_path(k,j) < short_path(i,j)
9: short_path(i,j) = short_path(i,k) + short_path(k,j);
10: end
11: end
12: end
13: end
14: Calculate the average distance per hop, HopSize′′ according to Equation (16);
15: Calculate the unknown distances;
16: for k = 1 to NP
17: Initialization: Generates NP individuals that contain 2 dimensions of variables according to Equation (9);
18: Calculate and evaluate each individual xi;
19: t = 1;
20: While t < tmax do
21: for i = 1 to NP //Mutation and Crossover
22: According to Equation (18), mutation vector vt

i is generated;
23: for j = 1 to D
24: Trial vector ut

i was obtained by crossover according to Equation (19);
25: end
26: Trial vector ut

i was selected;
27: if f

(
ut

i

)
< f

(
xt

i

)
then //Minimize optimization problems

28: xt+1
i = ut

i ;
29: else
30: xt+1

i = xt
i ;

31: end
32: end
33: t = t + 1;
34: end
35: The best individual is the location of the unknown node;
36: end

Table 1. Parameter settings of DEIDV-Hop.

Parameter Value

Deployment area size 100 m × 100 m
Percentage of the anchor node 10–40%

Communication radius R 20–40 m
NP 20
F 0.9

CR 0.2
tmax 20
Pr 0.02
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5. Experimental Results and Analysis

Experimental analyses are carried out under four different network simulation conditions to
show the effectiveness of the proposed algorithm, listed as random topology, grid topology, C-Shaped
random topology, and C-Shaped grid topology, as shown in Figure 2 respectively. In random topology,
all nodes are randomly deployed in the corresponding experimental area, while in grid topology,
each node is deployed at the intersection of gridlines and differentiated according to the proportion of
the deployment deviation, in which ratio of 0 means that the nodes are precisely distributed at the
gridline intersection. In comparison with random topology, the node distribution of grid topology
is uniform.
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Figure 2. (a) Node error distribution diagram in square random topology; (b) Node error distribution
diagram in a square grid topology; (c) Node error distribution diagram in C-Shaped random topology;
(d) Node error distribution diagram in C-Shaped grid topology.

When designing the C-shaped area, we considered excavating a part of the square area during the
simulation. The cut-out area is 30 × 70 m2 (the original area was 100 × 100 m2).

The DEIDV-Hop algorithm is compared with DV-Hop, PSODV-Hop [43], and GSODV-Hop [44]
through simulation implemented on MATLAB 2014a [45], running on a desktop PC with one Intel(R)
Core(TM) i5-6500 CPU @3.20 GHz processor, 8 GB RAM, and Windows 7 OS.

In this investigation, only the two-dimensional coordinate plane is considered. All experimental
results are averaged by running 100 times independently, and the size of the experimental area is
100 × 100 m2.

The localization error of unknown nodes u is:

Erroru =

√
(xest

u − xact
u )

2
+ (yest

u − yact
u )

2 (22)
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The average localization error (ALE) is taken as the evaluation criterion, and calculated as:

Average Localization Error(ALE) =

∑n
i=1

√
(xest

u − xact
u )

2
+ (yest

u − yact
u )

2

n×R
(23)

where
(
xest

u , yest
u

)
and

(
xact

u , yact
u

)
is the estimated location and actual location of the unknown node u.

ALE is the average localization error, N the total number of nodes, n is the number of unknown nodes.
In Equation (23), the numerator represents the Euclidean distance between the estimated location

and the actual location of the unknown node, and the estimated error distance. This article includes R
in the denominator, thus, Equation (23) with R is called the normalized average localization error.

Thus, n is given as:
n = N −m (24)

Experiments verify its influence on the average localization error in three aspects:
the communication radius of nodes, the percentage of anchor nodes, and the total number of
nodes. The parameters used in the DEIDV-Hop experiment are shown in Table 1, while the parameter
settings for PSODV-Hop [43] and GSODV-Hop [44] are identical to original references and shown in
Tables 2 and 3, respectively.

Table 2. Parameter settings of PSODV-Hop.

Parameter Value

C1 2.05
C2 2.05

No of particles 20
Vmax 10

No of iterations 20

Table 3. Parameter settings of GSODV-Hop.

Parameter Value

ρ 0.4
γ 0.6
β 0.08
Io 5
nt 5
N 100

The error graphs of nodes in four topologies, namely square random topology, square grid
topology, C-Shaped random topology, and C-Shaped grid topology are listed in Figure 2. As settings
for the investigation, the communication radius R of the node is 20 m, the total number of deployment
nodes is 100, and the percentage of anchor nodes is 20%.

As shown in Figure 2, when the node deployment area changes from square topology to C-shaped
topology, the average localization error of the node rises sharply. On the other hand, from the
perspective of node distribution, random topology and grid topology can be considered a sparse
network and intensive network. It can be observed that the nodes of the grid topology are evenly
distributed if compared with the random topology; the error of nodes is smaller as well. As the node
deployment changes from the random topology to the grid topology, the average localization error of
the nodes decreases. The main reason is due to the influence of the deployment area, where the node
distribution is not uniform and the hop-count value between nodes is no longer accurate.
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5.1. Effect of Deployment Deviation Ratio λ in a Grid Topology

In this section, we study the effect of different deployment deviation factors on ALE for two
grid topologies. When grid topology nodes are deployed, different values λ can be selected,
λ ∈ [0, 1]. As settings for the investigation environment, the total number of deployment nodes
is 100, the percentage of anchor nodes is 20%, and the communication radius is 20 m. As discussed
above, a smaller grid deployment deviation factor will have a better effect in the case of node
deployment in a grid topology.

As shown in Figure 3, with the increase of λ, the ALE of DEIDV-Hop in two grid topologies
also increases, though different λ values have a tiny influence on ALE results. When λ = 0, the grid
topology ALE is the smallest and the localization effect is the best. However, in practical production
and living applications, it is challenging to deploy nodes with precision at fixed points, and often at
random. In this investigation, λ = 0.4 is adopted as a condition in the distribution of real network
simulations, although other values such as 0.3 and 0.5 are also suitable.
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5.2. Effect of Communication Radius on Average Localization Error (ALE)

In this section, as settings for the investigation, the communication radius R of the node varies
from 20 m to 40 m, the total number of deployment nodes is 100, and the percentage of anchor nodes is
20%. Experimental results are shown in Figures 4 and 5.

Sensors 2020, 20, x 14 of 23 

 

the perspective of node distribution, random topology and grid topology can be considered a sparse 
network and intensive network. It can be observed that the nodes of the grid topology are evenly 
distributed if compared with the random topology; the error of nodes is smaller as well. As the node 
deployment changes from the random topology to the grid topology, the average localization error 
of the nodes decreases. The main reason is due to the influence of the deployment area, where the 
node distribution is not uniform and the hop-count value between nodes is no longer accurate. 

5.1. Effect of Deployment Deviation Ratio λ  in a Grid Topology 

In this section, we study the effect of different deployment deviation factors on ALE for two grid 
topologies. When grid topology nodes are deployed, different values λ  can be selected, [0,1]λ ∈ . 
As settings for the investigation environment, the total number of deployment nodes is 100, the 
percentage of anchor nodes is 20%, and the communication radius is 20 m. As discussed above, a 
smaller grid deployment deviation factor will have a better effect in the case of node deployment in 
a grid topology. 

As shown in Figure 3, with the increase of λ  , the ALE of DEIDV-Hop in two grid topologies 
also increases, though different λ  values have a tiny influence on ALE results. When 0λ = , the grid 
topology ALE is the smallest and the localization effect is the best. However, in practical production 
and living applications, it is challenging to deploy nodes with precision at fixed points, and often at 
random. In this investigation, 0.4λ =  is adopted as a condition in the distribution of real network 
simulations, although other values such as 0.3 and 0.5 are also suitable. 

 
Figure 3. Effect of deployment deviation factors on two grid topology average localization error (ALE). 

5.2. Effect of Communication Radius on Average Localization Error (ALE) 

In this section, as settings for the investigation, the communication radius R of the node varies 
from 20 m to 40 m, the total number of deployment nodes is 100, and the percentage of anchor nodes 
is 20%. Experimental results are shown in Figures 4 and 5. 

  
(a) (b) 

Figure 4. Cont.



Sensors 2020, 20, 343 15 of 24
Sensors 2020, 20, x 15 of 23 

 

  
(c) (d) 

Figure 4. (a) Effect of communication radius on ALE in square random topology; (b) Effect of 
communication radius on ALE in a square grid topology; (c) Effect of communication radius on ALE 
in C-Shaped random topology; (d) Effect of communication radius on ALE in C-Shaped grid topology. 

 
Figure 5. The average value of ALE for four topologies and algorithm. 

From Figure 4, it can be seen that, under the four network topologies, the average ALE on four 
localization algorithms gradually decreases with the increase of the communication radius of the 
nodes. Among these four algorithms, DEIDV-Hop always has the smallest ALE. As shown in Figure 5: 

• PSODV-Hop reduces the average ALE by 7.61%, GSODV-Hop reduces by 26.35%, and DEIDV-
Hop reduces by 34.88% when compared with DV-Hop in the square random topology,  

• PSODV-Hop reduces the average ALE by 32.3%, GSODV-Hop reduces by 33.15% and DEIDV-
Hop reduces by 40.36% when compared with DV-Hop in the square grid topology, 

• Three meta-heuristic localization algorithms PSODV-Hop, GSODV-Hop, and DEIDV-Hop 
improve in average 40.71%, 41.05%, and 44.79%, respectively on localization accuracy when 
compared with DV-Hop in the C-Shaped random topology,  

• Three meta-heuristic localization algorithms PSODV-Hop, GSODV-Hop, and DEIDV-Hop 
improve on average 41.49%, 42.85%, and 45.48%, respectively, on localization accuracy when 
compared with DV-Hop in C-Shaped grid topology. 

With the increase of communication radius, the communication range of unknown nodes 
becomes significant; there will have more single-hop nodes that can establish direct contact with more 
adjacent nodes. Also, it reduces the hop-count value between some of the unknown nodes and anchor 
nodes. The average distance per hop estimated by the algorithm and the hop-count value between 
nodes also tends to be accurate. Therefore, the estimated distance between the unknown node and 
the anchor node is also more accurate, and a more accurate estimation of the location of the unknown 
nodes is obtained. The Euclidean distance between the estimated and actual location of the unknown 

0.3454
0.3189

0.9037
0.8732

0.3191

0.2159

0.5358
0.5109

0.2544

0.2132

0.5327
0.499

0.2249
0.1902

0.4989
0.4761

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

square random topology square grid topology C-shaped random topology C-shaped grid topology

DV-Hop

PSODV-Hop

GSODV-Hop

DEIDV-Hop

Figure 4. (a) Effect of communication radius on ALE in square random topology; (b) Effect of
communication radius on ALE in a square grid topology; (c) Effect of communication radius on ALE in
C-Shaped random topology; (d) Effect of communication radius on ALE in C-Shaped grid topology.
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Figure 5. The average value of ALE for four topologies and algorithm.

From Figure 4, it can be seen that, under the four network topologies, the average ALE on four
localization algorithms gradually decreases with the increase of the communication radius of the nodes.
Among these four algorithms, DEIDV-Hop always has the smallest ALE. As shown in Figure 5:

• PSODV-Hop reduces the average ALE by 7.61%, GSODV-Hop reduces by 26.35%, and DEIDV-Hop
reduces by 34.88% when compared with DV-Hop in the square random topology,

• PSODV-Hop reduces the average ALE by 32.3%, GSODV-Hop reduces by 33.15% and DEIDV-Hop
reduces by 40.36% when compared with DV-Hop in the square grid topology,

• Three meta-heuristic localization algorithms PSODV-Hop, GSODV-Hop, and DEIDV-Hop improve
in average 40.71%, 41.05%, and 44.79%, respectively on localization accuracy when compared
with DV-Hop in the C-Shaped random topology,

• Three meta-heuristic localization algorithms PSODV-Hop, GSODV-Hop, and DEIDV-Hop improve
on average 41.49%, 42.85%, and 45.48%, respectively, on localization accuracy when compared
with DV-Hop in C-Shaped grid topology.

With the increase of communication radius, the communication range of unknown nodes becomes
significant; there will have more single-hop nodes that can establish direct contact with more adjacent
nodes. Also, it reduces the hop-count value between some of the unknown nodes and anchor nodes.
The average distance per hop estimated by the algorithm and the hop-count value between nodes also
tends to be accurate. Therefore, the estimated distance between the unknown node and the anchor
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node is also more accurate, and a more accurate estimation of the location of the unknown nodes is
obtained. The Euclidean distance between the estimated and actual location of the unknown node
decreases, that is, the numerator of the ALE formula decreases, and the denominator R increases,
which will inevitably bring about a decrease in the value of the entire formula.

In comparison with the random topology, the four algorithms under the grid topology have
a significantly smaller average of ALE under the same conditions, which is caused by the denser
distribution of network nodes. Due to the poor connectivity of nodes in sparse networks, some of
the isolated nodes may be challenging to locate. The uneven distribution of nodes increases the
hop-count value of unknown nodes from anchor nodes, and the estimated distance error also increases.
The distribution of hop-count values between dense network nodes is relatively uniform, and the
network connectivity between nodes is functional; thus, the average of ALE will be smaller.

5.3. Effect of the Percentage of Anchor Nodes on ALE

In this section, as settings for the investigation, the percentage of anchor nodes gradually changes
from 10% to 40%, with the number of deployment nodes 100 and communication radius of nodes 20 m.
Experimental results are shown in Figures 6 and 7.
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grid topology on ALE.
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Figure 7. The average value of ALE for four topologies and algorithm.

As shown in Figure 6, the ALE of four algorithms decreases with the increasing anchor node ratio,
and DEIDV-Hop always has the smallest ALE. As shown in Figure 7 and in comparison with DV-Hop:

• PSODV-Hop reduces the average of ALE by 3.36%, GSODV-Hop reduces by 14.95%,
and DEIDV-Hop reduces by 34.68% in the square random topology,

• PSODV-Hop reduces the average of ALE by 27.58%, GSODV-Hop reduces by 27.89%,
and DEIDV-Hop reduces by 39.76% in the square grid topology;

• Three meta-heuristic localization algorithms PSODV-Hop, GSODV-Hop, and DEIDV-Hop improve
average 43.51%, 44.79%, and 47.86%, respectively, on localization accuracy in the C-shaped
random topology;

• Three meta-heuristic localization algorithms PSODV-Hop, GSODV-Hop, and DEIDV-Hop improve
average 44.87%, 45.85%, and 48.4%, respectively, on localization accuracy in the C-shaped
grid topology.

With the increasing ratio of anchor nodes, there are more anchor nodes in the deployment area;
accordingly the accuracy of the average distance per hop of anchor nodes is higher. DV-Hop is a
calculation method based on the estimated distance, and the localization error decreases proportionally
with the decrease of the estimated distance error. The increasing value of anchor nodes provides
more favorable conditions for meta-heuristic localization algorithms and support to find the optimal
solution. As a result, the average ALE is reduced because the location of nodes is accurately estimated.

5.4. Effect of Node Density on ALE

In this section, the percentage of anchor nodes is 20% and the number of square topology
deployment nodes is 100 to 400. Besides, the number of deployment nodes in the C-shaped deployment
area is 100–406, and the communication radius 20 m. Experimental results are shown in Figures 8 and 9.
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Figure 9. The average value of ALE for four topologies and algorithm.

As seen in Figure 8, as the percentage of anchor nodes increases, the ALE of the four algorithms
decreases, and DEIDV-Hop always has the smallest ALE amongst the four network topologies. Using a
comparison in Figure 9 with DV-Hop,

• PSODV-Hop reduces the average of ALE by 9.41%, GSODV-Hop reduces by 33.23%,
and DEIDV-Hop reduces by 46.76% in the square random topology;

• PSODV-Hop reduces the average of ALE by 37.09%, GSODV-Hop reduces by 39.78%,
and DEIDV-Hop reduces by 51.95% in the square grid topology;

• Three meta-heuristic localization algorithms PSODV-Hop, GSODV-Hop, and DEIDV-Hop improve
average 46.25%, 47.41%, and 49%, respectively, on localization accuracy in the C-shaped
random topology;
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• Three meta-heuristic localization algorithms PSODV-Hop, GSODV-Hop, and DEIDV-Hop improve
average 46.49%, 47.39%, and 50.33%, respectively, on localization accuracy in the C-shaped
grid topology.

With the increase in the number of deployed nodes, the distribution of nodes becomes denser and
tends to be in intensive networks. As each node has more single-hop connected nodes, the network
connectivity is stronger. The deviation of the shortest path and straight line between nodes is relatively
small, as is also the estimated distance error between the unknown nodes and anchor nodes. As an
overall evaluation, with the increase in the number of deployed nodes, the average localization error
of nodes also decreases, becoming more effective and productive.

6. Convergence Speed of the Algorithm and the Localization Error of Unknown Nodes

Experimental analysis was performed under four different network simulation conditions to
prove the effectiveness of the convergence speed of the proposed algorithm and the localization
error of each unknown node. The four network topologies are square random topology, square grid
topology, C-shaped random topology, and C-shaped grid topology. Experimental results are shown
in Figures 10 and 11. The size of the experimental area is 100 × 100 m2.
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Figure 11. (a) The ALE of each unknown node in square random topology; (b) The ALE of each
unknown node in a square grid topology; (c) The ALE of each unknown node in C-Shaped random
topology; (d) The ALE of each unknown node in C-Shaped grid topology.

6.1. Convergence Speed of the Algorithm

In this section, the percentage of anchor nodes is 20% and the number of deployment nodes is 100.
The communication radius is 20 m. The number of iterations of the algorithm is 1–200. All experimental
results are averaged by executing 100 times independently. Experimental results are shown in Figure 10.

According to the results of Figure 10, three meta-heuristic algorithms have faster convergence
speeds yet better effects in the square topology. It can be clearly seen that the convergence speed of the
three meta-heuristic algorithms is relatively fast; notably, the algorithm DEIDV-Hop proposed in this
paper has a fast convergence speed and small localization error.

In the C-shaped topology, it is easy to see that the DV-Hop algorithm is very unstable. Because
of changes in the deployment environment, there will be some isolated single-hop nodes, so the
localization effect of the algorithm is very unstable. Looking at the curve in the Figure 10, the localization
error values of the PSODV-Hop algorithm and GSODV-Hop algorithm continue to fluctuate with the
increase of the number of iterations; in contrast, the DEIDV-Hop algorithm tends to have a stable value,
which demonstrates the robustness of the algorithm.

The relationship between the number of iterations of the simulation algorithm and ALE in
four topological environments proves that the DEIDV-Hop algorithm has fast convergence speed,
robustness, and stability.

6.2. The Localization Error of Unknown Nodes

In this section, the percentage of anchor nodes is 20% and the number of nodes is 100.
The communication radius is 20 m. Experimental results are shown in Figure 11. In this section,
ALE ≥ 1 is considered as an isolated node, and it is considered as a node that cannot be located.

As in Figure 11, boxplots are applied to show the following ALE results: minimum/maximum of
the localization error, the median, and the 25th and 75th percentiles of the independent simulations
of each unknown node in the algorithms of four network topologies. The DEIDV-Hop algorithm is
relatively stable, and the localization error is lower than the original algorithms DV-Hop algorithm,
PSODV-Hop algorithm, and GSODV-Hop algorithm,
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• In the square random topology, there are four nodes in the DV-Hop algorithm that cannot be
located, and 33 nodes are higher than the average of the localization error. In the PSODV-Hop
algorithm, one node cannot be located, and the localization error of 44 nodes is higher than the
average. In the GSODV-Hop algorithm, two nodes cannot be located, and the localization error of
38 nodes is higher than the average. In the DEIDV-Hop algorithm, one node cannot be located,
and 28 nodes are higher than the average.

• In the square grid topology, among the four algorithms, no unknown node cannot be located.
In the DV-Hop algorithm, the localization error of 41 nodes is higher than the average of the
localization errors. The localization error of 36 unknown nodes in the PSODV-Hop algorithm
is higher than the average. In the GSODV-Hop algorithm, the localization error of 36 nodes is
higher than the average. In the DEIDV-Hop algorithm, the localization error of 36 nodes is higher
than the average.

• In the C-shaped random topology, there are 46 nodes in the DV-Hop algorithm that cannot be
located, and the localization error of 37 nodes is higher than the mean of the localization error.
In the PSODV-Hop algorithm, there are 25 nodes cannot be located, and the localization error of
29 nodes is higher than the average. In the GSODV-Hop algorithm, 25 nodes cannot be located,
and the localization error of 26 nodes is higher than the average. In the DEIDV-Hop algorithm,
14 nodes cannot be located, and the localization error of 36 nodes is higher than the average.

• In the C-shaped grid topology, there are 38 nodes in the DV-Hop algorithm that cannot be
located, and the localization error of 34 nodes is higher than the mean of the localization error,
where 26 nodes cannot be located and the localization error of 31 nodes is higher than the average
in the PSODV-Hop algorithm. In the GSODV-Hop algorithm, 20 nodes cannot be located, and the
localization error of 31 nodes is higher than the average. In the DEIDV-Hop algorithm, 18 nodes
cannot be located, and the localization error of 30 nodes is higher than the average.

When the number of deployed nodes and the communication radius are the same, the four
network topologies of the nodes will affect the distribution of the nodes. The grid topology will make
the distribution of the nodes more uniform, denser, and tend to be intensive networks. In this way,
each node has more single-hop connection nodes, and the hop-count value between nodes will become
smaller and more regular. Thus, network connectivity is stronger. In random topology, the random
distribution of nodes makes the hop-count value between nodes irregular, the connectivity between
nodes deteriorates, and it tends to lead to sparse networks. There will be some isolated nodes that
cannot be located, which increases the average localization error of nodes.

7. Conclusions and Future Work

In this paper, an enhanced algorithm for sensor node localization based on improved DV-Hop
and DE Algorithms for WSNs is proposed, namely DEIDV-Hop. From evaluations and analysis, it is
observed that the average distance per hop of anchor nodes is improved, confirming its advantages
and efficacy.

In the localization estimation phase, the DE algorithm is introduced to locate unknown nodes,
further reducing the localization error. To solve the problems of early maturity, low convergence,
and low efficiency, the individual variation and cross operation formulas are improved. In the
mutation operation, an attempt to increase the diversity of the population and the global search ability,
the mutation vector is randomly mutated. Moreover, the social learning part of PSO is introduced in
the crossover operation, and the optimization efficiency of PSO is improved by using the heuristic
information carried by the optimal group value. Simulation results of the four network topology
environments show that the average localization error of nodes can be effectively reduced by the
DEIDV-Hop algorithm. Without the need for additional hardware, it shows excellent advantages and
is effective. The simulation results show that the DEIDV-Hop algorithm has the fastest convergence
speed and is the most stable. So far, a two-dimensional node location is the constraint to discussions in
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this investigation. The way of applying the algorithm to conduct node location in a more sophisticated
space-three-dimensional node location is a direction to consider in terms of future research. In addition,
based on the existing research, how to accurately apply the improved routing algorithm to the DV-Hop
algorithm and make appropriate improvements to the routing algorithm to reduce the communication
overhead of wireless threaded sensor networks and extend the life cycle of wireless sensor networks
should be considered.
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