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Abstract: Upcoming 5th-generation (5G) systems incorporate physical objects (referred to as things),
which sense the presence of components such as gears, gadgets, and sensors. They may transmit
many kinds of states in the smart city context, such as new deals at malls, safe distances on roads,
patient heart rhythms (especially in hospitals), and logistic control at aerodromes and seaports around
the world. These serve to form the so-called future internet of things (IoT). From this futuristic
perspective, everything should have its own identity. In this context, radio frequency identification
(RFID) plays a specific role, which provides wireless communications in a secure manner. Passive
RFID tags carry out work using the energy harvested among massive systems. RFID has been
habitually realized as a prerequisite for IoT, the combination of which is called IoT RFID (I-RFID).
For the current scenario, such tags should be productive, low-profile, compact, easily mountable,
and have eco-friendly features. The presently available tags are not cost-effective and have not
been proven as green tags for environmentally friendly IoT in 5G systems nor are they suitable for
long-range communications in 5G systems. The proposed I-RFID tag uses the meandering angle
technique (MAT) to construct a design that satisfies the features of a lower-cost printed antenna
over the worldwide UHF RFID band standard (860–960 MHz). In our research, tag MAT antennas
are fabricated on paper-based Korsnäs by screen- and flexo-printing, which have lowest simulated
effective outcomes with dielectric variation due to humidity and have a plausible read range (RR)
for European (EU; 866–868 MHz) and North American (NA; 902–928 MHz) UHF band standards.
The I-RFID tag size is reduced by 36% to 38% w.r.t. a previously published case, the tag gain has
been improved by 23.6% to 33.12%, and its read range has been enhanced by 50.9% and 59.6% for
EU and NA UHF bands, respectively. It provides impressive performance on some platforms (e.g.,
plastic, paper, and glass), thereby providing a new state-of-the-art I-RFID tag with better qualities in
5G systems.

Keywords: IoT; I-RFID; plausible read range; meandering angle technique (MAT); passive UHF tag;
smart cities; 5G systems

1. Introduction

The world market is expected to become saturated with new-tech internet of things (IoT) massive
devices as a part of the upcoming 5th-generation (5G) systems, such as gears, gadgets, sensors,
and actuators. In the futuristic IoT perspective, all physical objects/devices (referred to as things) can
sense surrounding environments and transmit their current status. They assert their existence among
the IoT surroundings, which means that they must synchronously update their data tables in the IoT
cloud. For this scenario, the IoT four-tier architecture is depicted in Figure 1.
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processing, data archival, and edge computing. Satisfactory applications for authenticated user 

control and management are executed by clients in the end user tier. 
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Figure 1. Internet of things (IoT) four-tier architecture for smart X environments. Each tier is linked
with each other through internet gateway access. Under this scenario, end users can easily manage and
control the devices tier.

The device tier consists of sensors, actuators, and IoT radio frequency identification (I-RFID)
tags for data collection under secure autonomic resource management control, where I-RFID has
been consistently appreciated as a prerequisite for IoT [1]. The gateway tier provides secure and
authenticated data stream connections, utilizing both device-to-device (D2D) and device-to-cloud (D2C)
communication. The cloud tier systematically deals with the informative data through pre-processing,
data archival, and edge computing. Satisfactory applications for authenticated user control and
management are executed by clients in the end user tier.

In the modern technological era, I-RFID technologies assume an imperative role in the challenging
IoT environments of smart cities, such as securing massive logistics control at seaports and aerodromes,
enabling smart retailing at marts, allowing for quick immigration clearance at airports, and facilitating
e-health and waste management. RFID automation utilizes relevant frequency band standards,
such as low frequency (LF): 125–134.2 KHz, high frequency (HF): 13.56 MHz, ultra-high frequency
(UHF): 860–960 MHz, and super-high frequency (SHF) 2.45 GHz. Numerous countries have distinct
effective isotropic radiated power (EIRP) constraints for UHF RFID tags; for example, North America,
South Korea, and Japan have 4 W EIRP; Europe, China, and Malaysia have 3.28 W; and the EIRP of the
United Kingdom is 6.56 W. The UHF bandwidth credentials of each country are shown in Figure 2.
I-RFID automation has many potential applications, such as automobile identification [2], e-ticketing,
e-tolling, logistics tracking [3–5], road traffic congestion and smart city surveillance [6], hospitals [7],
schools (e.g., teaching management systems) [8], highways (IoT networks) [9], airports [10], and in
textile industries [11,12]. These applications require low-cost and efficient I-RFID tags with simple
mountable features that suit many different things. These tags consist of an antenna and microchip.
A tag’s circuitry operation acts by harvesting RF energy that is emitted by a reader or interrogator
(in the form of electromagnetic waves) and converting it into direct current (DC) power to trigger the
integrated circuit (IC) by rectification and the envelope detection method. Then, the IC’s encrypted
data are modulated with the reader carrier wave, and the resultant signal is sent back to the reader by
a back-scattering process with the same antenna that was first used to receive the harvested energy.

Tags are arranged, depending on the power source used, in three categories: (a) Passive/Inactive
tags, (b) Semi-Active tags, and (c) Active tags. Inactive tags are normally utilized due to their simplicity
and low industrial price. I-RFID is a secure real-time processing mechanism in which transmission
arises between the RFID tag and the interrogating reader, which continuously synchronizes and
collaborates with the servers to update the relevant data tables [3].

The tag accepts the harvested RF power and directs the data to the interrogator using two
communication approaches: (a) Near-field communication (NFC) by inductive coupling or (b) far-field
communication (FFC) by radar/back-scattering. The information contains data relating to finding the
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object/thing, which is stored in the flip-chip package [13]. For tag activation, the harvested RF power
originating from RFID reader ought to be sufficient, as opposed to the threshold power of the IC after
crossing over the barrier losses [13–15].

A transformative approach has been presented, in [16], to accomplish robust versatile RFID
antennas on flexible paper substrates for roll-to-roll production lines in green electronics. Thinned tags
depict typical outputs for numerous challenges of antennas, in terms of ruggedness, trustworthiness,
and flexing performance. Tag performance has been scrutinized after 50 and 100 bends after fabrication
by flexo printing. The impedance of the tags was not affected too much after the bending process.
For this reason, these tags were chosen for this study, due to their marvelous characteristics for
item-level tracking [16].Sensors 2020, 20, x FOR PEER REVIEW 3 of 20 
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standards of different countries.

Related Research Work

In [17], Monza-R6 was utilized for RFID tags for bank card and person tracking with three
operations enabled: RFID, NFC, and Europay, Mastercard, and Visa (EMV) chip. For high gain,
an aluminum patch has been made by radiation of a polyethylene terephthalate (PET) substrate (εr = 3)
for the EU UHF RFID band; however, its development and testing phases have not been reported.
A cavity structure tag antenna (CSTA) and a bottom metal tag antenna (BMTA) were structured for
metal body logistics monitoring using Higgs-3 flip-chip package. The directivity of the CSTA was
more noteworthy than that of the BMTA [18]; however, its figure of merit (FOM) was low on the basis
of the read range to antenna size ratio (as discussed in [19]).

For a body area network (BAN), a tag meandered antenna was manufactured using aluminum
and polycarbonate (εr = 3.9). Polydimethylsiloxane (PDMS) material (10 mm thickness) was spread as
a layer, in order to eliminate the body effect [20]. However, the size and the cost of the tag were higher,
making it unsuitable for low-profile tagging. A multi-function RFID tag antenna has been presented
for the UHF RFID standard. The inductive slotted-T technique was introduced for perfect conjugate
matching with the MURATA (LXMS31ACNA-010) IC in single-layer tags. For both scenarios (i.e., Eu
and NA UHF standard), read ranges were 5 m and 4 m in free-space communications, respectively [21].
However, the fact-finding scenario was not investigated with respect to impedance matching and
transmitted power [21].

For metallic objects, the S11 parameter has been optimized through the electrical permittivity
(εr) effect from 4.3 to 4.7, while the bent stub method has been used for impedance matching with
the MURATA (LXMS21ACMF-183) IC. Two parameters are highly important for device-to-device
(D2D) communication: tag permittivity and the reader’s transmitted power. These directly affect
the frequency shift and tag read range, correspondingly [22]. For high-temperature applications,
a compact UHF RFID ceramic tag with quarter-mode patch antennas has been introduced. The tag
placed-on-metal performance was tested with the heating process section Valp-ARE magnetic stirrer to
temperatures above 100 ◦C. Under these temperature circumstances, the tag read range performance
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decreased gradually w.r.t. enhancement along with heating. However, the tag maximum read range
was 1 m at room temperature, which is not appropriate for the considered system [23].

A 24 GHz MIMO multilayer Yagi antenna has been manufactured for 5G applications in IoT
scenarios, which has 10.9 dBi gain and 6.9 GHz bandwidth. The planar structure equivalent had
8.9 dBi gain and 4.42 GHz bandwidth [24]. However, its large size is a drawback, which leads to high
manufacturing costs [25]. An empty cavity tag (ECT) of size 140 mm × 60 mm × 10 mm has been
produced for metallic (as well as non-metallic) applications. Using 3D printing, the plastic cavity is
made of polylactic acid (PLA; εr = 1.3) and acrylonitrile butadiene styrene co-polymer (ABS; εr = 2.8)
filaments. A copper radiator was used with a Higgs 4 (−20.5 dBm) chipset for perfect impedance
matching. This ECT was designed under the North American (NA) UHF RFID standard. However,
the tag performance was not investigated under differing humidity and temperature conditions [26].

In [16], the series and shunt stubs technique was utilized for perfect impedance matching using
the NXP ucode G2XM flip-chip package. Meandered shaped antennas are directly printable on paper
karsnos, Teonix Q51, and Kapton HN substrates with screen, flexo, and inkjet printing, respectively,
for green electronic tags. In [16], high cogency concerning strain and di-electric atmosphere were
confirmed. The authors aimed to pay additional attention to the reading range (RR), bandwidth
(BW), and compactness of the green tag in future development. In this work, we propose meandering
angle technique (MAT) optimization and perfect impedance matching. The main contributions of the
proposed work are as follows:

• Meandering angle formulation [27] for the MAT process, in order to minimize the antenna size
and enhance the realized gain of the UHF RFID tag;

• We use the flip-chip package NXP-G2XM [28] for perfect impedance matching using the series
and shunt stub technique [29];

• The antenna’s inductive behavior is guaranteed through the introduction of capacitive end
tip-loading [16];

• A dielectric effect is achieved w.r.t. the atmospheric humidity level;
• The read range of the tag w.r.t. the reader’s EIRP and reader power sensitivity [29] is ensured in

the IoT environment under the global UHF RFID standard (860–960 MHz) [13];
• We carry out a performance comparison of the proposed tag with previously published tags

(PPTs) [16–18,20–23];
• We detail the indoor and outdoor I-RFID working mechanisms with the UHF RFID integrated

reader (SL130) [30] for IoT smart X environments; and
• We demonstrate the tags integrability with mounting platforms (plastic, paper, and glass) [31] to

enable massive IoT devices in 5G systems.

The rest of the paper is organized as follows: Section 2 presents the I-RFID tag antenna design
and simulation in detail. Section 3 discusses the experimental results of the presented research work
thoroughly. Finally, Section 4 concludes the paper.

2. I-RFID Tag Antenna Design and Simulation

The design procedure of the proposed I-RFID tag is demonstrated in Figure 3. MAT antennas are
fabricated on Korsnäs substrate (375 µm) by flexo printing, with constraints of permittivity (εr) = 3.3
and electrical tangent loss (δ) = 0.077 (at 25 ◦C). Asahi paste (LS-411AW) was used as an antenna radiator
with a thickness of 15 µm. The tags were constructed using screen- and flexo-printing machineries.
Its bulk conductivity (σ) 2–3 × 106 S/m and its average conductivity value 2.5 × 106 S/m were utilized
in tag design. In this way, the total thickness of the designed tag was 390 µm (0.39 mm). Little power
(−15 dBm) is needed to function the flip-chip (NXP-G2XM) [28]—at 915 MHz, its impedance is
22 − j195 Ω, and its geometric size is 3 mm × 3 mm, which was selected as the integrated circuit
(IC) due to its passive UHF RFID MAT tag composition. The projected UHF I-RFID MAT tags are
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illustrated in Figure 4a for the European (EU) tag standard and Figure 4b for the North American (NA)
tag standard, correspondingly.
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Figure 4. (a) Conductive Asahi paste I-RFID Tag for European UHF RFID standard and (b) conductive
Asahi paste I-RFID Tag for North American UHF RFID standard.

The operational frequencies of the mutual UHF standards are 867 and 915 MHz for European
(EU) and North America (NA), respectively [13,32]. From the bar chart of Figure 2, we can see that
a European band antenna will also encompass the lower-frequency UHF band countries, while the
North American tag will cover up the upper UHF band countries (e.g., South Korea, Japan, Malaysia,
and the United Kingdom). The geometric boundaries of both MAT antennas are given in Table 1.
Using the finite element method (FEM), simulations of the proposed project were accomplished using
the ANSYS-HFSS™ software, with numerous methods (as detailed below).
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Table 1. Geometric boundaries of UHF I-RFID tag antennas.

Values A B C D E F G

(mm) 101.2 10.5 1 1.2 1.6 3 2

Values H I J K L θ

(mm) 0.015 92.4 10 1 1 30◦

2.1. Meandering of Dipole

The measurements of the dipole antenna were 346 and 328 mm for EU and NA UHF bands,
respectively, which were formulated using the speed of light equation c = fλ, where c = 3 × 108 m/s
and f is the operating frequency (867 or 915 MHz) of the targeted UHF bands for Europe and North
America, respectively. These are quite large and not appropriate for a small tag. For this reason,
meandering of the dipole is accomplished to reduce the antenna’s length and allow for manufacturing
small tags [13,33]. To make the antenna more inductive, the “E” length (depicted in Figure 4a) was
introduced during meandering, as our flip-chip package NXP G2XM is more capacitive (22 − j195 Ω).
Due to this, its length plays an important role in controlling the inductive behavior of the tag. The
width “E” controls the capacitive behavior of the antenna. Two consecutive “E” lengths act as a
capacitor but cancel their effect (due to the opposite field effect). For this reason, the meandering
antennas demonstrate inductive behavior, instead of capacitive.

2.2. Meandering Angle Creation for Meandering Angle Technique (MAT)

Meandering angles were designed using Equations (1) and (2), which are tangent line–slope equations.

y = kx + c (1)

tan θ = (y2 − y1) / (x2 − x1). (2)

Equation (1) contains the slope k and the y-intercept c, thus forming a first-order pair; while
second-order pairs of intercepted line values—x1, x2 and y1, y2—and the meandering angle θ in MAT
form Equation (2) [27]. The MAT meandering elevation angles of θ = 0◦, 15◦, 30◦, and 45◦ project
onto the y-axis with the variation of x-axis values. At a plane angle (θ = 0◦), the dimension of the
antenna is 101.2 mm × 12.2 mm. With the angle variations at θ = 0◦, 15◦, 30◦, and 45◦, the tag antenna’s
width fluctuates but the length is kept the same, as shown in Table 2. The most compact dimension (of
101.2 mm × 10.5 mm) was attained at θ = 30◦. Its width did not reduce any more with increasing the
angle. Its size does not remain more compact at θ = 45◦, bandwidth and gain values decrease from
37 to 33 MHz and 2.75 to 1.75 dBi, respectively. This implies that the antenna tag was minimized at
θ = 30◦, attaining its maximum 37 MHz bandwidth (BW) and 2.75 dBi gain value. Similarly, the North
American tag had minimum dimension at the angle θ = 30◦, which was 92.4 mm× 10 mm, as elaborated
in Table 2.

Table 2. Meandering angle characteristics and parameters for both European (EU) and North American
(NA) UHF band standards.

Angle (Degree) EU/NA UHF Band S11 (dB) Bandwidth (BW)
(MHz) at −10 dB

Compact Size
(cm2) Gain (dBi)

θ = 0◦ EU −22 36 10.12 cm × 1.22 cm 2.38
θ = 15◦ EU −23.9 35 10.12 cm × 1.10 cm 2.28
θ = 30◦ EU −29 37 10.12 cm × 1.05 cm 2.75
θ = 45◦ EU −21 33 10.12 cm × 1.06 cm 1.75
θ = 30◦ NA −18.5 37 9.24 cm × 1.0 cm 3.14
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2.3. Impedance Matching Network

To find an ideal match between the radiating antenna and flip-chip, a conjugated matching network
(CMN) was constructed. A matching network in comprised of series (open) and shunt (close) stubs.
For a perfect impedance matching network (PIMN), both stubs are essential in the antenna scheme.
This forms the double stub impedance matching technique (IMT). The loops technique [34] and the
feeding loop technique [35] have been used for impedance network matching. The IC NXP-G2XM [28]
is joined along the series (open) stubs of the matched network. Its size is 3 mm × 3 mm with eight
leads. The first lead is soldered with the grounded part of the antenna, and the last lead is soldered
with the ungrounded part of the antenna (whenever all other leads are free) [28]. The real part (R) of
the impedance (Z = R + jX Ω) is controlled by the series stubs, and the shunt stubs fluctuate until the
reactance (X) of the antenna becomes equal in magnitude but opposite in phase to the reactance of
the flip-chip [29,33]. If ZIC = 22 − j195 Ω is the flip-chip IC impedance, the point ZA = 22 + j195 Ω
would be the radiating antenna impedance, where the reactance of the tag is equal in magnitude
but conflicting in phase. Along these lines, the conjugate impedance of the tag is perfectly matched,
and the antenna will transfer the harvested RF energy to the IC for triggering of the modulation and
back-scattering processes.

S11 = Γ =
zchip,tag − zant,tag

zchip,tag + zant,tag
(3)

RL(dB) = 20 log|Γ| = 20 log

∣∣∣∣∣∣ zchip,tag − zant,tag

zchip,tag + zant,tag

∣∣∣∣∣∣ (4)

Utilizing Equations (3) and (4) [35], we can calculate the return loss (RL; in dB), which is shown
in Figures 5 and 6. This is also called the reflection coefficient (denoted by S11). With the help of
the RL curve, the sensitivity and bandwidth of the tag have been measured for the targeted country
prerequisites stipulated in Figure 2, as per the UHF RFID standards. In Figure 5, the previously
published tags (PPTs) acquired the 40 MHz bandwidth (BW) when the targeted BW to achieve was
w.r.t. the EU UHF RFID standard [32]. The PPTs also fulfilled network impedance matching. The PPTs
had 22 Ω resistance R(Z) at 867 MHz and 195 Ω reactance X(Z) at 870 MHz w.r.t. the targeted flip-chip
package ZIC = 22 − j195 Ω, as depicted in Figure 5. However, the proposed tag (PT) achieved 38 MHz
BW, 22 Ω resistance R(Z) at 866 MHz, and 195 Ω reactance X(Z) at 873 MHz. In Figure 6, the previously
published tags (PPTs) acquired 35 MHz bandwidth (BW) when the targeted BW to achieve was at
26 MHz w.r.t. the NA UHF RFID standard [32]. The PPTs also satisfied network impedance matching.
The PPTs had 22 Ω resistance R(Z) at 923 MHz and 195 Ω reactance X(Z) at 911 MHz w.r.t. the targeted
flip-chip package ZIC = 22 − j195 Ω, as depicted in Figure 6. However, the proposed tag (PT) achieved
38 MHz BW, 22 Ω resistance R(Z) at 924 MHz and 195 Ω reactance X(Z) at 918 MHz. In this way,
both the PPTs and the PT obeyed the rules of perfect impedance matching network (PIMT). Due to this
characteristic, tag communication is possible in a good manner.
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Figure 5. Reflection coefficient measured under −10 dB: m1 is minimum reflection coefficient S11 at
fc = 867 MHz (which is −29 dB), m2 is the resistance (which is 22 Ω), and m3 is the reactance (which is
195 Ω). These markers (m1, m2, m3) exist within the target bandwidth (37 MHz) from MX1 = 851 MHz
to MX2 = 888 MHz at S11 = −10 dB and conjugate impedance (22 + j195 Ω) of the European UHF RFID
band. The tag antenna is achieved w.r.t. the targeted IC impedance (22 − j195 Ω) for the proposed tag
and previously published tags (PPT).
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Figure 6. Reflection coefficient measured under −10 dB: m1 is the minimum reflection coefficient S11 at
fc = 913 MHz (which is −19 dB), m2 is the resistance (which is 22 Ω), and m3 is the reactance (which is
195 Ω). These markers (m1, m2, m3) exist within the target bandwidth (37 MHz) from MX1 = 896 MHz
to MX2 = 933 MHz at S11 = −10 dB and conjugate impedance (22 + j195 Ω) of the North American
UHF RFID band. The tag antenna is achieved w.r.t. the targeted IC impedance (22 − j195 Ω) for the
proposed tag and previously published tags (PPT).

2.4. Capacitive Antenna-End Tip-Loading

The introduction of tip-loading at the end of the tag antenna is an additional process for tag
antenna size reduction, which is known as capacitive antenna-end tip-loading. Due to radiation,
a large number of charges will be accumulated toward the antenna-end surface, expanding the
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capacitance. Capacitance is inversely proportional to the resonance frequency, which is why when
the end tip-loading surface area is enhanced, the resonance frequency is decreased. In this way,
the resonance frequency will shift to a lower frequency and the antenna length will be electrically but
not practically improved [36]. This process is additionally intended to lessen the antenna’s capacitive
reactance. A tip-loaded MAT antenna has better inductance behavior than an antenna that has no
tip-loading. Due to the great deal of charges on the antenna-end tip-loading, the bandwidth of the
antenna increases at resonance frequency. This does not imply that end tip-loading requires a large
surface area for extreme charges, yet it must be present in the antenna structure for a determined
bandwidth and for antenna size reduction [13]. Two types of antenna-end tip-loading are presented,
one of which is rectangular and other is small-square, as shown in Table 3. The small-square end
tip-loading is accomplished by the deduction of five smaller rectangles (2 mm × 1 mm) from the
rectangular type.

Table 3. Qualities and boundaries of tag antenna-end tip-loading.

Name Shape Area Bandwidth at
(S11 = −10 dB)

Bandwidth at
(S11 = −15 dB)

Rectangular
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3. Results and Discussions

This section presents the simulation results for the proposed MAT I-RFID UHF tags, in order to
facilitate the fabrication of low-profile tags for smart IoT environments in 5G systems. The simulations
were performed by implementing the following three realistic scenarios:

• Dipole meandering with MAT (Sections 2.1 and 2.2);
• Perfect impedance matching (PIM) with the series and shunt stub technique (Section 2.3); and
• Antenna inductive behavior with capacitive end tip-loading (Section 2.4).

The evaluation of the performance of the proposed MAT was quantified in terms of the tag
antenna design and simulation detailed in Section 2. To evaluate the impact of the tag on the system
performance, the proposed I-RFID tags were placed under the varying humidity conditions, the tag’s
read range (RR) was assessed using the Friis equation, and the reader power sensitivity (PR) was
assessed using the radar equation. Next, we inspected the indoor and outdoor work mechanisms of
the proposed tags for IoT in smart X environments. Finally, the performance of the proposed tags was
justified on a plethora of platforms with varying characteristics (e.g., bandwidth variation, circuit gain,
read range, and reader power sensitivity).

Figures 5 and 6 outline the simulation outcomes of the proposed UHF RFID tags for the EU and
NA standards [32]. Return loss, resistance, and reactance are elaborated in the figures, where S11 is
−29 dB and −18.5 dB at 867 MHz and 915 MHz, respectively, while the resistance R(Z) is 22 Ω for both
865 MHz and 924 MHz and the reactance X(Z) is j195 Ω for both 873 MHz and 917 MHz. Figure 7
shows the perfect torus-shaped omnidirectional radiating pattern of both antennas’ gains (which were
2.75 dBi and 3.14 dBi, respectively). In comparison with the results in [16], 23.6% to 33.12% improved
tag gain was observed.
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3.1. Meandering Angle Characteristics

Considering MAT, Table 2 illustrates the behavior of the proposed I-RFID tag antenna, with respect
to the S11 curve, circuit gain, and size reduction. At a plane angle (θ = 0◦), the antenna size was
10.12 cm × 1.22 cm, the minimum reflection coefficient was −22 dB, and the radiated gain was 2.38 dBi.
With an elevation angle variation of θ = 0◦, 15◦, 30◦, and 45◦, the results were adjusted, as depicted
in Table 2 and Figure 8. At the angle θ = 30◦, the tag antenna size was minimized, with lower S11
than with lower angles ones, which led to 10.12 cm × 1.05 cm size and −29 dB S11. The tag antenna
gain was 2.75 dBi at θ = 30◦. Accordingly, the tag is distinguishable at an extreme RR of the relating
interrogator/reader, where it has lower power and secures the greatest conceivable bandwidth (37 MHz)
at θ = 30◦. This implies that the MAT affects not only the reflection coefficient (S11) and bandwidth
(BW) but also the size and gain of the antenna. The size of the EU tag antenna previously proposed
in [16] was 98 mm × 15 mm, while the proposed EU tag had an antenna size of 101.2 mm × 10.5 mm,
which was 38.3% smaller in size. The previous NA tag antenna size was 97 mm × 13 mm [16], while
the proposed NA tag antenna size was 92.4 mm × 10 mm, which was 36.5% smaller in size.
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Figure 8. The effect of meandering angle variation on reflection coefficient (S11). With meandering angle
variation, the minima of S11 curves fluctuates from −22 to −29 dB, while the tag antenna bandwidth
is a little bit reformed (from 33 to 37 MHz). The tag antenna has a minimum reflection coefficient of
−29 dB and maximum bandwidth of 37 MHz under −10 dB S11 at θ = 30◦.

3.2. Series and Shunt Stubs Impedance Matching

For a PIMN, the IMT is important. The considered flip-chip package has a capacitive impedance
of ZIC = 22 − j195 Ω. Therefore, a typically inductive-behavior antenna should be structured with
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ZA = 22 + j195 Ω impedance. In Figure 4a,b, the proposed antenna attains PIMN using a series and
shunt stubs IMT. The conjugate impedance (22 + j195 Ω) of European UHF RFID band tag antenna
was achieved w.r.t. the targeted IC impedance (22 − j195 Ω) for the proposed tag and previously
published tags (PPT), as shown in Figures 5 and 6. At this stage, the size of the shunt/short stub is
23.36 mm × 1 mm, while the series/open stub has size 28.8 mm × 1.2 mm [33]. After attaining the
PIMN, the harvested electromagnetic power of the tag antenna is shifted to the loaded flip-chip, and its
sensitivity is improved. Due to this power sensitivity, data modulation and back-scattering phenomena
can be carried out. Along these lines, the IC includes a 32-bit password [28] encrypted data set of
object/devices, which will be remotely public with an ideal interrogator or reader within a secure
transmission [3].

3.3. Capacitive End Tip-Loading Bandwidth Effect

Under a −10 dB reflection coefficient, the antenna bandwidth (BW) is controlled by antenna
capacitive end tip-loading. As illustrated in Table 3, if tip-loading obtained the full surface of the
10 mm × 3 mm rectangle, then the BW at S11 = −10 dB is only 28 MHz and the BW at S11 = −15 dB is
not estimated. If five smaller rectangles (with 2 mm × 1 mm size) are subtracted from the tip-loading
surface area, then an area of 20 mm2 will remain. Therefore, the tag antenna BW with small-square end
tip-loading is improved, up to 38 MHz at S11 = −10 dB and 20 MHz BW at S11 = −15 dB. This implies
that the general return loss is enhanced, and the tag sensitivity is improved.

3.4. Dielectric Effect w.r.t. Atmospheric Humidity Level

When the humidity level changes with the variation of environmental temperature, the dielectric
(εr) of the substrate (Paper Korsnäs) will be affected. Figure 9 shows that when the substrate dielectric
becomes εr = 3.0, the reflection coefficient curve will be shifted 5 MHz to a higher frequency; furthermore,
it will shift 5 MHz to a lower frequency from the targeted center frequency (fc) when the substrate
dielectric becomes εr = 3.5. In the above scenario, the proposed MAT tag holds its characteristics
for the EU UHF band standard with humidity level inflation over the dielectric (εr) from 3.0 to 3.5.
Similarly, the MAT tag will also bear all environmental circumstances for the NA UHF standard.
Hence, the substrate materials are not influenced by the general results of proposed tag antenna whose
permittivity (εr) ranges from 3.0 to 3.5. It implies that such tag substrate materials can be utilized well,
and its performance should not be affected during summer and winter spells. In other words, it is
reliable throughout the year.
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3.5. Tag Read Range (RR) w.r.t. Reader’s EIRP

For massive industrial usage, the read range (RR) is another debatable boundary of IoT in smart 5G
systems. In this way, it cannot be disregarded when an RFID tag is examined and the Friis conditions
assume a significant job to uncover the RR (dmax,read) [10,26,31,37–44], as shown in Equation (5):

dmax,read =
c

4π f

√
EIRPreader.Gant,tag.τ

Pchip,tag
(5)

τ =
4Rchip.Rant∣∣∣zchip + zant

∣∣∣2 ≤ 1 (6)

where c (speed of light) = 3 × 108 m/s, f is the targeted frequency, the EIRP (effective isotropic
radiated power) is set as a standard by state spectrum regulations—for example, EIRP = 3.28 W
for the EU UHF standard and EIRP = 4 W for the NA UHF standard—τ is the transmission loss,
and Pchip,tag = 0.0316 × 10−3 W (−15 dBm). τ should be unity or less than unity, and it is calculated
using the resistances and impedances of the flip-chip package and the manufactured antenna. In the
given case, the extreme RRs of reader are 6.88 and 9.22 m for the proposed tags, where the MAT tags
can accept the threshold power of the flip-chip. These RRs constitute improvements of 50.9% and 59.6%
over the formerly published case in [16] within EU and NA bands [32], respectively. By overhead
estimations, the interrogator/reader PR is considered, in which the tags are in dynamic mode and the
RR is calculated at the targeted frequencies for each country. These are shown in Figure 10 for the
previously published tags (PPTs) and proposed tags (PTs), correspondingly. Both tags have dominant
RR in the IoT environment w.r.t. the respective UHF band rules and regulations [32], but the PTs
outperform the PPTs in all country tiers. The PT achieved the maximum RR (11.79 m) for the U.K.
band, while the PPT had an RR of only 4.5 m. The PPT attained the minimum RR (3.17 m) for the
Chinese band, while the PT outperformed in the European band with an RR of 6.88 m, constituting
a 50.9% improvement for that case. The PT RR was 5.5 m higher than that of the PPT in the North
American case. In all scenarios, the PTs performed better than the PPTs, as portrayed in Figure 10.
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3.6. Reader Power Sensitivity (PR)

Another negotiable constraint is the power sensitivity of the interrogator/reader. This is measured
by the radar equation and the interrogator simply reading the MAT tag during back-scattering after
data modulation. The radar equation is given as [10]:

PR =
σ.EIRPreader.Gant,tag

4π

 c
4π f .d2

max,read

2

(7)

where PR is the reader power sensitivity and σ is the radar cross-section, which is 0.001 m2. Then,
by utilizing Equation (7), we calculated the PR = −72.75 dBm for the European (EU) band and
PR = −75.29 dBm for the North American (NA) band. The PR value for each UHF RFID band country
is likewise categorized in Figure 10 for the previously published tags (PPTs) and proposed tags (PT),
separately. The reader power sensitivity (PR) ranged from −69.08 dBm to −66.5 dBm for the PPTs
and from −77.42 dBm to −72.75 dBm for the PTs. Put simply, we can say that a reader would require
1.58 × 10−4 mW power to communicate with the PPTs; meanwhile, for the detection of PTs, they need
a minimum 3.16 × 10−5 mW of power. Through comparison of these two scenarios, the PTs performed
better than the PPTs. In the smart IoT environment, all proposed tags have a radar coverage area
(RR) of 6.88 m and 9.22 m for EU and NA bands, respectively. Consequently, the reader sensitivity
should be less than the PR value, in order to receive data from the tag at its corresponding RR (dmax,read).
This implies that MAT plays a massive role in all basic project prerequisite characteristics of the tag.

3.7. Experiment and Printing Setup

During shipment and freightage, it is normal that goods get nicked. Therefore, to solve this
issue, I-RFID tags were produced utilizing flexo- and screen-printing with Asahi conductive paste.
Exceptional mechanical accomplishment (i.e., antenna conductive efficiency) was noticed by us after
inkjet printing (see Figure 11a) [16]. Inside the anechoic chamber shown in Figure 11b, the near-field
execution of tags was done using Imping’s UHF RFID reader kit. The maximum radiation structure (D)
of Imping’s kit was 0.3 m. The far-field distance within the anechoic chamber is 0.56 m, as calculated
by 2D2/λ at 915 MHz (λ = 0.33 m). The tags proposed in [16] exhibited flawless readability within the
anechoic chamber at 2D2/λ.
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Figure 11. (a) Inkjet printing setup and paper substrate printed antennas; (b) Experimental setup in an
anechoic chamber [16].

By utilizing a vector network analyzer (MS2026b, Anritsu), impedance assessments were carried
out using the short-open-load (SOL) standard calibration method [16]. Figures 5 and 6 show that the
resistance and reactance of the proposed tags were achieved within the target bandwidth. For the
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EU UHF RFID band, 24 Ω resistance and 191 Ω reactance were measured at the target frequency of
867 MHz; similarly, 20 Ω resistance and 191 Ω reactance were measured at the target frequency of
915 MHz for the NA UHF RFID band. These values were very close to the targeted flip-chip package
NXP G2XM (22 − j195 Ω). Thus, good agreement was found between the proposed series and shunt
stubs of the tag and the flip-chip package.

As the proposed tag substrate was the paper-based material Korsnäs, the permittivity variation
(due to atmospheric humidity levels) behavior is important in determining the final tag performance.
Figure 9 shows that only 5 MHz center frequency shifting was observed under varying humidity,
which means that the tag will cover the required targeted bandwidth (3 MHz for the EU UHF RFID
standard and 26 MHz for the NA UHF RFID standard) in all-weather circumstances w.r.t. humidity
level variations.

For the low-profile I-RFID tag design, Asahi paste inkjet-printed tags have larger return loss
values compared to the return loss of copper tags, and the antenna radiation pattern was measured in
an anechoic chamber setup that mimics infinite free-space, as depicted in Figure 11b [16]. The final
omnidirectional radiation pattern of the proposed antenna gain for both UHF RFID tags is shown in
Figure 7, which was 2.75 and 3.14 dBi for EU and NA UHF RFID standards, respectively.

Antenna prototypes of previously published tags (PPTs) and proposed tags (PTs) are depicted in
Figure 12 (a and b) and (c and d), respectively, for UHF I-RFID. Low-profile and cost-effective design is
key for the both manufacturers and users in smart environments. The dimensions of the previously
proposed European tag antenna were 98 mm × 15 mm, while the proposed European tag antenna had
dimensions of 101.2 mm × 10.5 mm, which was 38.3% smaller in size and dimension. The previous
North American tag antenna [16] was 97 mm × 13 mm, while the proposed NA tag antenna dimension
was 92.4 mm × 10 mm, which was 36.5% smaller in size with respect to the previously published tag.
Thus, MAT reduced the complexity and size of the antennas (up to 37%) at the angle of θ = 30◦.
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Figure 12. Prototypes of the antennas of previously published tags (PPT) and proposed tags (PT):
(a) PPT EU UHF RFID tag (98 × 15 × 0.39 mm3); (b) PPT NA UHF RFID tag (97 x 13 × 0.39 mm3); (c) PT
EU UHF RFID tag (101.2 × 10.5 × 0.39 mm3); and (d) PT EU UHF RFID tag (92.4 × 10 × 0.39 mm3).

3.8. Comparison between Proposed Tags (PT) and Previous Published Tags (PPT)

Table 4 compares the proposed tags (PT) with the previously published tags (PPT), in terms
of their structure, for several types of applications based on tag dimension, volume, effective
gain, bandwidth, and read range. The PTs had minimal three-dimensional properties and volume
(EU 101.2 mm × 10.5 mm × 0.39 mm = 414.414 mm3; NA 92.4 mm × 10 mm × 0.39 mm = 360.36 mm3),
compared to the others. The PPTs were fabricated with radiating materials (e.g., aluminum foil,
copper, metals) and substrate materials (e.g., FR4, polycarbonate, polyethylene terephthalate (PET),
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alumina/Al2O3). These materials are not suitable for low-profile tag production. The PTs also have a
pliable and flexible feature, which makes their usage more convenient.

Table 4. Comparison of proposed tags with miscellaneous previously proposed tags. (n/a), not available.
Required bandwidth (at S11 = −10 dB) is 3 MHz and 26 MHz for European (EU) and North American
(NA) UHF RFID bands [32], respectively.

Ref. EU/NA Tag Dimension
(mm3) Gain (dBi) Bandwidth (BW)

(MHz) at −10 dB
Read Range

(RR) (m)

[16] EU 98 × 15 × 0.39
2.1 51

3.38
NA 97 × 13 × 0.39 3.72

[17] EU 49.14 × 17.9 × 0.5 1.7 8 5.95
[18] NA 140 × 60 × 10 n/a 0 7.5
[20] NA 93 × 23 × 8 1.5 60 5

[21] EU 92 × 33.54 × 1.38 1 22 4
NA 87.8 × 31 × 1.31 1.5 28 5

[22] EU 85 × 40 × 3.2 n/a 8 ~7.5 (−15 dBm)
[23] EU 23 × 23 × 1 n/a n/a 1

Ours
EU 101.2 × 10.5 × 0.39 2.75 37 6.88
NA 92.4 × 10 × 0.39 3.1 37 9.22

The PTs are intended to be used in IoT applications as green tags, as they are easily disposable
without bad environmental effects. The effective gain of the PTs is maximal, compared to the PPTs,
leading to long-range communication with a perfect impedance matching network. In terms of tag
sensitivity, the PPTs of [17,18,22,23] were less sensitive, as the bandwidth was estimated under the S11
of −10 dB, where they had less BW. The incredible RR of our tags (6.88 and 9.22 m for EU and NA UHF
RFID bands, respectively) were greater than the other PPT cases in Table 4. The proposed tags satisfy
the requirements of low-profile design, considering their size, use of materials with high effective gain,
incredible read range, and sensitivity.

3.9. I-RFID Indoor and Outdoor Work Mechanism for IoT in Smart X Environments

I-RFID is generally considered a prerequisite for IoT in smart X environments. I-RFID technologies
play a dynamic role in challenging IoT environments of smart cities, such as securing massive logistics
control at seaports and aerodromes. At present, more goods are passing through the world’s shipping
terminals than ever before. It is difficult to prevent explosions when using the large, static detectors
that are basically utilized for detecting explosive materials. Passive I-RFID tags, which work as
remote, battery-free explosive detectors, can be mounted practically everywhere in challenging IoT
environments. On the other hand, product misplacement and chances of evasion have also been
increasing with the passage of time. To overcome such issues, I-RFID tags can play an enormous role
for goods management in a secure manner in smart cities.

In retail environments, technological change has been happening fast. For this reason, many
retailers have been shifting their products toward the use of I-RFID in order to improve the
unprecedented level of inventory accuracy provided by a smart-friendly IoT environment. Within
such a smart environment, consumer satisfaction can be upgraded, which is basic tenet of product
marketing. Some stores are currently in the process of introducing frameworks that permit personal
telephones to receive messages when an individual enters the store. Ongoing offers are sent to the
phone, informing the individual of offers accessible in that store and enabling them to have a more
brilliant shopping experience in the IoT environment. We know that everything is wrapped or packed
with a plastic cover or cardboard box for retailing and shipping. For this reason, the proposed tag’s
performance has been optimized for such platforms (e.g., plastic, paper, and glass).

For example, the UHF RFID integrated reader SL130 is manufactured by the “Strong link” [30].
It is especially designed for vehicle management, electronic toll collection (ETC), personnel access
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control, anti-counterfeiting, logistics monitoring, and product auto management systems. It works for
both European and North American UHF bands within a tag reading distance of about 8 m. Its output
power is 20 to 30 dBm. The triggering on power of the proposed NA tag is −75.29 dBm. This means that
more than 3 million tags can be activated with the 20 dBm power of the reader (SL130). The reading
speed of the SL130 is 32 bits/6 ms.

The proposed tag IC memory is 512 bits, which can be read by the SL130 within 96 ms. In one
second, the SL130 can easily read approximately 10 tags and, so, 600 tags can be read by the SL130
within 60 s. If four concatenated readers are placed in any smart environment, as depicted in Figure 13,
then 2400 of the proposed tags can be read by them per minute. This is a milestone for IoT in smart X
environments, facilitating supply chain management through smart logistics, product retailing at smart
marts, immigration clearance by smart passports, and transportation and surveillance in smart cities.
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logistics, smart market retail, smart passport immigration clearance, and smart city transportation).

3.10. Tag Performance on Mounting Platforms

A simulation model for the platforms is shown in Figure 14, and the platform’s dielectric properties
(i.e., permittivity and tangent loss) are given in Table 5 [31]. Each platform’s dimension is 140 mm ×
30 mm × 1 mm, with respect to the designed UHF RFID tag. Table 6 elaborates the tag performance
on several mounting platforms (i.e., plastic, paper, glass, and water). The proposed North American
UHF RFID tag’s bandwidth at center frequency (fc = 915 MHz) is 37 MHz. There was no variation in
bandwidth on plastic and paper platforms, while glass and water platforms showed 3 MHz and 7 MHz
detection in the proposed tag’s bandwidth, which is enough to cover the specified required bandwidth.
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Table 5. Dielectric properties of the mounting platforms [31].

Platforms Permittivity (εr) Tangent Loss (δ)

Plastic 3 3
Paper 3.2 0.07
Glass 4.82 0.0054
Water 77.3 0.147

Table 6. North American UHF RFID tag performance on several platforms and in free space.

Platforms fc Variation Bandwidth
Variation

Circuit Gain
(dBi)

Read Range
(m)

Sensitivity
(dBm)

Free Space 0 0 3.14 9.22 −75.92
Plastic −45 0 2.926 8.17 −74.24
Paper −47 0 2.516 5.61 −70.98
Glass −78 −3 1.58 1.95 −64.46
Water +80 −7 −1.05 0 0

On the other hand, center frequency (fc) variation could not be ignored, as the RFID UHF
bandwidth limitation is 860–960 MHz. The fc values of plastic and paper platforms still fell within the
required band, but those of glass and water were outside the RFID UHF bandwidth specified in Table 6.
By parametric optimization, the fc values of plastic, paper, and glass can be shifted to the specified
UHF RFID band for the relative country.

The circuit gain and read ranges of tags are likewise significant parameters, which are depicted
in Table 6 for each platform. The circuit gains of plastic, paper, glass, and water were 2.926,
2.516, 1.58, and −1.05 dBi, respectively; their 3D polar plots are shown in Figure 15. By utilizing
Equations (5) and (6), we calculated the decent read ranges of the NA UHF RFID tags, which were
8.17 and 5.61 m on plastic and paper platforms, respectively. On the glass platform, the tag read range
was 1.95 m, which is significant. The tag had no grip on the water platform w.r.t. circuit gain and read
range, which are part of Table 6. The read ranges of the NA UHF RFID tag w.r.t. several platforms and
in free space are portrayed in Figure 16.
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Figure 15. Torus-shaped omnidirectional radiating pattern of antenna gain for North American UHF
RFID tag on several mounting platforms: 0.77 dB (2.92 dBi) for plastic; 0.36 dB (2.51 dBi) for paper;
−0.5 dB (1.58 dBi) for glass; and −3.2 dB (−1.05 dBi) for water.
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Figure 16. Tag gain read range (RR) and reader power sensitivity (PR) of NA UHF RFID tag on
mounting platforms and in free space.

The reader/interrogator sensitivity of the tag on each platform is depicted in Table 6 by using
Equation (7), where the reader requires a minimum of −74.24 dBm of power to detect the plastic
platform tag at a distance of 8.17 m, while for paper and glass, the reader sensitivity is −70.98 and
−64.46 dBm, respectively. The line graph in Figure 16 elaborates the tag gain, RR, and reader power
sensitivity statistics of the NA tag in free space and on mounting platforms. Here, the line graph
indicates the relationships among the tag gain, read range, and reader power sensitivity. Whenever the
tag gain is diminished, the read range is straightforwardly affected and the reader power sensitivity is
enhanced, respectively. For the paper platform, the gain of the tag was 2.516 dBi and the read range
was 5.61 m; with respect to these, the reader power sensitivity was −70.98 dBm.

4. Conclusions

In this paper, minimized Passive I-RFID UHF meander-line antennas were designed using the
meandering angle technique (MAT). The resultant gain was 2.75 and 3.14 dBi for European (EU) and
North American (NA) standards, respectively. The I-RFID tag size was reduced by 36% to 38% w.r.t.
previously published cases, the gain of the proposed tag was improved by 23.6% to 33.12%, and its read
range was enhanced by 50.9% and 59.6% for EU and NA UHF bands, respectively. Our results show
that the tag antenna was also optimized with respect to humidity, allowing its use in IoT systems in
smart X environments in all weather conditions. Small tags were utilized for UHF I-RFID applications,
where the applicable RR was 6.88 m (EU) and 9.22 m (NA) and the maximum bandwidth was 38 MHz at
S11 = −10 dB for the global UHF standard (860–960 MHz). For IoT challenges in smart X environments,
the proposed tag retains impressive properties when mounted on plastic, paper, and glass platforms.
The proposed tag has powerful and graspable outcomes; for example, for locating books in smart
computerized libraries, for supply chain management in smart marts, to secure massive logistics
control for smart seaports and aerodromes, for smart highways and vehicle identification, for smart
passports to enhance immigration clearance in airports, and for surveillance in smart cities using 5G
systems. Supplementary future developments are to optimize the design in order to approach the
elastic bandwidth and further miniaturize the design.
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