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Abstract: Wearable sensor technology already has a great impact on the endurance running
community. Smartwatches and heart rate monitors are heavily used to evaluate runners’ performance
and monitor their training progress. Additionally, foot-mounted inertial measurement units (IMUs)
have drawn the attention of sport scientists due to the possibility to monitor biomechanically relevant
spatio-temporal parameters outside the lab in real-world environments. Researchers developed and
investigated algorithms to extract various features using IMU data of different sensor positions on
the foot. In this work, we evaluate whether the sensor position of IMUs mounted to running shoes
has an impact on the accuracy of different spatio-temporal parameters. We compare both the raw
data of the IMUs at different sensor positions as well as the accuracy of six endurance running-related
parameters. We contribute a study with 29 subjects wearing running shoes equipped with four
IMUs on both the left and the right shoes and a motion capture system as ground truth. The results
show that the IMUs measure different raw data depending on their position on the foot and that
the accuracy of the spatio-temporal parameters depends on the sensor position. We recommend to
integrate IMU sensors in a cavity in the sole of a running shoe under the foot’s arch, because the raw
data of this sensor position is best suitable for the reconstruction of the foot trajectory during a stride.

Keywords: wearable computing; foot kinematics; sensor position; zero velocity update;
inertial measurement unit; sport science; running

1. Introduction

Wearables have become increasingly important in many fields of our everyday life.
Among applications in medicine, workplaces, and many others, the sports domain was one of the
early adopters of wearable technology. The reasons for the quick spread of small body-worn sensors
in sports was due to the manifold advantages of the technology for athletes, researchers, and the
sports industry. Using wearables, athletes can utilize low-cost sensor technologies in order to enhance
their performance, prevent injuries, and improve their motivation [1]. Sports research benefits from
the fact that wearables allow in field data acquisitions, whereas many studies in the sports domain
were traditionally laboratory bound [2]. Furthermore, the sports industry can, on the one hand,
offer innovative and more attractive sports products with integrated sensor technology, and, on the
other hand, gather consumer data which they can use to improve their products.
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One sport where wearable technology already has a great impact is endurance running.
Both professional and recreational runners track themselves and use online platforms like
Runtastic (Runtastic GmBH, Pasching, Austria) or Strava (Strava, San Francisco, CA, USA) to monitor
their training progress and performance. Three heavily used sensor technologies in endurance
running are Global Positioning System (GPS) trackers, heart rate monitors, and inertial measurement
units (IMUs). While GPS trackers like smartwatches or smartphones are utilized for visualizing the
running track and providing real-time feedback on pace and distance [3], heart rate monitors are
used to evaluate the physical effort of runs and provide real-time feedback on exercise intensity and
training effect [4]. However, these two sensor modalities are not capable of revealing insights into the
biomechanics of runners. IMUs are low-cost sensors which consist of 3D-accelerometers measuring
linear acceleration as well as 3D-gyroscopes measuring angular velocity. By attaching those sensors to
different parts of the human body, various endurance running-related biomechanical parameters can
be computed and evaluated.

In this context, IMUs can be used in various ways. Researchers developed body sensor networks
with multiple sensors in order to reconstruct the movement of different extremities in a synchronized
manner [5]. The advantage of those sensor networks is the holistic evaluation of runners’ movements.
However, attaching all the sensors requires a lot of time which recreational runners are often not
willing to spend for everyday runs. That is why researchers also investigated single sensors at specific
positions on the human body which can easily and quickly be attached. Apart from placing sensors
on the lower back [6,7], the tibia [8,9], or the ankle [10], a popular sensor position used in literature
is the foot or the running shoe [2,11–15]. One reason for the popularity of this sensor position is the
amount of different spatio-temporal parameters that can be computed. Falbriard et al. [16] showed
that foot-mounted IMUs can be used to accurately segment running strides into their sub-phases
(ground contact phase and swing phase) and thus allow computing stride time and ground contact
time. Apart from that, researchers developed algorithms to reconstruct the trajectory, that is, orientation
and translation, of the foot during a stride. A popular approach for the computation of the trajectory is
strapdown integration using a zero-velocity assumption during midstance [17]. From the resulting
foot translation, stride length and average stride velocity was calculated with a mean error of 2 cm
and 0.03 m/s, respectively [15]. Additionally, the orientation can be used to compute angular foot
kinematic parameters like the sole angle in the sagittal plane or the range of motion in the frontal
plane [12,14].

However, publications using foot-mounted IMUs differ not only in the computed spatio-temporal
parameters, but also in the position of the IMU sensors on the running shoes. Shiang et al. [11],
Falbriard et al. [12], and Strohrmann et al. [2] mounted the IMU sensors on the instep of the foot on
top of the shoelaces, whereas Lederer et al. [13] and Koska et al. [14] mounted the sensors on the heel.
Other sensor positions presented in literature are on the lateral side of the running shoe below the
ankle [17] and inside the sole of the running shoe [18,19].

To our knowledge, the effect of the IMU sensor position on the foot with respect to raw data
quality and accuracy of spatio-temporal parameters has not been evaluated yet. Peruzzi et al. [20]
evaluated the best possible IMU sensor position for algorithms using zero-velocity updates and found a
lateral mounting below the ankle to be the best sensor location. They evaluated the quality of the sensor
position using a motion capture system by investigating the motion of the retroreflective markers at
different locations. However, they did not include IMU raw data or spatio-temporal parameters to
evaluate the sensor position.

We contribute an in-depth analysis by comparing different sensor positions with respect to the
raw signals as well as their suitability for the computation of spatio-temporal parameters. We base our
evaluation on a study with 29 subjects, which wore running shoes with IMUs attached to the instep,
the heel, the lateral side of the foot, and within the cavity of the running shoe. We compare the similarity
of IMU raw data at different sensor positions by computing Pearson’s correlation coefficients between
the individual sensor positions’ raw data. Besides, we compute and evaluate temporal stride features
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based on state-of-the-art event detection algorithms and spatial features using a zero-velocity-based
strapdown integration algorithm.

2. Methods

2.1. Definition of Spatio-Temporal Parameters

The temporal parameters we evaluated were stride time tstride and ground contact
time tgc (Figure 1). One stride was defined by two consecutive initial ground contacts (ICs) of the
same foot. The duration between those time instances is the stride time. One stride could be further
segmented into ground contact phase and swing phase by finding the toe off (TO) event where the foot
leaves the ground. The duration of the ground contact phase is called ground contact time. One further
important phase during ground contact time is midstance (MS). It subdivides the ground contact phase
into absorption and propulsion phase. We used the MS for the zero-velocity update in the strapdown
integration algorithm.

Initial ground 

contact
Midstance Toe o

Ground contact phase Swing phase

Initial ground 

contact

Stride time , Stride length

Ground contact time

Figure 1. Visualization of the running gait cycle.

The spatial parameters based on the translation of the foot were stride length dstride and the
average stride velocity vstride. The stride length is defined as the translation of the foot during one
stride. The average stride velocity can be computed by dividing the stride length by stride time.

We used the sole angle and the range of motion as spatial parameters based on the orientation to
evaluate the sensor positions (Figure 2). The sole angle is defined as the angle between the sole of the
running shoe and the ground in the sagittal plane at IC. The range of motion describes the eversion
movement of the foot during ground contact. Runners land on the lateral side of their foot and rotate
inwards after IC. The angle describing the amount of inward rotation is the range of motion in the
frontal plane.

Sole angle Range of motion 

Sagi al plane Frontal plane

lateralmedial

Figure 2. Visualization of sole angle and range of motion.
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2.2. Data Set

We collected data of 29 amateur runners (23 male; 6 female) with a mean age of 24.9± 2.4 years.
All subjects were informed about related risks and gave written consent to participate in the study and
for the collected data to be published. The data was acquired in a laboratory with a motion capture
system (Vicon Motion Systems Inc., Oxford, UK) as reference. All subjects wore the same kind of
running shoes (adidas Response Cushion 21, Adidas AG, Herzogenaurach, Germany). Both the left
and the right shoe were equipped with four IMU sensors. The sensors were located in a cavity in the
sole of the running shoe, laterally under the ankle, at the heel, and on the instep (Table 1; Figure 3).

Table 1. Naming of the sensor position and details on the mounting of the sensors.

Name Mounting

Cavity Cavity cut in the sole of the shoe under the arch
Instep Mounted with suiting clip to laces of the shoe

Lateral Mounted with tape laterally under ankle
Heel Mounted with tape on heel cap

Heel

Lateral
Cavity

Instep

Figure 3. Visualization of sensor positions on the running shoes, the global coordinate system
(xg, yg, zg), the shoe coordinate system (xs, ys, zs), and the individual sensor coordinate systems.
When the foot is flat on the ground, the global and the shoe coordinate system are aligned.

For the study, we used miPod IMU sensors [21]. The accelerations~a[n] and angular rates ~ω[n] at
sample n measured with those sensors will be denoted as

~a[n] =


ax[n]

ay[n]

az[n]

 and ~ω[n] =


ωx[n]

ωy[n]

ωz[n]

 , (1)

where indices x, y, and z denote the vector components along the axis of the respective sensor (Figure 3).
The sensors sampled accelerations and angular rates with a frequency of fs = 200 Hz and a resolution
of 16 bit. According to Potter et al. [22], we set the range of the accelerometer to ±16 g and the
range of the gyroscope to ±2000◦/s. Prior to the data acquisition, the miPod sensors were calibrated
using the calibration routine introduced by Ferraris et al. [23]. Additionally, a functional calibration
routine was performed to align the individual sensors’ coordinate systems with the shoe coordinate
system (xs, ys, zs). The functional calibration routine (Figure 4) was performed for each subject and
generated two vector pairs for each sensor. Each vector pair consisted of one vector in the sensor frame
and one vector in the shoe frame:

1. Vector pair superior/inferior direction: The subjects were asked to stand still with both feet on
the ground. Thus, the accelerometer of all sensors measured the gravitational acceleration in the
sensor frame. The zs-axis was defined as the corresponding vector in the shoe frame.
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2. Vector pair medial/lateral direction: The subjects rotated their feet on a balance board, which only
allowed for a rotation in the shoe frame’s sagittal plane. A gyroscope in the shoe frame measures
the angular rate of the rotation on the medial/lateral axis. The medial/lateral axis of the shoe
frame corresponds to the principle component of the angular rate data during rotation in the
sensor frame. The xs-axis was defined as the medial/lateral axis in the shoe frame.

Using these vector pairs, we computed a subject dependent rotation matrix for each sensor
location, which rotated the IMU-data in the sensor frame into the shoe frame using an adapted version
of the Whaba algorithm [24,25]. After applying this rotation matrix to the sensor data, all sensor
frames were aligned with the shoe frame, which makes the raw IMU data comparable on each axis.
Besides, the functional calibration offers the possibility to run the same algorithms on each sensor due
to the same alignment of the sensors and thus enable a fair comparison between the sensor positions.
For the simplicity of the notation in this work, we keep the convention for acceleration ~a[n] and
gyroscope ~ω[n] defined in Equation 1, but use x, y, and z as the axis in the shoe coordinate system
from now on.

Figure 4. Visualization of the functional calibration procedure. The first part of the functional calibration
consisted of standing still with the foot flat on the ground in order to measure gravity. During the
second part the subjects rotated their feet on a balance board to compute the medial/lateral axis using
a principal component analysis.

The motion capture ground truth system consisted of 16 infrared cameras and sampled the
positional data of the retroreflective markers with a sampling rate of fs = 200 Hz. The running shoes
were equipped with a subset of the marker setup described by Michel et al. [26]. For our study,
we only used the six markers attached to each foot. Using these markers and the marker-based stride
segmentation method for IC and TO using motion capture data introduced by Maiwald et al. [27],
the reference values for the spatio-temporal stride features could be estimated.

The sensors and the motion capture system were synchronized using an adapted version of the
wireless trigger introduced by Kugler et al. [28]. Due to small differences in the IMUs sampling
rates, this procedure only allowed for a stride-to-stride synchronization, not a sample-to-sample
synchronization.

In the described set-up, each subject was asked to run 50 times through the motion capture
volume. We controlled for speed by capturing different number of trials in different velocity ranges of
2–6 m/s (Table 2). Using the described study set-up, we were able to collect data of 2426 strides.
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Table 2. Number of trials and recorded strides per velocity range. During the data acquisition,
we controlled for speed and the subjects only changed the velocity range, if the required number of
trials in the previous (slower) velocity range was reached.

Velocity Range (m/s) Number of Trials Number of Strides

2–3 10 962
3–4 10 558
4–5 15 544
5–6 15 362

An example stride for the four IMU sensors, which was segmented from IC to IC, is depicted in
Figure 5.
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Figure 5. Exemplary IMU data of one stride segmented from IC to IC for the four different
sensor positions.
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2.3. Algorithm

2.3.1. Stride Segmentation

We used a combination of different existing stride event detection algorithms to find IC, MS,
and TO in the IMU signal. IC and TO were computed by finding maxima in the angular rate data of
the sagittal plane. According to Falbriard et al. [16], these two maxima are reliable features to detect IC
and TO even though they have a certain bias from the actual IC and TO.

We found a two stage approach to be most reliable for IC detection. Firstly, we used a cyclicity
estimator of Šprager et al. [29] to find the swing phase index nSP,i before the i-th ground contact at the
local minimum of the gyroscope in the sagittal plane (Figure 6). This instant in time corresponds to the
forward swing of the foot during swing phase. From this fiducial point, we searched for the next local
maximum of the gyroscope signal in the sagittal plane, which corresponds to the point of maximum
rotation in the sagittal plane after nSP,i. Falbriard et al. [16] reported a bias of 11 ms for this fiducial
point to the actual IC event. Due to this fact and the chosen sampling rate of 200 Hz, we corrected the
detected maximum by two samples to find the index of the i-th IC nIC,i .

From this time instance, the index of the i-th MS nMS,i was determined by finding the minimum
in the gyroscope L2-norm after nIC,i [30] in a time range of 250 ms (50 sample), which is the average
time of a stance phase while running with speeds up to 6 m/s [31]:

nMS,i = argmin
n

√
ω2

x[n] + ω2
y[n] + ω2

z [n] , n ∈ [nIC,i; nIC,i + 50] (2)

For the detection of TO, we used the first maximum in the angular rate data after the maximum
related to IC in a time range of 400 ms [31]. We added 150 ms to the average stance time for speeds
up to to 6 m/s to account for running styles with longer ground contact phase. According to
Falbriard et al. [16], this maximum in the gyroscope signal can be detected reliably even though
it has a speed-dependent bias from the actual TO. In their work, they provided speed-dependent biases
for different fixed running speeds. Because the subjects in our study ran in wide speed bins of 1 m/s,
we could not use the provided speed dependent biases. However, we used the authors’ overall 24 ms
bias from the second maximum in the angular rate signal of the sagittal plane to find the index of the
i-th TO event nTO,i.

1.8 2 2.2 2.4 2.6 2.8 3 3.2
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Figure 6. Visualization of the stride segmentation for the cavity sensor using the gyroscope signal in
the sagittal plane ωx[t]. The fiducial points at swing phase nSP are local minima of the angular rate in
the sagittal plane. The index nIC indicates the index of IC, which corresponds to the bias corrected local
maximum after nSP. The MS event nMS is at the minimum of the gyroscopic energy. The TO event at
nTO is based on the second local maxima and a bias correction.
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2.3.2. Computation of Foot Trajectory

For the computation of the spatial parameters we implemented a strapdown integration algorithm
to reconstruct the trajectory of the foot using a zero-velocity update to reduce IMU drift. The trajectory
algorithm is an adapted version of the sensor fusion algorithm introduced by Rampp et al. [32].
It consists of a quaternion-based orientation estimation using the gyroscope data followed by a gravity
corrected and dedrifted integration using the acceleration data.

The orientation estimation is based on the zero-velocity assumption. During MS the foot is
assumed to be flat on the ground with a velocity of 0 m/s. Therefore, we can reset the orientation
and the velocity for each stride during MS. For running, this assumption is often violated due to the
dynamic nature of running for high running speeds. Besides, in the case of forefoot running no flat-foot
phase exists. However, we could show in one of our prior publications [15] that the results for stride
length and average stride velocity are still accurate using this assumption.

The following computational steps were applied to each running stride. Using the zero-velocity
assumption, we initialized the orientation~α[nMS,i] and the translation~s[nMS,i] of the foot at the i-th
MS index nMS,i with zero:

~α[nMS,i] =


0

0

0

 ~s[nMS,i] =


0

0

0

 (3)

After the initialization, we computed the orientation of the sensor during one stride using a
quaternion-based forward integration. For this work, we use a vector representation for quaternions:

q =


q0

q1

q2

q3

 (4)

The quaternion q[n + 1] at sample n + 1 was computed from the previous quaternion q[n] for all
samples between two consecutive MSs (n ∈ [nMS,i; nMS,i+1]) using the following formulas [33,34].

q[n + 1] = q[n]⊗ dq~ω[n] = q[n]⊗ exp(
1

2 fS
W[n]) , with W[n] =


0

ωx[n]

ωy[n]

ωz[n]

 (5)

exp(q) = exp(q0)



cos
√

q2
1 + q2

2 + q2
3)

q1√
q2

1+q2
2+q2

3
sin
√

q2
1 + q2

2 + q2
3

q2√
q2

1+q2
2+q2

3
sin
√

q2
1 + q2

2 + q2
3

q3√
q2

1+q2
2+q2

3
sin
√

q2
1 + q2

2 + q2
3


(6)

In Equation (5), the quaternion q[n] describes the rotation of the sensor from the initial position
during MS nMS to the position at sample n ∈ [nMS,i; nMS,i+1]. The quaternion q[n + 1] is defined by
rotating the quaternion q[n] by the differential quaternion dq~ω[n] which describes the rotation during
a time interval of duration T = 1

fs
. This differential quaternion can be computed using the angular

rate data ~ω[n].
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The quaternion sequence was used in two ways. First, the orientation of the sensor was computed
in Euler angle representation by converting the quaternions to roll, pitch, and yaw:

~α[n] =


atan 2(q0[n]q1[n]+q2[n]q3[n])

1−2(q1[n]2+q2[n]2])

asin(2(q0[n] · q2[n]))

atan 2(q0[n]q3[n]+q1[n]q2[n])
1−2(q2[n]2+q3[n]2])

 (7)

Second, the quaternion sequence was used for the gravity removal of the acceleration signal.
The accelerometer constantly measures not only the acceleration of the foot movement, but also the
gravitational acceleration. Using the determined quaternion sequence, the acceleration data~a[n] were
rotated from the shoe frame (xs, ys, zs) into the global frame (xg, yg, zg). The reason for this is that the
sensor frame and the global frame coincide during MS and each quaternion q[n] describes the rotation
from the sample at position n to the initial position at MS. In the global frame, the magnitude and
direction of gravity was known, and thus we could remove it from the movement acceleration:

0

ax,gc[n]

ay,gc[n]

az,gc[n]

 = q[n]⊗


0

ax[n]

ay[n]

az[n]

⊗ q[n]−1 −


0

0

0

−9.81

 (8)

As a last step, the translation of the sensor was computed by a dedrifted double integration of
the gravity corrected acceleration signal~agc[n]. After the first integration of the acceleration signal
over time, a linear dedrifting function was used to remove the velocity drift ~δ[n] introduced by the
integration of the acceleration. From the dedrifted velocity ~vdedri f ted[n], the translation ~s[n] of the
sensor was computed by another integration over time:

~v[n] =
n

∑
m=0

1
fs
~agc[m]

~δ[n] =
~v[nMS,i+1]−~v[nMS,i]

nMS,i+1 − nMS,i
(n− nMS,i)

~vdedri f ted[n] = ~v[n]−~δ[n]

~s[n] =
n

∑
m=0

1
fs
~vdedri f ted[m]

(9)

The individual steps of the trajectory computation are visualized for one samples stride in
Appendix A (Figures A1–A4).

2.3.3. Parameter Computation

Based on the segmentation indices, the parameters stride time tstride and ground contact time tgc

were computed as follows,

tstride =
nIC,i+1 − nIC,i

fs

tgc =
nTO,i − nIC,i

fs

(10)
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Stride length dstride and average stride velocity vstride were based on the translation of the foot
obtained from the trajectory estimation:

dstride =
√

sx[nMS,i+1]2 + sy[nMS,i+1]2

vstride =
dstride
tstride

(11)

Please note that we assumed level running and thus only use the x and y component of the
translation due to the fact that the running path through the ground truth system was also flat. Thus,
an error of the translation in z-direction was neglected.

In order to compute the angle parameters, one integration step was missing. We defined our
stride from the i-th MS at nMS,i to the (i + 1)-th MS at nMS,i+1. For the computation of the sole angle
of the i-th ground contact, the orientation in the sagittal between the i-th IC nIC,i and MS nMS,i was not
computed. For the computation of the range of motion of the (i + 1)-th ground contact phase, the last
part of the eversion movement in the frontal plane happens after the (i + 1)-th MS at index nMS,i+1.
Thus, we could neither compute both sole angle and range of motion for the i-th ground contact nor
for the (i + 1)-th ground contact. We decided to compute sole angle and range of motion for the first
ground contact by adding a quaternion-based backward integration for the samples n ∈ [nIC,i; nMS,i].

We used Equation (5) for the computation of the backward integration. For this, the measured
angular rate data was inverted by multiplying it by minus one. After that, the gyroscope values were
integrated backwards from nMS,i to nIC,i by applying Equation (5). Finally, we converted the obtained
quaternion sequence to the Euler angle representation using Equation (7) and concatenated it with the
Euler angle orientation sequence obtained from nMS,i to nMS,i+1.

In this orientation sequence, the sole angle is the angle obtained at the first IC nIC,i in the sagittal
plane, because this angle describes the rotation of the shoe from IC to MS, where we assume the foot
to be flat on the ground. Please note that a negative sole angle indicates a rearfoot runner, whereas a
positive angle indicates a forefoot runner. The range of motion in the frontal plane is defined as the
difference of the maximum and the minimum of the angle in the frontal plane between IC and TO
(Figure 7).
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Figure 7. Visualization of angle computation for a sample stride from the cavity sensor. The angles are
depicted from nIC (t = 0 s) to nTO (t = 0.32 s). The sole angle is defined as the rotation in the sagittal
plane between IC and MS. As the orientation is initialized with zero at MS, the sole angle is the angle at
nIC. The range of motion is defined as the difference between the maximum and minimum (red dots)
of the angle in the frontal plane during ground contact.

2.4. Evaluation

To evaluate the effect of the sensor positions, we compared the raw IMU signals of the individual
sensor positions with each other as well as the errors for the IMU-based spatio-temporal parameters.
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2.4.1. Evaluation of Raw Data Similarity

For the comparison of the raw signals, we used Pearson’s correlation coefficients [35].
We computed the correlation coefficients individually for each raw data axes between all sensor
positions for the full stride (n ∈ [nIC; nIC+1]), the ground contact phase (n ∈ [nIC; nTO]), and the
swing phase (n ∈ [nTO; nIC+1]). We combined the correlation coefficients of the three acceleration and
the three gyroscope axes for each sensor position pair and plotted the distribution of the correlation
coefficients using boxplots. For the segmentation in ground contact phase and swing phase, we used
the labels of the stride segmentation algorithm. In case the segmented signals had different length due
to errors in the event detection, we cut the duration of all sensors signals to the shortest duration.

2.4.2. Evaluation of Spatio-Temporal Parameters

To evaluate the spatio-temporal parameters with respect to the sensor positions, we computed
the error of individual parameters for all sensor positions. For this work, we defined the error Eparam

as follows,
Eparam = Psensor − Pgold (12)

In this formula, Psensor is the value of the parameter computed by the IMU sensor and Pgold the
value of the parameter determined by the ground truth. This formula indicates, that a positive error
indicates an overestimation of the parameter and a negative error an underestimation of the parameter.

In order to understand the impact of running speed on the spatial parameters, we evaluated stride
length dstride and the quality of the zero-velocity update for the different speed ranges. To evaluate the
zero-velocity update, we computed the L2-norm of the difference of the acceleration signal at MS and
the gravity vector in the global frame:

E~a[nMS,i] =

∥∥∥∥∥∥∥∥


ax[nMS,i]

ay[nMS,i]

az[nMS,i]

−


0

0

9.81


∥∥∥∥∥∥∥∥

2

(13)

The idea of the error measure E~a[nMS,i] is that no other acceleration except gravity should
be measured by the accelerometer during MS nMS,i. In case we also measure other accelerations,
the zero-velocity assumption is violated and the error measure E~a[nMS] increases.

3. Results

3.1. Results of Raw Data Similarity

Figure 8 visualizes the Pearson’s correlation coefficients as box plots. Each box represents the
correlation coefficients of either the accelerometer or the gyroscope raw data in all three spatial
directions between two sensor positions for all strides recorded during the data acquisition. We observe,
that the sensors at different sensor position measure different signals, especially for the accelerometer
signals. This means, that the sensor position has an impact on the IMU raw data. We can also see
that the correlation coefficients for the cavity, heel, and lateral sensor position always yield the lowest
values in combination with the instep sensor. Generally, the correlation coefficients of the raw data
are higher for the gyroscope values as for the accelerometer values and the correlation coefficients are
higher during swing phase than during ground contact phase.
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Figure 8. Results of the evaluation of the Pearson’s correlation coefficients between the IMU raw
signals. Each box visualizes the correlation coefficients between two sensors for all the strides in x,
y, and z direction. The box plots also display the median of the correlations (median line), the IQR
(box), and the 5 and 95 percentiles (whiskers). The upper plot depicts the correlation of the full strides,
the middle plot the correlations during the ground contact phase, and the lower plot the correlations
during the swing phase.

3.2. Results of Spatio-Temporal Parameters

Table 3 lists the median errors and interquartile ranges (IQRs) of the IMU-based computation of
stride time, ground contact time, stride length, average stride velocity, sole angle, and range of motion
for the different sensor positions. We see that we can accurately measure stride time with all sensors.
For ground contact time, we observe large IQRs of the errors for all sensor positions and higher median
errors for the cavity and the instep sensor. For the sole angle, we observe higher median errors for the
heel and the lateral sensor. For the range of motion in the frontal plane we find smaller errors than
for the sole angle. For the parameters stride length and average stride velocity which are based on
the computed translation, we see that the cavity sensor outperforms the other sensor positions with
respect to both the median and the IQR.
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Table 3. Median error and IQR of the error for the parameters stride time, ground contact time,
stride length, average stride velocity, sole angle, and range of motion compared to the motion
capture system.

Cavity Heel Instep Lateral
Median IQR Median IQR Median IQR Median IQR

Stride time (ms) −0.5 6.9 0.0 8.4 0.4 7.6 0.3 8.6
Ground contact time (ms) −11.0 37.6 −1.3 29.5 −22.6 37.5 −1.7 29.0

Sole angle (◦) 1.6 7.2 −6.1 5.1 2.1 5.8 −5.9 5.1
Range of motion (◦) 0.0 2.8 1.2 2.9 2.3 3.3 1.4 3.0

Stride length (cm) 0.3 8.5 −8.3 14.7 −5.6 15.1 −3.3 9.7
Avg. stride velocity (m/s) 0.0 0.1 −0.1 0.2 −0.1 0.2 0.0 0.1

Figure 9 depicts the error of the stride length Edstride
(Figure 9a) as well as the error of the

acceleration at the zero-velocity updated E~a[nms] (Figure 9b) for the different sensor positions in the
four speed ranges defined in our study (Table 2). We see that both the stride length as well as the error
of the acceleration show larger errors for higher running velocities. Besides, the results are congruent
with the median errors and show that the cavity sensor position outperforms the other sensor positions
for the parameter stride length.
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Figure 9. Visualization of the error for (a) stride length and (b) the acceleration at the zero-velocity
update for the four different sensor positions in different speed ranges.

4. Discussion

Overall, no sensor position clearly outperforms all the other sensor positions even though the
cavity sensor provides the best results for the translational parameters based on the reconstructed
foot trajectory. In the following paragraphs, we will discuss the raw data comparison, the temporal
parameters as well as the spatial parameters individually.

4.1. Differences in Raw Data

The correlation coefficients are higher for the gyroscope signals than for the acceleration
signals (Figure 8). The reasons for this observation are twofold. On the one hand, the angular rate is
less sensitive to movement artifacts than the accelerometer. Especially during the ground contact phase,
the impact during IC introduces high frequency vibrations in the accelerometer signal, which differ for
the individual sensor positions and cannot be correctly measured with a sampling frequency of fs =
200 Hz. On the other hand, the accelerometer measures different centripetal accelerations depending
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on the IMU position. The four main joints that cause the rotations in running are the hip, the knee,
the ankle, and the metatarsal joint. Whereas the distance to the hip joint and the knee joint is similar
for all sensors and thus neglectable with respect to differences in the centripetal accelerations, the raw
signals differ with respect to the distance to the ankle and metatarsal joint. Thus, the accelerations
measured by the IMUs will be different due to the distance dependent centripetal accelerations caused
by the rotations around those joints. The rate of rotation is independent of the distance to the rotation
center, if we assume the foot to be a solid object.

Additionally, the correlation coefficients during swing phase are higher than during ground
contact phase (Figure 8). In particular, the gyroscope raw data of sensors at different positions can
reach correlation coefficients close to one. During swing phase, the foot can be seen as a rigid segment,
because there is no rotation around the metatarsal joint or any other distortion which might cause
the sensors to rotate differently. The high correlation coefficients also indicate that the functional
calibration procedure applied before the data acquisitions is capable of aligning the coordinate systems
of the sensors at the different positions of the foot. If this was not the case, such high correlations
would not be possible because rotations would be captured around different sensor axes. During
ground contact phase however, the shoe upper is deformed due to deformation of the foot and the
movement of the foot within the shoe. This causes movements at different positions on the shoe,
which results in the measurement of different signals and lower correlation coefficients.

The correlation coefficients for the accelerations of the full strides show that the correlations to
the instep sensors always yields the lowest values. We argue that the instep sensor is exposed to the
highest motion by the deformation of the foot. During ground contact the arch of the foot and the
forefoot flatten, which causes the upper of the running shoe to deform. This deformation of the upper
also causes the laces and the tongue of the shoe to move and, consequently, the instep sensor as well.

More detailed analysis of the correlations reveals that the closer two sensors are located to
each other, the higher their pairwise correlation. This makes sense, as we already discussed that
the accelerations for the sensor positions differ depending on the distance to the joints causing the
rotations. Thus, spatially close sensors have similar distances to those centers of rotation and and
might be similarly effected by deformations of the shoe.

One limitation of our approach to comparing the raw signals is that the Pearson’s correlation
coefficients might be influenced by differences in the detected events. Depending on the sensor
positions, the events might be detected with a slight time shift. However, the high correlation
coefficients during swing phase show, that the signals temporally match well and are not heavily
influenced by time shifts.

In summary, the correlation coefficients show that the signals of the sensors at the four positions of
the running shoe vary which causes different results for the spatio-temporal parameters. Especially the
larger differences during ground contact have an effect on the accuracy of the parameters.

4.2. Temporal Parameters

The results for stride time tstride indicate that the bias corrected maximum of the angular rate
signal in the sagittal plane is a reliable fiducial point which allows accurate estimations of the stride
time for all sensor positions. With median errors of less than 0.5 ms and IQR of less than 8.6 ms
(<2 samples at a sampling rate of 200 Hz) no sensor position clearly performs best. These accuracies
for stride time are similar to the results presented by Falbriard et al. [16] who reported a stride time
error 0± 3 ms for their evaluation of stride time with an instep sensors. We explain the higher IQRs
with the higher variability in speed in our data acquisition. Due to the fact that a sample-to-sample
synchronization was not possible using our study setup, we could not evaluate the actual accuracy of
the IC event for the different sensor positions. Thus, our results for stride time show only that we can
reliably detect the fiducial point, but not that we can accurately detect IC with all sensor positions.
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Generally, both the median errors and the IQRs for ground contact time tgc at all sensor positions
are worse than for stride time tstride. One of the reason for that is the inaccuracy of the TO detection.
In running gait the IMU signal exhibits no clear feature at TO, whereas in walking gait, TO is indicated
by a zero crossing of the angular rate data in the sagittal plane [32], the dynamic nature of the running
gait does not exhibit such a feature [36]. Moreover, Falbriard et al. [16] showed that the bias of the
local maximum in the sagittal plane used to detect TO is speed dependent. We neglected this speed
dependency, because we had no information for the bias except for the fixed speeds that Falbriard et al.
used in their study. We used the overall bias they reported to correct the index of the maximum in the
sagittal plane which explains the high IQRs due to the high variance of speed in our study. The reasons
for the higher median errors for the cavity and the instep sensor are not clear. It is possible that these
results indicate an actual shift of the gyroscope maximum withing the gait cycle based on the sensor
position. However, due to the lack of sample-to-sample synchronization, we were not able to further
investigate this. In the future, a study with sample-to-sample synchronization could help to evaluate
this assumption.

4.3. Spatial Parameters

For the orientation parameters, the cavity sensor positions shows the smallest median errors for
both the sole angle and the range of motion. While the differences in accuracy between the sensor
positions is smaller for the median error of the range of motion (2.3◦ cavity/instep), the differences
between the sensor positions is larger for the sole angle (7.7◦ cavity/heel). The cavity and the instep
sensors outperform the other two sensors with respect to the median error of the sole angle. We found
the reason for these large differences in the bias we used to correct the local maximum in pitch
angular velocity. When we removed the bias correction and used the local maximum as the IC event,
we obtained different results (Table 4).

Table 4. Median error and IQR of the error for the parameters sole angle without the bias correction
for IC.

Cavity Heel Instep Lateral
Median IQR Median IQR Median IQR Median IQR

Sole angle (◦) 6.8 10.2 −2.9 6.8 6.7 7.0 −2.4 6.7

If no bias correction is applied during the event detection of IC the median errors are better for
the heel and the lateral sensor position. Falbriard et al. [12] explained the high standard deviation
for the sole angle evaluation in their work with the fact that the accuracy of the sole angle is heavily
dependent on the accuracy of the IC detection algorithm. Due to the high angular velocities around
IC, the integrated angle values are sensitive to the timing of the IC event. Based on the improved
accuracy for a different bias for the heel and lateral sensor position we assume that the bias for the IC
event is dependent on the sensor position itself. This underlines the need for a closer investigation of
those biases for the different sensor positions. Nevertheless, we can conclude for the angle parameters,
that the differences in the accuracy do not originate from the underlying raw data, but rather the stride
segmentation algorithms.

For the stride length parameter the cavity position performs best, followed by the lateral position.
The heel and the instep sensor position perform worst. These observations also hold for the different
speed ranges (Figure 9a). We can see for all speed ranges that both the median errors and the IQRs
are smaller for the cavity and the instep sensor, even though the accuracy drops with higher speed
for those positions as well. One possible explanation for this fact is that the zero-velocity assumption
during MS becomes less valid with higher speeds. The results for the error of the acceleration during
zero-velocity phase are congruent with the errors in stride length (Figure 9b). The error E~a[nms] is
smallest for the cavity sensor, followed by the lateral sensor, whereas the heel and instep sensor yield
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larger errors. Besides, the error increases with speed for all sensor positions. This shows that the zero
velocity assumption is violated with higher speeds, but most valid for the cavity sensor. We argue that
one of the reasons for this observation is the attachment of the sensors. The cavity inside the sole of the
running shoes was manufactured to fit the shape of the miPod sensors and thus prevent the sensors
from moving. The sole itself might act as a physical low pass filter by damping high frequency noise
in the acceleration caused by impacts like IC by its elastic nature. Besides, the location of the sensor in
the sole under the arch was chosen to be least affected by the deformation of the insole during IC and
the bending in the forefoot region during the pushing phase. Thus, the cavity sensor position faces
least perturbations during ground contact and can compute the zero-velocity-based trajectory with the
highest accuracy. The heel and lateral sensor were taped to the heel cap and laterally under the ankle.
While the attachment itself is also firm, those sensor positions are more affected by the movement
of the upper of the shoe. Especially the heel sensor faces motion due to the deformation of the back
of the running shoe caused by the heavy impact during IC for rearfoot runners. The instep sensor
was mounted to the laces of the running shoe using a clip. Even though we tested the firmness of the
attachment for each subject before the data acquisition, this sensor position is affected the most by
additional movements. This is on the one hand due to the less firm attachment in comparison to the
other sensor positions and on the other hand due to the highest amount of deformation of the upper of
the running shoe, which we already discussed in the raw data section.

These movements and consequently the errors during MS harm the validity of the zero-velocity
assumption which is the basis for the strapdown integration algorithm. Due to the fact that the sensor
positions seem to be affected by additional movements or noise sources during MS to a different
extent, the performance of the zero-velocity-based strapdown integration algorithm for the trajectory
computation is different for the evaluated sensor positions.

The errors of the average stride velocity for the different sensor positions correlate with the ones
for stride length. The reason for this correlation is that the average stride velocity is computed by
dividing stride length by stride time. As the stride time computation works well for all sensor positions,
the main error source for average stride velocity is the computed stride length. However, we can see
from the small median errors and IQRs that average stride velocity can accurately be computed with
foot worn IMUs.

4.4. General Aspects

Our results indicate that the raw signals and thus the results for the different spatio-temporal
parameters differ for the evaluated sensor positions. This implicates that when comparing studies
of IMU-based spatio-temporal parameters with each other, the sensor position should be considered
as a source of difference in future review studies. Besides, adaptions to the algorithms like changing
the detection algorithm of IC for the computation of the sole angle can result in performance boosts
individual sensor positions. Thus, porting algorithms to other sensor positions can be possible,
but algorithms might have to be adapted.

Nevertheless, we recommend the cavity sensor position due to the unobtrusive and firm
attachment inside the running shoe sole. It is least affected by any additional movement than the actual
foot movement and thus has the highest raw signal quality. However, we want to note at this point that
this evaluation is purely based on the signal quality and the accuracy of the resulting spatio-temporal
parameters and that we did not consider usability aspects. While the unobtrusiveness of the cavity
sensor position is good for a smart shoe application with fully integrated sensors, it might not be a
good solution for a sensor system which should be usable with different pairs of shoes. In this scenario,
all the shoes would need a cavity and the sensors would need to be put under the sockliner before
each run.



Sensors 2020, 20, 5705 17 of 21

5. Conclusions

We presented an evaluation of the effects of four different IMU sensor positions on the accuracy
of IMU-based endurance running parameters. We conducted a study with 29 subjects which were
equipped with four IMUs placed inside a cavity in the sole of the running shoe, on the heel, the lateral
side, and the instep of a running shoe. We compared the raw data of the individual sensor positions
and implemented algorithms for stride segmentation and the computation of the trajectory of the foot,
respectively, the running shoe. Using the data acquired during the study, we could show that the raw
signals of the IMUs differ for the sensor positions, especially for the acceleration during the ground
contact phase. We showed that all the sensor positions could accurately measure stride time, but not
ground contact time due to the large speed dependency of the fiducial point we used to detect toe
off. The angle parameters—range of motion and sole angle—were hard to compare for the different
sensor positions, as they were affected by the accuracy of the IC event detection algorithm. Finally,
we showed that the cavity sensor outperforms the other sensor positions for the computation of stride
length, because this sensor positions seems not to be exposed to movement artifacts of the upper of
the shoe.

Thus, we can conclude that the sensor position has an effect on the accuracy of different
IMU-based running parameters due to the differences in the acquired raw signals. From a data
processing perspective, we recommend to use IMU sensors inside the cavity of a running shoe even
though it only outperforms the other sensor positions for the reconstruction of the trajectory using a
zero-velocity-based strapdown integration algorithm.

In the future, the event detection algorithm for the different sensor positions should be
investigated further. Because a sample-to-sample synchronization was not possible in our study
set-up, we could not evaluate the accuracy of the actual IC/TO events but only the parameters
deduced from those events. Our results indicate that, both for the IC and TO event, the biases from
the maxima in the pitch angular velocity to the actual events are different for the different sensor
positions. Improving the detection of the IC and TO event would not only increase the accuracy of
ground contact time but also the stride angle parameters. Further, the larger errors for stride length
with higher speeds should be further investigated. Especially for professional athletes, who run with
speeds higher than 5 m/s, the errors in stride length are very high.
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Appendix A. Trajectory Computation Plots
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Figure A1. Acceleration~a[t] and annular rate ~ω[t] raw data of heel sensor.
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Figure A2. Visualization of the gravity removal in the acceleration signal for a sample stride of the
heel sensor. The upper plot shows the raw acceleration~a[t] segmented from MS to MS measured by
the accelerometer. The lower plot shows the gravity corrected acceleration signal~agc[t] after rotating
the raw acceleration by the quaternion sequence q[n] and removing gravity from the rotated signal.
After the gravity removal, both the z-components of the acceleration at the first midstance (t = 0 s) and
the second midstance (t = 0.81 s) have values close to zero.
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Figure A3. Visualization of the dedrifting of the velocity after the first integration of the acceleration
signal for a sample stride of the heel sensor. The upper plot shows the velocity ~v[t] before dedrifting.
This signal displays that the velocity at the second midstance (t = 0.81 s) is not zero. We enforce the
velocity to be zero by dedrifing the velocity using a linear dedrifting function. The lower plot shows
the velocity ~vdedri f ted[t] after dedrifting. Now, the velocity at the second MS is zero in all directions.
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Figure A4. Visualization of the trajectory for a sample stride of the heel sensor. The upper plot
shows the orientation ~α[t] obtained by the quaternion based forward integration after converting the
quaternions back to their angle representation. The lower plot shows the translation~s[t] obtained by
dedrifted double integration of the gravity corrected acceleration~agc[t]
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