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Abstract: Thanks to their high magnetoresistance and integration capability, magnetic tunnel
junction-based magnetoresistive sensors are widely utilized to detect weak, low-frequency magnetic
fields in a variety of applications. The low detectivity of MTJs is necessary to obtain a high
signal-to-noise ratio when detecting small variations in magnetic fields. We fabricated serial
MTJ-based sensors with various junction area and free-layer electrode aspect ratios. Our investigation
showed that their sensitivity and noise power are affected by the MTJ geometry due to the variation
in the magnetic shape anisotropy. Their MR curves demonstrated a decrease in sensitivity with an
increase in the aspect ratio of the free-layer electrode, and their noise properties showed that MTJs
with larger junction areas exhibit lower noise spectral density in the low-frequency region. All of
the sensors were able detect a small AC magnetic field (Hrms = 0.3 Oe at 23 Hz). Among the MTJ
sensors we examined, the sensor with a square-free layer and large junction area exhibited a high
signal-to-noise ratio (4792 ± 646). These results suggest that MTJ geometrical characteristics play a
critical role in enhancing the detectivity of MTJ-based sensors.

Keywords: tunnel magnetoresistance; magnetic tunnel junction; magnetoresistance sensor; integrated
magnetic sensor

1. Introduction

The measurement of small, low-frequency magnetic fields is critically important in several
industrial fields [1–3]. Magnetoresistive (MR) sensors, such as anisotropic magnetoresistance (AMR),
giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR) sensors, are considered promising
candidates for magnetic sensor applications. Compared with conventional sensors, such as the
induction coil and Hall-effect sensor, MR sensors have the advantages of high sensitivity, low power
consumption, and small size [4,5]. In particular, thanks to their extremely high magnetoresistance at
room temperature, MgO-barrier magnetic tunnel junction (MTJ)-based TMR sensors have attracted
interest for detecting small magnetic fields in various fields including medical diagnosis, biosensing,
and electromagnetic nondestructive testing [6–13]. In a MTJ element, two ferromagnetic layers are
separated by a thin insulator layer (nanometer order) and follow a spin current perpendicular to
the plane configuration. One ferromagnetic layer (free layer (FL)) is magnetically soft and the other
(pinned layer) is magnetically hard. If a bias voltage is applied between the two ferromagnetic
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layers, the spin currents can tunnel through the insulator layer due to a spin tunneling effect, and the
electrical resistance is lower when both magnetic moments are aligned in parallel and higher when
they are aligned in an anti-parallel configuration. Therefore, the MTJ output can reflect the external
field strength. For magnetic sensor applications, improvement of the sensitivity and reduction of
the noise are required to ensure a high signal-to-noise ratio (SNR). The sensitivity is determined by
TMR/2Hk (or ∆V/2Hk), where Hk is a magnetic anisotropy of the FL. Many studies have reported
that MTJs with half-metals, such as Heusler alloys, can exhibit a high TMR ratio due to their high
spin polarization [14–16]. However, optimization of the interface mismatch between Heusler alloys
and the MgO barrier is still necessary to further enhance the TMR ratio. In addition, the sensitivity
could be increased by suppressing the saturation field when the TMR sensors are incorporated with
the magnetic flux concentrator [17,18], though further enhancement of sensitivity is difficult due
to the limited sensing area for sensor application. Since the Hk is correlated with the geometry of
the FL, TMR curves, as well as their sensitivity, can be tuned by changing the shape and size of
MTJs [19–21]. Optimizing the MTJ geometrical characteristics, therefore, shows promise as a way to
improve sensor performance. Reducing the 1/f noise in measurements is also important to gain a high
signal-to-noise ratio. The noise power in MTJs is mainly determined by several mechanisms, including
shot noise at a nonzero bias voltage, thermal noise at room temperature, and 1/f noise (electrical 1/f
noise and magnetic 1/f noise) [22,23]. Previous studies had been reported that integrated MTJ-based
sensors provide excellent detectivity due to the reduced electrical 1/f noise in MTJs with an array
configuration [24–26]. However, resistance fluctuations and magnetic noise are inevitably produced
during the reversal of magnetization in the ferromagnetic layer of MTJs. Considering the significant
effect of magnetic anisotropy in the magnetization reversal process in MTJs, an MTJ with various
geometrical characteristics could show different noise properties and, therefore, different SNRs. In the
present study, to improve the detectivity of MTJ-based sensors, we fabricated sensors based on 20
serial MTJs with various junction areas and aspect ratios and then experimentally investigated their
resistance response and noise characteristics. We also investigated their output signals to determine
the maximum signal-to-noise ratio that can detect a low-frequency magnetic field.

2. Experimental Methods

MTJ films were prepared using an ultrahigh vacuum magnetron sputtering system (pressure of
less than 3×10−6 Pa). As shown in Figure 1a, the film structure was Si/SiO2/Ta(5)/Ru (10)/Ta (5)/Ni80Fe20

(70)/Ru (0.9)/Co40Fe40B20 (3)/MgO (1.6)/Co40Fe40B20 (3)/Ru (0.9)/Co75Fe25 (5)/Ir22Mn78 (10)/Ta (5)/Ru
(20) (in nm). The Ni80Fe20 (70 nm) and Co40Fe40B20 (3 nm) layers were antiferromagnetically coupled
via the Ru (0.9 nm) layer. Owing to the thick NiFe layer, the magnetization switching of the bottom
CoFeB layer occurred simultaneously with that of the NiFe layer. The serial MTJs were microfabricated
using photolithography and argon ion milling. By using an ion milling probe (IMP) end point detector,
the milling process could be observed and stopped in the middle of the barrier. Figure 1b shows the
serial MTJ configuration, where two pinned junctions were fabricated on a continuous FL electrode.
The top Au electrodes were deposited to connect the pinned junctions in series, after which the applied
current could flow into each junction. We fabricated three series of serial MTJs with different areas and
shapes, as listed in Table 1. For each series, the aspect ratio (length/width) of the ferromagnetic layer
pattern (FL electrode) was varied from 1 to 4, and a total of 12 types of serial MTJs were fabricated.
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Figure 1. (a) Magnetic film structure. (b) Schematic diagram of 20 serial MgO-barrier magnetic tunnel
junctions (MTJs). (c)–(f) Microscopic images of 20 serial MTJs with different junction areas (length ×
width = 15 µm × 40 µm; 23 µm × 26 µm; 30 µm × 20 µm; 40 µm × 15 µm) and footprint areas of the
free layer (length × width = 50 µm × 50 µm; 70 µm × 36 µm; 86 µm × 29 µm; 100 µm × 25 µm) with
various free layer pattern (FL electrode) aspect ratios. White arrows denote the direction of external
magnetic fields.

Table 1. Dimensional characteristics of serial MTJ sensors.

Sensor Free Layer Pattern (FL Electrode) Area (Unit: µm)
(Junction Area)

Series A sensors 50× 50
(15× 40)

70× 36
(23× 26)

86× 29
(30× 20)

100× 25
(40× 15)

Series B sensors 70× 70
(25× 60)

100× 49
(38× 40)

120× 41
(50× 30)

140× 35
(25× 60)

Series C sensors 90× 90
(35× 80)

128× 64
(54× 52)

155× 52
(67× 42)

180× 45
(80× 35)

After microfabrication, a two-step annealing process was used to obtain a high magnetoresistance
and linear resistance response. The first annealing process was carried out at 350 °C for 1 h in a
magnetic field of 10 kOe to induce the magnetic anisotropy of the FL and obtain a high TMR ratio due
to coherent ∆1 tunneling at the crystallized Co40Fe40B20/MgO interface [27,28]. The second annealing
process was carried out at 300 °C for 1 h with a 90◦ rotated magnetic field of 10 kOe for rotation in the
easy axis direction of the pinned layer. After the second annealing, the MTJ was able to offer a linear
magnetoresistance response due to the orthogonal easy axis of the free and pinned layers [29].

To determine the magnetoresistance characteristics of the MTJ sensors, we obtained
magnetoresistance transfer curves using the DC four-probe method with a uniform magnetic field of
±90 Oe at room temperature. The direction of the applied field was the same as that of the pinned
direction. To determine detectivities, the MTJ sensors were used to detect a weak magnetic field
in a magnetically shielded room that protected them from geomagnetism and urban noise, as well
as to provide a low magnetic field environment (<1 mOe). Figure 2 shows a schematic view of the
measurement setup. The Helmholtz coil was connected to a function generator, and a 23 Hz sine wave
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was applied to the Helmholtz coil to induce a uniform magnetic field (Hrms ≈ 0.3 Oe). A low noise
amplifier (SR560) with a gain of 1000 was used to maximize the outputs. A spectrum analyzer (E4448A)
was used to acquire the digitized output signal.Sensors 2019, 19, x FOR PEER REVIEW 4 of 9 
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Figure 2. Schematic diagram showing detection of the AC magnetic field using an MTJ sensor.

3. Sensitivity and Noise Power

Figure 3a–l shows the magnetoresistance transfer curves (resistance versus applied field) for
fabricated MTJ sensors. The measurements were performed with a bias voltage of 100 mV. All sensors
showed high TMR ratios (above 172%) and linear resistance responses. The junction areas ranged from
598 to 2808 µm2, and the MTJ sensors showed RpA (MTJ resistance in the parallel-magnetization state
× junction area) values of about 9.6 × 106 Ωµm2 for all series. These measurement results show that
the MTJ sensors with various geometrical characteristics exhibit different TMR curves, which indicates
that varying the shape and size of an MTJ can result in variation of the resistance response. In general,
magnetization switching is strongly dependent on the geometrical characteristics of the MTJ due to
magnetic shape anisotropy [19,30,31]. Changing the shape of the ferromagnetic layer electrode can
effectively tune the linear range in TMR curves as well as the sensitivity. When a magnetic field is
applied in the direction of the short side of an FL electrode (pinning direction), the demagnetization
field is induced, and its factor is associated with the in-plane shape of the ferromagnetic layers.
Therefore, MTJs with a high aspect ratio exhibit a high anisotropy field. This phenomenon can be
observed from the dependence between the linear range and the FL aspect ratio. Figure 4a shows the
linear range of the resistance response plotted as a function of the FL aspect ratio and clearly indicates
that a higher FL electrode aspect ratio gives a wider linear range for the resistance response and smaller
hysteresis. Although Series A, B, and C sensors have different junction areas, their TMR curves indicate
a tendency for the linear range to increase as the FL aspect ratio increases. Correspondingly, as shown
in Figure 4b, the sensor sensitivity, which is determined by the slope of the TMR curves under a zero
field, decreases when the FL electrode aspect ratio increases in a range from 1 to 4 due to the increased
demagnetization in the ferromagnets. For this reason, MTJ sensors with a low FL electrode aspect
ratio show higher sensitivities than the other ones. The sensor with FL electrodes of 100 µm × 100 µm
showed a small linearity range for the resistance response. However, it exhibited a considerably high
sensitivity value, over 15.7 ± 2.1 mV/Oe, at a bias voltage of 100 mV.
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In MTJs, the noise power is an important factor for the measurement of external fields. The total
noise spectrum can be expressed by [23]

STotal
B = (dB/dV)2

[
SAmp

V + Stherm−shot
V + S

elec, 1
f

V + SRTN
V

]
+ Stherm,mag.

B + Smag.1/ f
B (1)

where SAmp
V is the amplifier noise, Stherm−shot

V is the thermal-shot noise, SRTN
V is the random telegraph

noise, Stherm,mag.
B is the thermal magnetic noise, and Selec,1/ f

V and Smag.1/ f
B are the electronic and magnetic

1/f noise, respectively. Here, white noise contains SAmp
V , Stherm−shot

V , and Stherm,mag.
B , which is independent

of frequency. The SRTN
V is induced from the charging and discharging process of the defect center, and
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it can be eliminated by using a proper annealing process [32]. Hence, frequency-dependent noise is a
dominant noise source in the low-frequency region and its mechanism can be divided into two parts:
Electrical 1/f noise Selec,1/ f

V and magnetic 1/f noise Smag,1/ f
B . The Selec,1/ f

V is ubiquitous low-frequency
noise in metallic films, and its origin can be attributed to the charge trapping of electrons in barriers
and the ferromagnetic layer/barrier interface. The Selec,1/ f

V in an MTJ can be expressed as

Selec,1/ f
V = αelecV2/

(
A f β

)
(2)

where αelec is a Hooge parameter of electrical 1/f noise, V is the bias voltage, and A is the junction
area. With a bias voltage, the Selec,1/ f

V can be reduced by increasing A. Therefore, as shown in Figure 5a,
MTJs with a large junction area (A ≈ 2800 µm2) exhibited a relatively low noise spectral density in
the low-frequency region. In addition to electrical 1/f noise, the magnetization state also affects the
noise behavior at the low-frequency region. Previous studies have shown that magnetic-relative noise
does not only depend on the frequency but also on the external magnetic field [33–35]. Consequently,
magnetic noise is associated with the magnetoresistance response, and a larger dR/dH term slope under
a zero field inevitably gives a higher low-frequency noise power. As shown in Figure 5b, by applying
the same voltage to each series of MTJs, the noise spectral density at the low-frequency region slightly
decreases as the FL aspect ratio increases. This result explains how the dependence of the magnetic
noise power decreases as the field sensitivity increases. Therefore, a higher noise spectral density can be
observed for MTJs with a square FL electrode compared with the ones with other sensors. Additionally,
an increase in the junction area can suppress Selec,1/ f

V , resulting in large-area MTJ-based sensors (Series
C) that exhibit relatively low noise power, as shown in Figure 5b. These results demonstrate that Series
C sensors can provide excellent detectivity owing to their high sensitivity and low noise power.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 9 

 

its mechanism can be divided into two parts: Electrical 1/f noise , /  and magnetic 1/f noise , / . The , /  is ubiquitous low-frequency noise in metallic films, and its origin can be 
attributed to the charge trapping of electrons in barriers and the ferromagnetic layer/barrier interface. 
The , /  in an MTJ can be expressed as  , / = /( ) (2) 

where αelec is a Hooge parameter of electrical 1/f noise, V is the bias voltage, and A is the junction 
area. With a bias voltage, the , /  can be reduced by increasing A. Therefore, as shown in  
Figure 5a, MTJs with a large junction area (A ≈ 2800 μm2) exhibited a relatively low noise spectral 
density in the low-frequency region. In addition to electrical 1/f noise, the magnetization state also 
affects the noise behavior at the low-frequency region. Previous studies have shown that magnetic-
relative noise does not only depend on the frequency but also on the external magnetic field [33–35]. 
Consequently, magnetic noise is associated with the magnetoresistance response, and a larger dR/dH 
term slope under a zero field inevitably gives a higher low-frequency noise power. As shown in 
Figure 5b, by applying the same voltage to each series of MTJs, the noise spectral density at the low-
frequency region slightly decreases as the FL aspect ratio increases. This result explains how the 
dependence of the magnetic noise power decreases as the field sensitivity increases. Therefore, a 
higher noise spectral density can be observed for MTJs with a square FL electrode compared with the 
ones with other sensors. Additionally, an increase in the junction area can suppress , / , resulting 
in large-area MTJ-based sensors (Series C) that exhibit relatively low noise power, as shown in  
Figure 5b. These results demonstrate that Series C sensors can provide excellent detectivity owing to 
their high sensitivity and low noise power.  

 
Figure 5. (a) Noise spectral density Sv as a function of frequency for serial MTJs with various pinned 
junction areas at a bias voltage of 100 mV under a magnetic field of 0 Oe. (b) Relationships among 
various geometrical characteristics of serial MTJs and noise spectral density at a certain frequency  
(23 Hz). 

4. Detection of a Certain Low-Frequency Magnetic Field 

Figure 6a shows an AC magnetic field that was detected by an MTJ with the same free-layer 
shape but different junction areas. Clear voltage peaks can be observed at the MTJ output where a 
23-Hz magnetic field was applied from a Helmholtz coil. All sensors detected the low-frequency AC 
magnetic field and provided high SNR (Speak/Sbackground). Particularly, serial MTJs with square FL 
electrodes can exhibit high SNRs (4610 ± 781), which indicates that their estimated RMS value of 
detectable AC-magnetic field is approximately 65 μOe at 23 Hz with an SNR of 1. Figure 6b shows 
the SNRs of Series A, B, and C sensors when sensing the external AC magnetic field. We can see that 
the geometrical characteristics of the MTJs had a significant effect on the detectivity of the sensors. 
For MTJs with the same FL aspect ratio, those with larger junction areas exhibited higher SNRs, which 
indicates that increasing the junction area is a feasible solution for achieving excellent MTJ detectivity. 
Furthermore, the SNR rapidly decreased when the FL aspect ratio was increased from 1 to 2, which 
contributed to the dramatically decreased sensitivity. However, due to a slightly higher hysteresis, 

Figure 5. (a) Noise spectral density Sv as a function of frequency for serial MTJs with various pinned
junction areas at a bias voltage of 100 mV under a magnetic field of 0 Oe. (b) Relationships among
various geometrical characteristics of serial MTJs and noise spectral density at a certain frequency
(23 Hz).

4. Detection of a Certain Low-Frequency Magnetic Field

Figure 6a shows an AC magnetic field that was detected by an MTJ with the same free-layer
shape but different junction areas. Clear voltage peaks can be observed at the MTJ output where a
23-Hz magnetic field was applied from a Helmholtz coil. All sensors detected the low-frequency
AC magnetic field and provided high SNR (Speak/Sbackground). Particularly, serial MTJs with square
FL electrodes can exhibit high SNRs (4610 ± 781), which indicates that their estimated RMS value of
detectable AC-magnetic field is approximately 65 µOe at 23 Hz with an SNR of 1. Figure 6b shows the
SNRs of Series A, B, and C sensors when sensing the external AC magnetic field. We can see that the
geometrical characteristics of the MTJs had a significant effect on the detectivity of the sensors. For
MTJs with the same FL aspect ratio, those with larger junction areas exhibited higher SNRs, which
indicates that increasing the junction area is a feasible solution for achieving excellent MTJ detectivity.
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Furthermore, the SNR rapidly decreased when the FL aspect ratio was increased from 1 to 2, which
contributed to the dramatically decreased sensitivity. However, due to a slightly higher hysteresis, the
sensor with a square FL electrode showed a larger error in the SNR value. After the aspect ratio above
2, the SNR value became saturated and showed a smaller error bar owing to the lower hysteresis. Since
the sensitivity and noise slightly decreased when the FL aspect ratio increased, when the aspect ratio
ranged from 2 to 4, the sensors in individual series exhibited similar SNR values.
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Figure 6. (a) Output signals from serial MTJs with same aspect ratio of free layer but different junction
area A, at a bias voltage of 100 mV. (b) SNR (Speak/Sbackground) from the detection of magnetic field of
0.3 Oe using MTJs with various dimensional characteristics. Aspect ratios of the free layer electrode
ranged from 1 to 4.

5. Conclusion

In this study, we fabricated and characterized serial MTJs with various FL shapes and junction
areas. TMR curves showed that the linear ranges and sensitivities were closely dependent on the MTJ
geometry. The sensors with a square FL and large junction area exhibited extremely high sensitivity due
to their low magnetic shape anisotropy. Moreover, increasing junction area A significantly reduced the
noise power in the low-frequency region. All of the sensors were able to detect a small low-frequency
magnetic field (Hrms = 0.3 Oe). The sensor containing MTJs with a large A (A ≈ 2800 µm2) and a low FL
electrode aspect ratio provided the highest signal-to-noise ratios, contributing to their high sensitivity.
Overall, the experimental results demonstrate that the magnetic shape anisotropy in serial MTJs plays
a significant role in detecting magnetic field variations. The MTJs with a square FL electrode had small
linearity ranges and little high hysteresis in the resistance response, making them unsuitable for sensor
applications. In contrast, MTJs with a low-aspect-ratio FL electrode exhibited high sensitivity when
detecting imperceptible fields. Additionally, we found that for sensing small magnetic fields that do
not require an extremely high spatial resolution, increasing the junction area is a feasible approach for
achieving excellent detectivity for MTJ-based sensors.
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