
sensors

Review

A Review of Measurement Calibration and
Interpretation for Seepage Monitoring by
Optical Fiber Distributed Temperature Sensors

Yaser Ghafoori 1,*, Andrej Vidmar 1, Jaromír Říha 2 and Andrej Kryžanowski 1
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Abstract: Seepage flow through embankment dams and their sub-base is a crucial safety concern
that can initiate internal erosion of the structure. The thermometric method of seepage monitoring
employs the study of heat transfer characteristics in the soils, as the temperature distribution in
earth-filled structures can be influenced by the presence of seepage. Thus, continuous temperature
measurements can allow detection of seepage flows. With the recent advances in optical fiber
temperature sensor technology, accurate and fast temperature measurements, with relatively high
spatial resolution, have been made possible using optical fiber distributed temperature sensors
(DTSs). As with any sensor system, to obtain a precise temperature, the DTS measurements need to
be calibrated. DTS systems automatically calibrate the measurements using an internal thermometer
and reference section. Additionally, manual calibration techniques have been developed which are
discussed in this paper. The temperature data do not provide any direct information about the seepage,
and this requires further processing and analysis. Several methods have been developed to interpret
the temperature data for the localization of the seepage and in some cases to estimate the seepage
quantity. An efficient DTS application in seepage monitoring strongly depends on the following
factors: installation approach, calibration technique, along with temperature data interpretation and
post-processing. This paper reviews the different techniques for calibration of DTS measurements as
well as the methods of interpretation of the temperature data.

Keywords: optical fiber DTS; temperature; seepage; calibration; data interpretation

1. Introduction

Seepage flow as a hydraulic load, when combined with erosion susceptible material and
unfavorable stress condition in embankments, may initiate internal erosion [1]. This process is
the cause of about half of all dam failures [2] and more than one-third of the accidents in levees [3].
Seepage development is a slow process, which requires continuous monitoring. Traditional methods
(e.g., measuring pore pressure using piezometers and measuring the leaking water using weirs) are
mostly unable to detect seepage in the initial stages due to punctual measurements in time and
space [4], therefore, a seepage monitoring system with continuous measurement both in time and
space is required.

Thermometric analysis is a seepage monitoring technique that was developed by Kappelmeyer,
1957 [5]. The method is based on the analysis of the heat transfer process in the soil. Heat is
transferred in the soil through three mechanisms; conduction, convection by the percolated water,
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and sun radiation [6]. Since radiation duration is short and it affects only the surface layer of the
soil [7], it can be neglected during thermometric analysis for seepage monitoring. Considering the
heat transfer process, the thermometric method is defined as continuous or time-periodic repeating
measurements of the temperature in the ground to trace the groundwater flow.

The heat transfer process in the soil can be described using the energy balance equation in porous
media. Considering the local thermal equilibrium and neglecting the dispersion effects, the simple
energy balance equation in the soil can be obtained by taking the average over a representative
elementary volume (REV) of the soil [8]:

ρc
∂T
∂t

+ ρwcw. v.∇T = ∇ · (λ ∇T) + q′′′ (1)

where ρ, c and λ are the soil density, specific heat capacity, and thermal conductivity respectively.
T is the local temperature of the soil. v is the Darcy velocity of the flow. ρw and cw are the water
density and specific heat capacity and q′′′ is the overall volumetric heat generation in soil. The heat
capacity and the thermal conductivity of soil are related to the thermal properties of solid particles,
fluid, and gas states in the soil.

Equation (1) presents the thermal energy transferred by the soil particles, the water in the pores,
and the air trapped in the voids. The second and third terms of the equation present the heat transferring
due to convection and conduction processes, respectively. The convection term (ρwcw. v.∇T) presents
the direct relation of the heat transfer process with the seepage flow within the soil. Additionally,
the presence of moisture affects both the thermal conductivity and the specific heat capacity of the
soil. Therefore, both seepage flow and the presence of humidity in the soil influence the temperature
distribution in the embankment [9].

By propagating the seepage into the embankment, the temperature of the water reservoir influences
the thermal condition of the embankment. The convection by the seepage flow will dominate the
heat transfer process even at a very low Darcy velocity in the order of 10−6 m/s [10]. In the seepage
zone, the seasonal temperature variation of soil mostly depends on the temperature of inflow water,
the seepage flow rate, and the distance from the inflow section to the measured point [6,7,11]. Rising the
seepage velocity will increase the influence of the convection process. A significant difference is observed
in the temperature of the embankment body between the zones with fast and low seepage velocity [9].

The thermometric method can be applied by measuring the natural temperature of the embankment
body called the passive method. However, one can characterize the seepage by applying heat to the
embankment and monitoring its dissipation, called the active method. Kappelmeyer [5] introduced the
thermometric method by embedding a thermometer in a shallow soil layer. Later, the thermometric
analysis was performed using the temperature measurement within the existing piezometers and
standpipes in embankment dams. In 1991 another technique was developed for temperature monitoring
using hollow pipes with several integrated temperature sensors [10], which provided more measurement
points in a vertical profile. Using the thermometers for seepage monitoring allows for a continuous
measurement in time, however, the monitoring system was still subjected to some shortages because it
measured the temperature only in the vertical profile rather than cover a wide area.

Parallel to the advances in the thermometric method, the optical fiber technology was developed
within a few decades. In the 1970s the distributed temperature sensor (DTS) based on Raman
spectroscopy in optical fibers was invented [12,13]. The use of optical fiber DTS in thermometric
analysis provides the opportunity to expand the areas of investigation and monitoring [2] with
high sensitivity, lower cost, and smaller influences on the mechanical properties of embankment
materials [14,15]. An understanding of the technical performance of the DTS and the system’s
instrumentation is required for proper system employment and to improve the analysis of raw
temperature data, which are acquired by the system measurement. To obtain a precise temperature,
the DTS measurements need to be calibrated. However, the temperature data do not provide any direct
information about the seepage. These data need to be processed and analysed to obtain the required
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seepage-related information. An efficient DTS application in seepage monitoring strongly depends
on the following factors: installation approach, calibration technique, along with temperature data
interpretation and post-processing.

To optimize the application of DTS in seepage monitoring, proper calibration and interpretation
techniques should be selected. The objective of this paper is to review the present techniques and
methods for the DTS data calibration and temperature data interpretation. This paper provides
information about the potential advantages and disadvantages of various techniques, presents
a comparative overview of them, and clarifies the possible topics for further studies. The current
review provides helpful information for selecting the appropriate method for data calibration to obtain
the precise temperature required in structural health monitoring systems as well as the selection of
proper interpretation techniques for early detection of the seepage in embankments.

2. Raman Based Optical Fiber Distributed Temperature Sensor

A distributed temperature sensor (DTS) is an intrinsic fiber sensor system [16] which uses the
Raman spectroscopy technique in an optical fiber to measure the temperature. When light photons
with sufficiently high energy (e.g., visible light) interact with molecules of matter, a vibrational
energy transition occurs [17]. During this process, the molecule absorbs and re-emits a portion of
pulsed light with the different moving directions and with the same, lower or higher photon energy.
Raman spectroscopy is a vibrational spectroscopic technique which is related to the movement of
atoms in the glass of a fiber.

In the scattering process, most of the photons are scattered with the same energy level as that of
incident light, with no energy transfer occurring [17,18] between the scattered light and the molecule.
This scattering process is called elastic or Rayleigh scattering. As a result of the interaction process
of the photon with the molecule, a very small portion of the light is scattering as Raman scattered
photons, which is an inelastic process. Two types of Raman scattered photons can be described by the
process of the vibrational energy level transition within the interaction event of the photon and the
molecule; Stokes and anti-Stokes. If initially, the molecule is in the ground energy state, it is excited by
the photon to a virtual state and then falls to an excited state. So in this process, the molecule promotes
from a ground energy state to a higher excited vibrational energy state [18]. This process is called
Stokes scattering. In Stokes scattering, the molecule absorbs the energy from the scattered photon and
the photon is scattered with a smaller energy level. However, if the molecule is initially at an excited
state, it rises to a virtual state by the photon and then falls to a ground energy state. This process,
which involves the transfer of energy from the molecule to the scattered photon, is called anti-Stokes
scattering. In both Stokes and anti-Stokes, the molecule and photon acquire different vibrational energy
than that in the initial state. Since the energy of the photon is directly proportional to its frequency by
the Planck’s constant [18], the scattered photons propagate with different frequencies and wavelengths
than those for the incidence light.

The physical condition of the cable and the external factors such as strain and temperature
affect the fiber molecules and consequently the scattering process. Different optical fiber sensors are
developed based on the detection of the scattered photons to measure the temperature and the strain.
While the Raman scattering is a temperature-dependent process, the Rayleigh and Brillouin scattering
are employed in some optical fiber sensor systems to measure the strain [19,20]. The vibrational energy
level of the molecules in the fiber cable strongly depends on the temperature that the cable is exposed
to. At the ambient temperature, most molecules are presented in the ground energy vibrational level
and the Stokes scattering forms the major part of the scattered photons [21]. The temperature raise
excites the molecules and increases their vibration energy level. In the interaction of the photon
with such a molecule, the photon absorbs the energy and is re-emitted as the anti-Stokes scattering.
Therefore, the intensity of anti-Stokes scattered photons increases relative to the Stokes with raising
of the temperature in the measured segment. The change in temperature of the fiber influences the
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intensity of backscattered light and the intensity ratio of Stokes and anti-Stokes backscattered light can
be employed to monitor the spatial temperature field where the optical fiber is laid [18,21].

Long [22] stated that the ratio of anti-Stokes to Stokes intensities R(T) depends on the temperature
and the wavelengths of the scattered lights:

R(T) = (
λs

λas
)

4
exp

(
−

hclνn

KTc

)
(2)

where λs and λas are the wavelengths of Stokes and anti-Stokes, respectively, h is the Planck’s constant,
cl stands for the light velocity, K is the Boltzmann constant, and Tc represents the absolute temperature.
νn is the wavenumber which represents the difference between wavelengths of incidence light λinc and
scattered lights λsc :

νn[cm − 1] =
10 − 7

λinc[nm]
−

10 − 7

λsc[nm]
(3)

Equation (2) is the basic equation for temperature measurement using Raman spectroscopy.
This equation has been later developed and employed on the optical fiber systems for temperature
measurement. Figure 1 shows the resulting temperature and Raman scattered intensities for a laboratory
measurement. Duplexed single-ended measurement has been performed while several sections of
the cable were replaced in cold water. The loss of the scattered light with the lengthening of the
cable and the direct dependency of the anti-Stokes scattered photons on the temperature variation can
be observed.

Figure 1. Stokes and anti-Stokes intensity and obtained temperature from the laboratory DTS
measurement using the Silixa XT-DTS system.

Optical fiber DTS employs the optical cable which consists of a transparent silica core, surrounded
by the cladding and mechanically protected by a protection cover. The core and cladding both consist
of silica (SiO2), while the core is also doped with some other matter (e.g., GeO2) to raise its refractive
index. The system uses the optical time-domain reflectometry (OTDR) technique, which was invented
in 1989 [23] to measure the ambient temperature [24,25]. In this technique, the system launches short
pulses of laser light into the fiber optic cable core to generate an infinitesimal amount of Raman
backscatter lights, which are generated due to energy transfer between the light and the optical
cable core molecules. The system measures the travel time of the light and captures the generated
backscattered lights at regular time intervals by a fast photonic detector [26]. The intensity ratio
of the Stokes relative to the anti-Stokes is measured and the absolute temperature of the sample
is governed [18]. A great advantage of the OTDR technique is that the ratio of Stokes/anti-Stokes
scattering is unaffected by changes in the geometry of the fiber, laser power, and cross-section of the
detector or impulse pump [27].
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In the optical fiber, the efficiency of the laser is proportional to its frequency [18] and its power
decreases due to the attenuation process which consists of absorption, fluorescence, and scattering.
The last one is used for temperature measurement by the system. The other two factors should be
minimized for an efficient system. Absorption will occur in certain wavelength bands, therefore
the system avoids this attenuation using the wavelengths other than the absorption band [28].
The fluorescence occurs when a very short wavelength is used, and the molecule reaches a new
electronic energy level [17] rather than vibrational energy change. The system avoids fluorescence by
the use of time-dependent measurements, using mathematical post-processing or recording two slightly
different Raman spectra [28].

During the Raman scattering process, the Rayleigh scattering is the most intense part of the
scattered light that can be harmful to the highly sensitive photodetector due to its high intensity.
In addition to that, the Rayleigh scattering is irrelevant to the temperature measurement, therefore it
is treated as system noise and should be filtered by the DTS. Additionally, to count the Stokes and
anti-Stokes scattered lights and obtain their ratio, they should be separated [12]. The scattered lights
can be filtered and separated based on their different wavelength and frequencies.

The change in the temperature of the fiber will affect the intensity of backscattered light and the
intensity of Raman scattered photons will be modulated to determine the spatial temperature field
where the optical fiber is laid [21]. In dam safety monitoring, the local temperature changes may occur
due to the convection heat transfer by seepage propagation. The temperature change affects the optical
properties of the fiber and consequently the optical signal frequency characteristics.

The optical fiber DTS systems generally consist of some basic components [21,25]. The light
pulses are generated by the pulse generator and the laser launches the generated pulse of light into the
optical cable. The intensity of the laser strongly influences the precision of the measured temperature.
The system guides the launched lights into the cable core using a coupler, which is also employed to
guide the backscatter photons into the detector system. The launched lights are traveling into the
optical fiber cable, which acts as a continuous, distributed sensor for temperature. DTS system is
equipped with a powerful optical filter to allow the Raman signal and prevent the intense Rayleigh
signal. The other crucial component of the system is the detector that detects the backscattered Raman
lights. Since the Raman effect is weak [28], a sensitive detector is required in optical fiber DTS systems.
In addition to the laser intensity, the precision of the measurement strongly depends on the detector
sensitivity [29]. The optical fiber DTS is also equipped with an optical spectrum analyser system that
resolves different wavelength peaks (Stokes and anti-Stokes) and the corresponding software that
calculates the temperature difference and the location from which the backscattered light is detected.
The optical fiber instrumentation is demonstrated in Figure 2.

Figure 2. The basic components of an optical fiber DTS system. Adapted from [30]. (The publisher
gave permission to reproduce this figure.).

The optical fiber DTS system can be installed in three different configurations, the so-called simple
single-ended, duplexed single-ended, and double-ended configurations. In a simple single-ended
configuration the cable has one connection to the instrument and the system measures one temperature
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in a point along the cable length from the DTS outward. In the duplexed single-end approach, the cable
is installed to DTS in one connection, but it consists of two co-located fibers that are following the same
path. This configuration allows the system to report two temperature observations in every point of
the cable. One from the DTS outward and the other from the cable coming back to the instrument.
In the double-ended configuration, the cable is connected to the system from both ends and allows the
system to observe the temperature from both directions [31].

To interpret the measured temperature by the DTS system, understanding of the systems’
parameters such as spatial sampling, spatial resolution, temporal resolution, accuracy, and power
losses are crucial. These parameters are related to each other and significantly influence the final
temperature measurement. The system sampling resolution is the shortest distance between successive
temperature measurements. However, the reported temperature in each sampling interval is not
independent of its adjacent reported temperatures [32] and a step-wise temperature shift may not be
measured accurately by one sampling interval length. The spatial resolution is then defined as the
distance between two points reporting 10 to 90 percent of the true temperature of a step-wise shift
in temperature along the optical fiber cable [33,34]. The spatial resolution is usually larger than the
sampling interval. We examined the spatial resolution of the Silixa XT-DTS system with a 25.4 cm
sampling interval, 150 m of the measured length, and an integration time of 10 s. A temperature
step shift was modeled by immersing 3 m of the optical fiber cable into a water bath with a constant
temperature of 17.9 ◦C. The result shows a spatial resolution that equals 0.63 m (2.5 times larger than
the employed sampling interval) for the system, as can be seen in Figure 3.

Figure 3. The spatial resolution of the Silixa XT-DTS system.

The other crucial parameter in the employment of the optical fiber DTS is the integration time of
the system. This is the time that the system requires to report one temperature profile over its entire
length [15]. Most DTS systems allow us to adjust the integrated time before the measurement. A longer
integration time gives the system enough time to detect a larger amount of backscatter photons and
increase the measurement precision in the long-distance measurement.

3. Calibration of Optical Fiber DTS Temperature Data

Attenuation in the optical fiber significantly influences the temperature results in the system.
In addition to the mechanical attenuation by the system and the physical attenuation in the cable
(such as connectors, splices, and bends), the strength of the optical signal decays exponentially with
distance from the source (Beer’s law) [29,35]. The longitudinal attenuation in the multimode fiber
which is used in DTS, is relatively higher than the single-mode fiber. This attenuation sometimes limits
the range of the distance for Raman-based DTS measurement to approximately 10 km [36]. Figure 4
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demonstrates the power losses of the system in terms of decays in the intensity of Raman scattered
photons due to the length of the cable and the presence of a connection at the distance of around 7 m
from the system. A fusion splicer was used to connect an OM2 fiber cable to the OM3 cable patch.
Both OM2 and OM3 have cores with a diameter of 50 µm, while OM3 is optimized for laser-based
equipment that uses fewer modes.

Figure 4. The loss in the intensity of Stokes and anti-Stokes scattering due to the connection of two types
of optical fiber cable.

DTS systems consider attenuations and provide an internal calibration for temperature
measurement. In addition to the system internal calibration, manual calibration is required for
many practical applications. The objective of both internal and manual calibration is to eliminate the
effect of attenuation to obtain accurate temperature measurements. To optimize the DTS employment
for temperature measurement in seepage detection, the selection of an efficient and reliable calibration
approach is essential.

Commonly, the DTS system corrects the longitudinal attenuation by introducing a linear power
loss per length of the fiber with the unit of dB/length. Also, the DTS system internally calibrates the
temperature measurements by assigning a reference section or reference point of the cable where the
temperature on the cable is known [34,37] and monitored continuously by the precise thermometers
which are attached to the system. In practice, the reference temperature can be determined by immersing
part of the optical cable in a water bath at a stable absolute temperature. The DTS instruments such as
power suppliers, laser, and detectors are temperature sensitive and may interfere with the temperature
measurement process in the system. DTS systems usually calibrate this sensitivity and eliminate its
effect by a reference coil of fiber [31] which is commonly replaced between the directional coupler
and the sensing fiber [38]. The system continuously measures the temperature of the reference coil
with a precise internal thermometer and using scatter analysing and compares them to correct the
instrumental errors.

In addition to the temperature data, which result from internal instrumentation calibration,
the DTS system also provides raw data which are the obtained intensity of Stokes and anti-Stokes
backscattered photons. Manual calibration techniques use these raw data and consider different
interference factors to obtain more accurate temperature results. In other words, the manual calibration
partially eliminates the role of the analyser unit from the DTS and calculates the temperature results
from the detected Raman scattered photons.

Farahani and Gogolla [39] introduced an equation to calculate the temperature from the obtained
Raman intensity data, which was used later as the base of manual calibration techniques. The equation
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extracts the temperature at a distance z [m] along the cable from the detected power of Stokes, Ps(z),
and the power of anti-Stokes Pas(z):

T(z) =
γ

ln
Ps(z)
Pas(z)

+ C − ∆αz
(4)

where T(z) is the temperature [K], γ [K] is related to the energy shift between the incident photon
and the Raman scattered photon, C is a dimensionless calibration parameter which represents the
influences of the incident laser properties and the DTS instrument itself, and ∆α [m−1] is the differential
attenuation between the anti-Stokes and Stokes signals [40]. It should be mentioned that these three
parameters are independent of each other. The manual calibration is based on the techniques for
seeking the three calibration parameters γ, C, and ∆α using reported values of Stokes and anti-Stokes
power and independent temperature measurements at reference locations.

Four calibration approaches can be used to obtain the calibration parameters for a single-ended
installation configuration [31]. In the first and second algorithms, the independent calibrating
parameters can be obtained in the presence of three reference points (first approach) or three reference
sections (second approach) with known temperatures. Equation (4) can be solved for the calibration
parameters with these three known temperatures and known intensities of scattering. The three
calibrating parameters can be found by simultaneously solving a set of linear equations.

The third and fourth approaches can be used for cases where three measuring references are not
available. In these approaches, the value of ∆α is obtained independently from the other two parameters.
In the third approach, a long reference section can be used to calculate the value of ∆α. Since ∆α is the
differential attenuation between the anti-Stokes and Stokes signals, the Beers’ law can be employed to
determine the value of ∆α using the reported Stokes and anti-Stokes power at two points (z1 and z2)
of a cable section with a uniform temperature (see Equation (5)). The accuracy of this method is
related to the uniformity of temperature along the reference section, the linearity of the Raman spectra
data, and the length of the reference section or the number of point measurements considered in
the regression:

ln
Ps(z2)

Pas(z2)
= ln

Ps(z1)

Pas(z1)
+ ∆α (z2 − z1) (5)

In the absence of an extensive reference section, the values of ∆α can be calculated from two separate
points (z1 and z2 from the DTS) at the same temperature, Equation (6) (fourth approach). The accuracy of
this approach depends on the distance between two points. The longer the distance, the better accuracy:

∆α =
ln

Ps(z1)
Pas(z1)

− ln
Ps(z2)
Pas(z2)

z1 − z2
(6)

Obtaining the value of ∆α, the two other parameters can be found using the explicit calculation
from the two reference points or sections. Knowing the three calibration parameters, Equation (4) can
be employed to calibrate the temperature measurement along the entire cable. Figure 5 presents the
temperature measurement by the duplexed single-ended installation configuration.

The temperature results for both internal system calibration and manual calibration are
demonstrated. The calibration was performed by having two reference points (four measuring
points in both directions) and using the least-squares method for solving Equation (4).

The single-ended configuration assumes that a linear differential power loss and therefore
a constant value of ∆α exist along the entire cable. To estimate this value, considering a reference
section of the fiber with a known temperature is essential at the end of the cable. However, in some field
applications, providing a reference section at the end of the cable is not applicable. Also, in some cases,
the assumption of a linear differential loss along the entire length of a cable is not valid, due to the
presence of step changes in ∆α along the cable associated with bends, connectors, splicers, and other
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irregularities. One can overcome these shortages using a duplexed single-ended configuration,
where the system reports two temperature observations in every point of the cable. However,
a duplexed single-ended configuration requires a two times longer cable than the single-ended to cover
the temperature monitoring for the same investigation area. Hausner and Kobs [41] suggested that the
step losses in the single-ended installation should be identified and corrected carefully by the calibration.
They presented also a correction algorithm that best suits the duplexed single-ended installation.

Figure 5. Temperature measurement with a duplexed single-ended approach and calibration based on
two reference points for each side (four reference points in total).

In the double-ended configuration, where the system launches the laser into the fiber from
each end, a unique value of differential power loss ∆α can be calculated for each data acquisition
section [42]. The differential losses along the entire cable length can be calculated by integrating
∆α along all measuring sections. Using the double-ended configuration, one can locate the step
attenuation as well as calculate the differential attenuation rate throughout the length of the fiber [34].
The double-ended configuration is an appropriate technique where the presence of step power losses
along the optical fiber is a critical factor that can significantly influence the temperature measurements.
Also, this technique can be used where it is not practical to place a reference bath at the end of the
cable [43]. The double-ended configuration also can be used by the system to internally calibrate the
measurements using the two reported temperatures for each measurement point.

The main shortage of the double-ended approach is its higher noise than the single-ended
measurement [34] because it includes data collection from two different measurements with their own
intrinsic noises from each end of the cable. In the double-ended configuration, a point located near
the DTS is far from the system, when the measurement takes place from the other end of the fiber.
This will cause noise in the calculation of differential losses especially at both ends of the cable [42].

Generally, the DTS data calibration can be classified as shown in Figure 6. Additionally,
a comparative overview of the manual calibration techniques is presented in Table 1.

The DTS calibration might be employed statically or as a dynamic calibration. In the static
calibration, the calibration parameters are obtained from the data taken over an initial integrated period.
These parameters are assumed to be uniform along the cable and constant over time [38]. Due to the
temporal variation of parameters, the static calibration is not valid for many applications and the
dynamic calibration is required. The dynamic calibration recalculates the three calibration parameters
for each measurement time step. The DTS system is capable to perform a fully dynamic calibration by
defining the reference sections with constant temperature or integrated temperature probes [34].
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Figure 6. General typology of DTS data calibration.

Table 1. Comparative overview of the manual calibration techniques.

Manual Calibration Methods

Methods Single-End Configuration Double-End Configuration

References
[31,40,41]

[42–45]
Simple Single-Ended Duplexed

Single-Ended

Potential
advantages

Less noise in the measurement process
than the double-ended
calibration technique.

Easy calibration installation.
Cover a bigger area for

temperature monitoring.

Ability to correct non-uniform
attenuation (step losses) along the cable.
Reference sections located adjacent to
the DTS instrument could be enough.

Easy calibration installation.

Reference sections located adjacent to the
DTS instrument are enough.

The calibration can be achieved by only one
reference with a stable absolute temperature.
Capable to correct non-uniform attenuation.

Ability to continue the temperature
measurement from the other side in case of
interrupted optical cable in the structure.

Potential
disadvantages

Assuming a linear calculation of
differential attenuation.

Lack of capability for step power losses
correction due to local effects.

Requires a reference section close to the
end of the cable.

In the case of optical cable interruption,
the measurement cannot continue beyond

the defect location.

The maximum length of the
measurement decreases to half.

Complex installation and set-up process.
Generally nosier signals, especially near the

DTS instrument.
Requires very precise alignment of the cable.
The maximum length of the measurement

decreases to a half.

The DTS systems are usually assessed based on their spatial resolution, integrated measuring
time, absolute temperature accuracy, and the range of the optic cable that can be used for temperature
measurement. This range presents the maximum length of the optical cable that the system can perform
the temperature measurements without losing significant accuracy. Another important factor in the
calibration process is the length of the reference section that should be embedded in the reference bath.
This length should be usually longer than the spatial resolution of the DTS System. A reference section
at least ten times greater than the spatial resolution is recommended [34].

4. Seepage Detection Techniques from the Temperature Measurements

The very first applications of the optical fiber DTS in thermal analysis of embankment dams were
linked with the installation of the optical fiber into the existed piezometer standpipes and observation
wells. These standpipes and wells are usually drilled to monitor the water level; however, they can be
used also for temperature measurements. Optical fiber can provide a vertical profile of temperature in
the dam bodies along the entire height of the standpipes. Later, some other installation techniques were
developed in various dams. Construction of new dams, repair of the existing structures, dam height
raising, and upgrading works in dams and embankments provide opportunities for engineers to
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employ the optical fiber DTS with new techniques and approaches. While for the new dams, the optical
fiber can be installed within the dam body, it can be also installed in the crest during the dam raising,
within the downstream toe [46,47], and within the different section of the dam during extension or
upgrading. Installation of the optical fiber along the dam downstream toe is one of the most efficient
techniques because most of the leakage paths come through this zone and it is very applicable, cheap,
and easy to install the fiber in this zone [9].

Most methods for thermal analysis of seepage with the optical fiber require long-term
measurements to provide enough information for proper interpretation of temperature data. Optical
fiber DTS is employed as an indirect technique for seepage detection in embankments and earth-fill
dams. DTS provides temperature measurements, which are not directly interpretable in terms of
seepage and require further processing and data analysis to obtain the appropriate information
about the seepage flow in the embankment. In addition to different approaches to the application
and installation of DTS, the researchers introduced several techniques for analysing and interpreting
temperature data that lead to seepage detection. The process of seepage monitoring in the embankments
can be described as we show in Figure 7, which is a specialized form of the structural health monitoring
(SHM) flow chart [48].

Figure 7. Monitoring and detection of seepage in the embankment dam.

In this section, we reviewed the various methods for the installation of the optical fiber cable and
techniques, which were developed for proper interpretation of temperature measurements.

4.1. Passive Method

Using the passive measurement method, the DTS easily provides large number of measurements
of the natural temperature of the ground without any necessity to the power supply for heating.
Passive DTS is used for long-term temperature monitoring in embankments and earth-fill dams.
Some techniques were developed for the interpretation of acquired data from the long-term
passive measurements.

4.1.1. Lag-Time Method

The most common technique is based on the comparison of the temperature variation in the
embankment body with the seasonal variation of temperature of the air and the reservoir water.
Since the temperature in the embankment mainly depends on the air and water temperature at the
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reservoir, this technique can be employed for thermal analysis of seepage flow in the embankment.
This technique assumes that the 24-hour temperature variation of air is negligible due to its short
day-night cycle duration. The seasonal variation in air temperature and reservoir water creates
the seasonal thermal response in the dam body [49]. This response depends on the seasonal air
temperature, water temperature in the reservoir, and the distance from the reservoir to the measuring
point [46]. The method requires precise monitoring of the water temperature in the reservoir of
the dam. A lower temperature variation during long-term monitoring excludes the presence of
a significant seepage path, while a larger seasonal variation may be a sign of seepage within the
embankment [46]. The influence of air temperature is considerable only for the depth of a few
meters [50]. Even the seasonal variation of air temperature affects the temperature of the embankment
dam for the depths shallower than 10–15 m [7,10,51]. Due to the low thermal diffusivity of embankment
materials, the heat pulse response for a measuring point at the depth of around 10 m may be as long
as 6 months [10]. Long-term measurements of the water and air temperature, and the temperature
within the embankment also can be used to estimate the flow velocity due to seasonal variation [10].
The lag-time method is one of the first methods for estimating seepage velocity. Johansson 1997 [7]
applied this method to estimate the seepage flow from the long-term temperature measurements
in the embankment. This technique is a simplified one-dimensional approach based on thermal
velocity due to the convection process. The lag-time td is the time between the temperature pulse of
water and the air at the boundary x = 0 and the temperature variation due to the boundary thermal
pulse at the measured point at distance x [52]. The temperature may be considered as a tracer for the
seepage monitoring that travels with a thermal velocity and not the pore water velocity. Assuming
a one-dimensional thermal process, the thermal velocity (vT) can be obtained from lag-time (td) and
the distance of the measured point from the boundary (x) [52]:

vT =
x
td

(7)

Considering the one-dimensional heat transfer by the seepage, the relationship between thermal
velocity (vT) and Darcy velocity (v) of the flow depends on the ratio of the soil and water specific heat
capacities [53]:

v =
C

Cw
vT (8)

It is very important to note that the lag-time method estimates the seepage velocity based on
the domination of heat transfer due to advection. This means that the effect of conduction should
be assumed negligible. This assumption is valid for a relatively large seepage flow and for the thick
seepage zone where the vertical heat exchange due to conduction is negligible [7]. The advection process
is the dominant heat transfer process for seepage velocity as low as 10−7 m/s to 10−6 m/s [10]. Methods
based on the seasonal variation usually require long-term monitoring (in order of months and years),
while some of the seepage associated erosion may develop very fast in the embankment. In addition to
the lag-time method, Johansson [7] introduced the amplitude method for seepage detection using
temperature measurements. The method assumes that the temperature varies sinusoidally at the
upstream face, the advection occurs in one dimension, conduction is only vertical, and thermal
properties are constant for each layer.

4.1.2. Source Separation Method

Sometimes, in long-term measurements, detection of short-time leakage from the extensive
data is not possible. There are many factors other than seepage that influence the heat transfer in
embankments. These factors can be categorized as the ground response (e.g., permeability and physical
composition), natural phenomena (e.g., seasonal temperature and rainfall), leakage, and existing drain
structures [54]. The source separation technique is a statistical and signal processing-based analysis
that had been introduced to process the thermal data and eliminate the irrelevant factors from the
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leakage information. This method is a medium-term monitoring technique that can be used to monitor
leakage based on the months’ raw data [55]. The method is useful when a large number of acquisitions
are provided by monitoring systems [56] as in the case of optical fiber DTS measurement. The known
factors such as daily and seasonal effects and rainfall periods can be filtered from the data using the
data filtering techniques such as low pass filter and Kurtosis based filtering [57]. This method considers
the precipitation as an ephemeral phenomenon in the time domain and the leakage as an ephemeral
phenomenon in the time/space domains [54].

At first, the raw data need to be arranged in a matrix (here, matrix Y) which contains the observed
temperature data as a function of time and distance along cable T(x, t). The method assumes that the
different phenomena that affect thermal behavior are independent of each other. Considering this
assumption, the data matrix can be formulated as:

YT = MFT (9)

here, Y ∈ RNx×Nt is the data matrix as a linear mixture of independent sources, M ∈ RNt×p is the mixing
matrix, and F ∈ RNx×p is the matrix of sources. p is the number of independent sources that affect
thermal behavior in the embankment [54,56,57]. Equation (9) presents a source separation problem.
As a pre-processing step, the data need to be normalized with zero mean [54]. Then the source
separation technique employs different statistical techniques such as singular value decomposition
(SVD) and independent components Analysis (ICA) to separate the leakage information from the entire
temperature data. Using SVD, the matrix of data can be decomposed into two subspaces of Yground,
which contains the nonsingular data and Yuse f ul which contain the leakage information (Equation (10)).
Then the useful data should be decomposed into subspace Yleakage and Yrest (Equation (11)). SVD is not
enough for separation of leakage anomalies from subspace Yuse f ul, therefore, the more realistic approach
based on the ICA is applied to this subspace. ICA estimates the sources and their contributions to
the mixture by considering mutual independence between the sources. Subspace Yleakage presents the
temperature variation due to leakage and the associated time and location of those variations The SVD
and ICA mathematical processes are presented in Equation (10) and Equation (11) respectively [56].
More details on the SVD and ICA and their applications in the source separation method can be found
in [56–58]:

Y = UNΛNVT
N =

m∑
j=1

λ ju jvT
j +

N∑
j=m+1

λ ju jvT
j = Yground + Yuse f ul (10)

Yuse f ul =

m+q∑
j=m+1

λ ju jbT
j +

m+p∑
j=m+q+1

λ ju jbT
j = Yrest + Yleakage (11)

Application of SVD and ICA on the acquired data requires important decisions during the data
processing. To apply the SVD and ICA, three parameters of p, m, and q should be assigned. p is the
number of independent sources that should be decided, m is the number of singular values for building
ground subspace, and q is the number of ICA sources to be estimated [54]. The selection of different
values for these parameters may significantly affect the results.

The source separation technique was validated in the site measurement where the optical fiber was
buried in the downstream toe of an embankment [57,59,60]. The measurement was performed
for a certain time when the one artificial leakage and two drains existed in the embankment.
The anomalies related to the drains and leakage were obtained by the application of one SVD
and two ICA decompositions.

4.1.3. Singularity Detection Method

The other statistical method for derivation of leakage information from the temperature
measurement is the singularity detection method. In temperature measurement, most of the measuring
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points show a common trend of temperature variation in a certain acquisition time. However,
the presence of singularities influences the trend of temperature variation. In the embankments,
the possible singularities are due to the presence of leakages, drains, and the singularity of the ground
response due to the different effects such as material heterogeneities [55]. These singularities present
a deviation from the common trend of temperature variation related to the nonsingular distances.
The method of singularity detection seeks dissimilarities in the temperature trend to determine the
measuring distances associated with the singularity zones. Analysing daily measurements, this method
can be used to create an alarm monitoring system for early leakage detection in embankments. If daily
data analysis is performed, a resolution in a time of 24 h is obtained, which allows detection of
anomalies as early as the second day of their development [59]. This method is based on the relative
temperature variation of measuring points, therefore finding the precise absolute temperature is not
a necessity.

Figure 8 presents the results of the singularity detection method using the temperature variation
trend. A short-term experimental study was performed. The temperature trend for measuring point at
x = 134.08 differs from the reference temperature trend. The increase in the deviation of the temperature
variation trend for singular zones might be attributed to the increase in the flow rate of leakage.

Figure 8. Singularity detection using short-term experimental measurement: Measuring point at
x = 134.08 m corresponding to the location of a leakage path is the singularity that shows a different
trend of temperature variation compared with the non-singularity zones.

The important step in the application of the singularity detection method is the estimation of
a reference vector from the daily temperature variations, which can be compared with vectors at
all measuring points [55]. The SVD technique can be used as a proper approach to determining the
reference vector in the singularity detection method. The data matrix can be decomposed into the
two subspaces. While the first subspace contains the most energetic singular values that present the
dominant temperature behaviour of the soil, the second subspace resulting from SVD contains the
information associated with the vectors deviated from the reference vector [55]. The first subspace can
be used as a reference vector.

4.1.4. IRFTA Method

The next method, which allows for analysing optical fiber temperature measurements in dikes
and embankments, is the Impulse Response Function Thermal Analysis (IRFTA). This method was
developed for thermal analysis of seepage, especially from the temperature measurements at the
downstream toe of dams [61]. This method is a statistical-based method that requires temperature
measurements of at least two months of thermal monitoring [18]. IRFTA employs Green’s function for
the coupled water and heat transfer in the soil [62]. The impulse response function, h(t) can be written
in the form of two parameters: [9,63]:

h(t) ≈ R(α, η) (12)
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where α is the signal damping factor and η is the time-lag that quantifies the time elapsing between the
loading onset and its response by the system in the measuring point. This time-lag can be presented as
days for long-term monitoring in an embankment. The impulse response function presents how the
parameters of the input signal (here α and η) are modified by the thermal behavior of the dam. In other
words, α presents the significance of the influence of the parameter on temperature measurements,
and η presents how fast this influence occurs.

The thermal analysis of the downstream toe of an embankment is influenced by the air temperature
at the downstream face and the water temperature in the reservoir. Therefore, the IRTFA function can
be finalized in a four-parameter function in the following form [61]:

T (x, t) = θc + Rw(x, t) × θw(x) + Rair(x, t) × θair(x) (13)

where θc is constant (e.g., initial temperature), θw and θair are the coefficients of the temperature
loading of water and air, respectively, acting on the dam surface, and Rw and Rair are the impulse
response functions for the water and air temperature loading, respectively. The impulse response
function of water (Rw ) is associated with the two parameters of αw and ηw, the damping factor,
and the time-lags of the water temperature response. Rair is the response parameter related to the air
temperature; αair and ηair. If the optical cable is located in the dry zone the equation can be reduced by
considering Rw(x, t) = 0; when the cable is in the saturated zone then the effect of air temperature can
be assumed negligible (Rair(x, t) ≈ 0).

The method was validated using a thermal analysis of seepage in a 27-m high dam [61] and a large
model of a dam, while the artificial leakage was created by placing high permeable sand in the dam
body [63]. The optical fiber was used to monitor the temperature variation in different levels at the
downstream toe of the dam. Figure 9 presents the results of the IRFTA for the response function of
water temperature (αw and ηw) in a dam model with three artificial leakages.

Figure 9. IRFTA analysis for the optical fiber temperature measurements in the dam downstream toe
with three artificial leakage paths which are localized by arrows [9]: (a) The signal damping factor;
(b) The time-lag. The cable is embedded in two different elevations at the downstream toe. The thicker
line with triangle marks is associated with the temperature measurement by the cable embedded in
the middle height of the dam toe while the other cable is embedded into the bottom level of the toe.
(Figure reproduced with permission of the publisher).

The value of αw is mostly influenced by the direct contact between the leakage water and the
optical cable. This value is almost stable for any zone out of direct seepage velocity influences [9].
In Figure 9 this value is almost stable, therefore, it does not provide any information about the leakage
presence. However, the leakages can be seen clearly in the ηw graphs where the time-lag between the
water temperature and the measured temperature in leakage zones is significantly dropped. The figure
shows that the fiber buried below the seepage path detects the leakage more efficiently.
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IRFTA is not only a statistical model as its parameters also provide a physical interpretation [9].
In addition to leakage detection, the IRFTA method provides information about the parameters that
influence the temperature variation, quantifies the significance of these parameters, and estimates
how fast these parameters influence the temperature distribution. However, the model describes only
the linear behaviour of heat transfer, and in the case of high nonlinearity in the heat transfer process,
the method may not be able to model the temperature measurement perfectly [61].

4.2. Active Method

Parallel to the passive DTS measurement, the active DTS application has been developed for many
years. The active thermal analysis of dams and embankments for seepage detection was first applied
by Dornstädter in 1997 [10] by introducing the heat pulse method. He installed a linear heat source
into the dam body and studied the heat dispersion. Since the seepage flow increases the heat loss of
the heating cable, the loss of the heat can be used as a tracer of seepage velocity. In the case of no
seepage flow, the heat dissipation and cooling process are slow while the cooling process in the zones
with a high flow is much faster. The duration of each heat pulse varied between 6 to 12 h. The active
method was developed for the applications where there is no adequate seasonal temperature variation
of the water reservoir or if there is not enough temperature gradient between the embankment body
and the water [64]. This technique provided some advantages since it does not require the long-term
seasonal temperature variation and provides a temperature gradient through heating the medium.
Perzlmaier et al. [65] developed the active thermometry technique to be used with the optical fiber
DTS measurements. This method is based on introducing heat along the optical cable for a few hours
with A.C. or D.C. voltage. They estimated the seepage velocity as well as the degree of saturation in
the vicinity of the fiber cable using the measured heat dissipation along the cable.

The heating along the cable can be applied in two approaches. In the first approach, a metal
wire is embedded in the embankment parallel to the optical cable [14,65]. The linear ohmic resistance
of the metal wire will produce linear heat from the introduced A.C or D.C. voltages. In the second
approach, the heating wire is replaced with the optical cable in the same coating, which is called the
hybrid cable [51]. Some of the fiber optic cables are composed of optical fibers enclosed and protected
by the stainless-steel tubes or metal wire. The active method in these cables can also be performed
using the metallic components as electric resistance heaters [66].

To estimate the seepage velocity with a high accuracy, Su and Kang [14] introduced an inversion
technique based on the active optical fiber temperature measurements. They used the heat transfer
equation (Equation (1)) which is simplified for 2D steady-state (∂T

∂t = 0) heat transfer, constant seepage
velocity (v), and only in the x-direction:

∂2T
∂x2 +

∂2T
∂y2 −

Cwρwv
λ

∂T
∂x

= 0 (14)

Two optical fiber cables were embedded in the medium for temperature measurement. Cable 1
was an armoured optical cable that was heated through the metallic component of the cable. Optical
cable number 2 was embedded parallel to cable 1 with a certain distance to sense the temperature rise
due to the heated cable. T1 is the equilibrium temperature of optical cable 1 after being heated. T2 is the
measured temperature by cable 2 for a certain measuring point in the temperature field generated by
the heated cable 1. While the initial temperatures in both cables and the initial temperature of ambient
T0 are known the heating will be applied. Using the inversion method, seepage velocity v is assumed.
Having assumed the seepage velocity, Equation (14) is solved for the temperature to reach a proper
approach to the measured temperature T2 by the DTS. The procedure continues until an acceptable
approach to the measured temperature T2 is obtained. The study showed that more precise seepage
velocity can be achieved by a higher heating power.
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When the seepage starts to flow, the heat transfer between the heated cable and the water at
the vicinity of the cable (Q) simply equals the convection heat transfer Qv. The amount of the heat
transferred from the heated cable to the water can be obtained by:

Qv = Aah(Tcable − Twater) = Q (15)

h = f (v, l,ρw, Cw,µ,λw) (16)

where Aa is the area of heat transfer between the cable and water, h is the heat transfer coefficient,
Tcable and Twater are the temperature of the heated cable and water, respectively. The heat transfer
coefficient is a function of flow velocity v, structural size l, water density ρw, heat capacity Cw, dynamic
viscosity µ, and thermal conductivity λw.

Using the equation of heat convection between the seepage water and the heated cable
(Equation (15)), Su et al. [67] studied the seepage velocity by the optical fiber active temperature
measurements in a laboratory model for the soil-concrete contact. If the water properties and structure
size in Equation (16) are considered constant, then the heat transfer coefficient is only a function
of flow velocity. They used the correlation between the characteristic dimensionless numbers like
Reynolds number, Planck number, and Nusselt number to develop an equation for the heat transfer as
a function of seepage flow velocity. Heating was introduced to the model by applying a stable voltage
on steel bars that were installed adjacent to optic fiber cables. By measuring the introduced heating
power and variation of temperature in the cable the seepage velocity can be estimated based on their
method. Their study demonstrated that the detection of small flow velocity requires a higher heating
power. Also, the higher heating power [67] and increased heating time [51] can highlight the seepage
anomalies better.

The application of active DTS measurement in an embankment dam was tested by embedding
optical cable horizontally into the downstream face of the embankment dam along its longitudinal
axis [4]. The measurements proved the ability of the active system for detecting leakage as well as
identifying the presence and location of the wet zone in embankment dams.

The active DTS technique can be used to determine the degree of saturation of the soil, where the
seepage velocity has not taken place yet. In the absence of a seepage flow, the heat transfer is limited
to the conduction in the soil. The effective thermal conductivity in the partly saturated soil depends
on the solid particle thermal conductivity, the porosity, and the degree of saturation. The degree of
saturation can be estimated [65] by measuring the temperature difference between the optical cable
wall and the surrounding temperature after a heating period. An approximate solution is given also by
Kristiansen [68] for the temperature difference between the cable wall and surrounding temperature,
which is valid for long heating periods. Although the accuracy of the method for estimating the degree
of saturation is not high, it is adequate to distinguish dry, moist, and saturated soil conditions [65].

An alternative method for measuring the water content was developed by Sayde et al. [66] based
on the thermal response of the soil to the heat pulse in the form of the cumulative temperature increase
over a certain period. Since the thermal conductivity and heat capacity increases with the water content,
the cumulative temperature monotonically decreases with the water content. The method used this fact
to calculate the water content from the temperature rise due to the heated optical fiber. More details on
the method can be found in [66] and [69]. Recent works on the applications of active optical fiber DTS
focus on the improvement of soil moisture determination by active DTS measurements [70–72].

Various researches on the active method show that the accuracy of seepage and the saturation
estimation depends on the heating power and heating period [14,51,67]. For the detection of
a concentrated leakage, a heat impulse of 3 to 5 Watts per meter of the cable length is enough,
however, the measurement of the distributed flow velocity may require about 10 Watt per meter [65,73].
In addition to the heating power, the thermal response on the cable also depends on the cable
cross-section. A smaller cross-section increases the span of the temperature difference in the zones
with a small and fast seepage and leads to an easier evaluation of the seepage velocity in the soil [65].
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The recent works on the DTS application include the development of the DTSGUI program,
which is used for the processing of optical fiber DTS data [74]. DTSGUI is programmed in Python,
which enables the users to edit, process, analysis, and visualize the obtained optical fiber DTS data.
Such a program can be used to simplify the interpretation of temperature data for seepage detection.

The seepage detection methods presented in this section are compared in Table 2.

Table 2. Comparison of different techniques for DTS application in seepage detection.

Methods Theory Potential Advantages Potential Disadvantages

Lag-time
[7,52]

(Passive measurement)
Comparison of temperature

variation within the
embankment with the seasonal
temperature variation of air and

water at the boundaries.

Simple process and easy
interpretation

Estimation of seepage
flow velocity

One-dimensional
assumption.

Neglecting the heat
conduction process.

Source separation
[54,56,57,59]

(Passive measurement)
Statistical and signal

processing-based analysis to
process the thermal data and to
eliminate irrelevant factors from

the leakage information.

Able to recognize the different
sources that affect the thermal

behaviour of the dam.
Quantifying the influence of

each source on the
thermal behaviour.

Not able to estimate the
flow velocity.

Complex processing
is required.

The dependency of results
on the parameters of the

assigned sources.

Singularities
detection [55,56]

(Passive measurement) The
singularities (e.g., leakage and
drains) present different trends

of temperature variations
compared to the

non-singularity’s trends.

Can be used for alarm
monitoring system and early

leakage detection.
The method is based on the

relative changes in temperature
and precise absolute

temperature measurements are
not a requirement.

The selection of the reference
temperature vector

is a challenge.
Does not provide any

information about the source
of singularity in

temperature vector.

IRFTA
[9,61,63,75]

(Passive measurement) IRFTA
employs Green’s function for the
coupled water and heat transfer
to show the thermal behaviour

of the dam as an impulse
response. function of the water

and air temperature.

The significance of each air and
water parameters in temperature

variation can be estimated.
The time lag both for water and
air influences can be estimated.
The parameters in this method

may have a clear physical
interpretation.

Relatively complex
processing is required.

The model describes only
the linear behaviour

of heat transfer.

Active method
[10,14,51,65,73,76,77]

(Active measurement)
Introducing heat into the

embankment and monitoring
the heat dissipation due to the

presence of seepage or moisture.

The ability to estimate seepage
velocity and degree of saturation.

Applicable where the
temperature gradient between

the water and soil is small.

The length of cable for
measurement is mostly

limited to less than 2 km.
For large structures, high

heating power is required.

5. Discussion

The thermal analysis for the seepage monitoring relies on the accurate temperature measurement
by the optical fiber DTS, proper installation of the optical fiber, and appropriate interpretation of
temperature data to extract the seepage related information. The accurate temperature measurement
is assured by the dynamic calibration of the measured data using internal and manual calibration
techniques. The internal calibration requires assigning the differential power loss along the cable and
can be supported by introducing reference sections.

The selection of the manual calibration technique and installation approach is based on the
measurement requirements, on-site availabilities, and the prioritization of the measurements in terms
of accuracy, time, and the area of investigation. The single-ended approach is appropriate for the
long-distance measurements and has an easy calibration installation, but it neglects the local step
power losses and, in the case of cable interruption, the measurement will not be possible beyond the
cut location. Duplexed single-ended and double-ended measurements overcome these shortages but
decrease the maximum length of measurement to a half. Besides, the accuracy of measurement at
both ends of the cable decreases in the double-ended installation. Additionally, the duplexed cables
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generally include a fusion splice at the end of the cable, which may cause power losses that should
be considered during the calibration [41]. The application of manual techniques for static calibration
(where the calibration parameters are assumed constant over time) is a simple procedure. However,
the manual techniques for the dynamic calibration and obtaining the calibration parameters for each
measuring time step may require more effort and time-consuming procedures. McDaniel et al. [78,79]
overcame this issue by performing the dynamic calibration developing a script-based technique and
running it continuously on the obtained DTS data. The manual calibration techniques are compared in
Table 1, Section 3 based on their potential advantages and disadvantages.

Seepage detection techniques are classified into two categories: active and passive. The application
of the active method raises considerable concerns, especially in the case of monitoring at large structures.
Heating a long optical fiber cable for monitoring large structures can be expensive or in some cases
dangerous. In this method, the accuracy of measurements significantly depends on the heating power.
ICOLD suggests that the length of the heated fiber should be shorter than two kilometers [2]. At the same
time, any defects or breakdowns of the heating power source will influence the seepage monitoring
system. With the recent advances in the optical fiber DTS and increasing temperature resolution,
the passive measurement has been proven experimentally as a reliable method for seepage detection
even in the presence of a low-temperature gradient between the seepage water and the soil [80].

Since the erosion by seepage may progress rapidly, it is crucial to detect seepage at the initiation
phase. The selected interpretation method should be able to provide seepage information from
the short-term measurements. The complexity of data processing in some of the interpretation
techniques requires more time-consuming efforts. Another method that can be developed for the
detection of seepage within the embankments from the temperature data is the machine learning
(ML) technique. This technique has already been developed and used for the detection of seepage
around the pipelines [81]. We also suggest that a coupled hydro-thermal numerical simulation should
be performed for the intended structure. Such a simulation can be used for the proper installation
approach and will provide beneficial information about the temperature distribution within the
structure that can be used to interpret the obtained temperature data from the optical fiber DTS. Table 2
in Section 4 presents a comparative overview of the different seepage detection techniques which were
reviewed in this paper.

6. Concluding Remarks

Various techniques for measurement data calibration and optical cable installation were reviewed
in this paper. DTS systems provide dynamic internal calibration, however, sometimes manual calibration
is required to obtain more precise temperature measurements. A comparative review of these methods
was performed based on their accuracy, installation approaches, complexity, and the monitoring
area. This comparison can be used for selecting the proper calibration technique of raw DTS data.
The dynamic calibration for long-term measurements using the manual calibration requires more
effort and time to apply the least-squares method to solve Equation (4) for each measuring time
step. The development of an automatic fully dynamic calibration technique that can obtain the three
calibration parameters for each measuring time step can be considered as a further topic of study.

In addition to the data calibration, we reviewed the passive and active DTS measurements
and the techniques developed for temperature data interpretation. A comparison of these methods
was presented. For early seepage detection, the selected method should extract the seepage related
information from the short-term measurements with less possible complexity. An interpretation
technique based on the comparison of the temperature measurements with simulated numerical results
can be considered as a further study. The coupled hydro-thermal numerical simulation can be used to
interpret the obtained temperature data from the optical fiber DTS.
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