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Abstract: Autonomous underwater missions require the construction of a stable visual sensing
system. However, acquiring continuous steady image sequences is a very challenging task for bionic
robotic fish due to their tight internal space and the inherent periodic disturbance caused by the tail
beating. To solve this problem, this paper proposes a modified stabilization strategy that combines
mechanical devices and digital image techniques to enhance the visual sensor stability and resist
periodic disturbance. More specifically, an improved window function-based linear active disturbance
rejection control (LADRC) was utilized for mechanical stabilization. Furthermore, a rapid algorithm
with inertial measurement units (IMUs) was implemented for digital stabilization. The experiments
regarding mechanical stabilization, digital stabilization, and target recognition on the experimental
platform for simulating fishlike oscillations demonstrated the effectiveness of the proposed methods.
The success of these experiments provides valuable insight into the construction of underwater visual
sensing systems and also establishes a solid foundation for the visual applications for robotic fish in
dynamic aquatic environments.
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1. Introduction

Bionics have recently attracted great interest in various fields such as robotics, materials science,
and architecture. In the area of underwater robotics, the high mobility and stealth of fish have inspired a
generation of bionic robotic fish [1], which combines the merits of fish and the functions of autonomous
underwater vehicles (AUVs). A variety of robotic fish prototypes have been developed and their
maneuverability and practicality have been investigated in recent years [2–7].

Visual sensors are essential for robotic fish so that they can accomplish complex tasks like detecting
obstacles and avoiding them [8]; this generally involves a trade-off between a feasible technology and
the bionic prototype. Compared with ultrasound sensors, visual devices are easier to integrate into
miniaturized robotic fish, and nowadays, robotic fish based on visual sensors have been applied to a
variety of missions. For instance, Yu et al., designed an embedded monocular visual sensor to modulate
control parameters, which facilitated environmental perception and goal-directed-based swimming [9].
Stefanini et al., developed a binocular visual sensor mounted on a robotic lamprey, which provided
a wide field of images and sent back the motion parameters [10]. Ricardo et al., proposed a novel
vision system for navigation under poor visibility conditions in a semi-structured environment [11].
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Zheng et al., described an autonomous vision-based robotic fish for underwater competition [12].
Although a few visual systems have been designed for robotic fish, the application of visual sensors
is relatively new and simplistic because of the poor image quality. Compared with land images,
acquiring stable and high-quality underwater images with robotic fish is more challenging. Besides the
adverse underwater lighting environment, the most serious problem is that the camera shake caused by
the motion of the robotic fish causes image motion blur and an unstable field of view. This has resulted
in great challenges for the visual-based applications of the robotic fish. Therefore, the construction of a
visual sensor stabilization platform is core to the future development of this technology.

Other types of machine systems such as unmanned aerial vehicles (UAVs) and quadruped robots
have made great progress compared with the stabilization of robotic fish visual sensors. For example,
Lim et al., designed a digital stabilization algorithm of higher-level visual tasks for UAV [13].
High-speed operation was the key objective, and this method made use of switching between rigid
and similarity transformation, optical flow-based motion estimation, and multi-threading. Kim and
Choi used an extended neural network method to detect object azimuth for UAV surveillance [14].
They used a specially equipped GoPro, which worked well, however, it needed a large interspace.
Bazeille et al., constructed a visual system that mainly relied on a rigid pan and tilt unit (PTU) to
achieve visual stabilization for quadruped robots [15].

However, the abovementioned methods do not seem to be feasible for a self-propelled robotic fish
due to the limited space, computational time, and other factors. The disturbance of the robotic fish
visual sensor is caused mainly by the periodic oscillation of the fish tail during straight swimming, as
is shown in Figure 1. The tail oscillation not only induces a recoil motion in the yaw direction but also
a sway in the roll axis owing to the non-uniform mass distribution. Thus, the visual sensor fixed on
the robotic fish is also affected by this oscillation. Many studies have been conducted to address this
issue. For example, because the complex equipment is difficult to mount on the previously developed
shark-like robotic fish, a visual sensor stabilizer with a cascade control approach was developed [16,17].
However, its stabilization effect was limited because it was a one degree-of-freedom (DOF) visual
sensor stabilization system that was only designed to stabilize the yaw direction. On the basis of
their predecessors, Zhang et al., designed a compact 2-DOF stabilization gimbal for the visual sensor
using the active disturbance rejection control (ADRC) algorithm [18]. A crucial drawback is that it
is twice the size of the 1-DOF stabilization system, which makes it unsuitable in small robotic fish.
Lou et al., proposed a new kinematic model of a bionic robotic fish to restrain the head swinging [19].
Unfortunately, it was unable to stabilize the visual sensors.
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In order to strike a balance between the volume of the device and stabilization performance,
this paper proposes a 1-DOF stabilization platform for robotic shark visual sensors that combines
mechanical stabilization and digital image technology. First, the visual sensor stabilization was
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simplified as a 2-D stabilization problem ignoring the pitch channel, and the expression of the controlled
quantity was derived based on the kinematic relationship. Considering the tight space, mechanical and
digital stabilization processes were adopted for the yaw and roll channels, respectively. To verify
the effectiveness of the proposed system, an experimental platform was developed to mimic fishlike
propulsion and maneuvering. The mechanical stabilization, digital stabilization, and target recognition
results revealed that the stabilization system, with an improved linear active disturbance rejection
control (LADRC) algorithm and a rapid digital stabilization algorithm using inertial measurement
units (IMUs) can significantly enhance the visual sensor stabilization effects. The main contributions of
this paper are summarized as follows:

• An improved window function-based LADRC algorithm was proposed for mechanical
stabilization, which performs better than the general LADRC algorithm in 3-D motion.

• The IMU measurement data was applied as an estimation of motion to reduce the dependence
of digital stabilization on image features, which guarantees real-time performance and is more
suitable for underwater application.

• A stabilization scheme combining mechanical stabilization and digital stabilization employed
for small robotic fish visual sensors was proposed. Compared to existing systems, the platform
possesses a more compact structure and a better stabilization effect. Experiments verified that it
can significantly improve the accuracy of target detection tasks. Remarkably, it offers valuable
insight into the construction of underwater visual sensing platforms and lays the foundation
for an underwater visual application such as target tracking of untethered robotic fishes with a
stabilization system.

The remainder of this paper is structured as follows. The problem formulation for the visual sensor
stabilization platform is described in Section 2. The control system is detailed in Section 3, including the
LADRC, the switching system, and the improved LADRC. The overall 1-DOF stabilization platform
framework and the stability of the proposed improved LADRC applied in the platform are discussed
in Section 3.4. The mechanical stabilization, digital stabilization, and target recognition experiments
are presented in Section 4. Finally, in Section 5, we present the conclusions and discuss future work.

2. Problem Formulation

Constructing a stable visual sensing system is undoubtedly the key factor for several underwater
tasks such as target recognition and tracking. However, it is not easy to achieve when the
robotic fish is swimming. Typically, three traditional image stabilization solutions have been used:
mechanical stabilization, digital stabilization, and optical stabilization [20]. Of the traditional solutions,
mechanical stabilization is prioritized because of its outstanding stability. Thus, due to the small space
in the interior of the shark-like robotic fish head, a 1-DOF visual sensor stabilization system was
employed to solve the issue of periodic disturbance.

The shark-like robotic fish was developed in our previous work [16]. It is 483 mm long, 208 mm
wide, and 125 mm high. For the sake of clarity, the components of the 1-DOF visual sensor stabilization
platform is illustrated in Figure 2, and the visual sensor used in this study is the monocular camera.
Specifically, the four coordinate systems are defined, whereby frames T and C fixed on the camera
are related to the desired camera attitude and the current camera attitude, respectively. The body
frame B is fastened at the center of gravity of the fish and corresponds to the attitude of the shark-like
robotic fish. The world frame W is consistent with the initial body attitude. Then, the problem can be
simplified as

RT
C = RW

C ·R
T
W → I (1)

where RB
A denotes the rotation matrix from frame A to B, and I is an identity matrix. Notably, RT

W and
RT

C act as input and output variables, respectively. Thus, the problem becomes how to achieve the
approach of RT

C to I by adjusting the intermediate variable RW
C .
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As the robotic fish is capable of 3D swimming, only the roll and yaw angles need to be compensated
for. The reason is that the pitch angle does not need to be counteracted in diving and ascending,
and sometimes it can be omitted. Therefore, the 1-DOF visual sensor stabilization system is designed
to compensate for the roll and yaw disturbances, and RT

C can be expressed as

RT
C = Rot(ZC,ψCT)Rot(XC,θCT)

= Rot(ZC,ψC)Rot(XC,θC)Rot(XT,θT)
TRot(ZT,ψT)

T (2)

where ψCT and θCT represent the yaw and roll error angles, respectively. ψC and θC denote the current
yaw and roll angles. ψT and θT represent the target yaw and roll angles. The problem is equivalent to:

Rot(ZC,ψC)Rot(XC,θC)= Rot(ZC,ψCT)Rot(XC,θCT)Rot(ZT,ψT)Rot(XT,θT) (3)

where Rot(Z,ψ) and Rot(X,θ) are construed as

Rot(Z,ψ) =


cosψ − sinψ 0
sinψ cosψ 0

0 0 1

, (4)

Rot(X,θ) =


1 0 0
0 cosθ − sinθ
0 sinθ cosθ

. (5)

Ultimately, ψC and θC can be determined by ψCT, θCT, ψT, and θT.
In practice, the mechanical stabilization is operated in the yaw direction. However, since there

is not enough space to support the mechanical stabilization device in the rolling direction, the roll
angle needs to be solved by adding other technologies. Thus, a rapid digital stabilization algorithm
combined with IMUs was proposed as described in in Section 3.4.

3. Control System Design

The control system was developed to maintain the visual sensor platform stability in the yaw
direction during the motion, with a particular focus on the control error and dynamic performance.
In particular, the use of ADRC to compensate for the disturbance has a better effect than traditional
PD control. Therefore, considering the nonlinearity and parameter tuning issues, LADRC and the
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switching system combined LADRC with nonlinear ADRC (NLADRC) and this is discussed in this
section [21]. In addition, it is worth noting that the total disturbance estimated by extended state
observer (ESO) is derived from the internal and external disturbances, which can have detrimental and
beneficial effects, respectively [22,23]. Therefore, a disturbance characterization indicator (DCI) was
designed to determine whether to use or compensate for the total disturbance. The improved LADRC
will also be discussed in this section.

3.1. LADRC

Although nonlinear ADRC (NLADRC) is excellent for nonlinear problems, it is difficult to tune
the parameters [21,24,25]. Consequently, LADRC consisting of a tracking differentiator (TD), a linear
ESO (LESO), and a linear state error feedback (LSEF) law was employed [26].

In this situation, the input angle and angular velocity are retrieved by IMUs, in lieu of the TD
segment. Thus, the corresponding algorithm is described by

ẽ1(t) = z1(t) − y(t)
.
z1(t) = z2(t) − β01ϕ1 (̃e1)
.
z2(t) = z3(t) − β02ϕ2 (̃e1) + bu(t)
.
z3(t) = −β03ϕ3 (̃e1)

e1(t) = v1(t) − z1(t)
e2(t) = v2(t) − z2(t)
u(t) = u0 − z3(t)/b

, (6)

u0 = kpe1(t) + kde2(t), (7)

ϕ1 (̃e1) = ϕ2 (̃e1) = ϕ3 (̃e1) = ẽ1(t), (8)

β01 = 3w0, β02 = 3w2
0, β03 = w3

0 (9)

where the description of the formulaic terms is listed below in Table 1.

Table 1. Description of the formulaic terms.

Term Description

v1, v2 Target Euler angle and angular velocity
y Euler angle measured by IMUs
h Sampling period

β01, β02, β03 Observer gains
b Input gain

z1, z2 Observer angle and angular velocity
z3 Total disturbance
ẽ1 Tracking deviation
w0 Bandwidth of the observer

3.2. Switching System

A switching control method for LADRC and NLADRC was proposed by Li et al. [25].
They simplified parameter tuning and took advantage of LADRC with NLADRC. With regard
to NLADRC, the corresponding algorithm is shown as

u0 = kp f al(e1,α1, δ) + kd f al(e2,α2, δ)
ϕ1 (̃e1) = f al(̃e1,α3, δ)
ϕ2 (̃e1) = f al(̃e1,α4, δ)
ϕ3 (̃e1) = f al(̃e1,α5, δ)

, (10)

β01 = 3w0, β02 = 3w2
0, β03 = w3

0, (11)
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ϕi (̃e1) = f al(̃e1,αi, δ) =

 ẽ1
δ1−αi

,
∣∣∣̃e1

∣∣∣ ≤ δ∣∣∣̃e1
∣∣∣αisgn(̃e1),

∣∣∣̃e1
∣∣∣ > δ (12)

which includes a nonlinear ESO (NLESO) and a nonlinear state error feedback (NLSEF) law from
Equation (6).

The switching conditions include t > T, z3(t) > M, and
∣∣∣̃e1

∣∣∣ > 1. As long as one of the three
conditions is satisfied, the system switches from NLADRC to LADRC, and vice versa.

3.3. Improved LADRC

The disturbance is divided into two types, one has a positive impact, namely, beneficial disturbance,
the other has a negative impact, namely, detrimental disturbance. Because the disturbance has a dual
character, the visual sensor platform is not required to reject all of the disturbance. Afterwards, the total
disturbance is selectively utilized or compensated for by the motor to improve stability. Sun et al.,
reported the vigorous function of the disturbance in control engineering practice for the first time [22],
and a DCI was proposed that is described as{

ê1(t) = y(t) − v1(t)
J = sgn(ê1) · sgn(z3)

(13)

which is essentially a judgment statement. It is obvious that J < 0 means that the total disturbance
z3(t) observed by LESO has the opposite sign with angle error ê1(t) and vice versa. In reality, ê1(t) < 0
indicates that the current angle is smaller than the target angle. Thus, the disturbance is beneficial
if z3(t) > 0 during the stabilization process. On the contrary, the disturbance is harmful if z3(t) < 0.
Similarly, another situation where ê1(t) > 0 can be analyzed. On the whole, the disturbance is beneficial
when J > 0, and vice versa. As stated previously, the linear control law is adjusted by

u(t) = kpe1(t) + kde2(t) − Jz3(t)/b. (14)

With respect to the ratio of disturbance compensation and utilization, the choice is 100%.
A continuous function was designed to avoid the chattering caused by the sign function, which is
given by:

sgn(x) =
x

√
x2 + ε2

(15)

where ε is a small positive number. Based on the merits of DCI and ESO, an improved LADRC
algorithm combining Equations (6), (9), (13), (14), and (15) was proposed, in conjunction with the block
diagram indicated in Figure 3. This is particularly effective when the robotic fish is turning because it
fully utilizes the influence of disturbance.Sensors 2020, 20, x FOR PEER REVIEW 7 of 16 
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(LADRC) control, where θ and y are measured by inertial measurement units (IMUs), respectively.
One of them is fixed on the camera and the other is fixed on the head of the shark-like robotic fish.



Sensors 2020, 20, 4060 7 of 16

3.4. 1-DOF Visual Sensor Stabilization System Design

In order to achieve the approach of RT
C to I, mechanical stabilization is utilized to compensate for

disturbances in the yaw direction as the Rot(ZC,ψC), and digital stabilization is used to compensate
for disturbances in the roll direction as the Rot(XC,θC). In addition, Rot(ZT,ψT) and Rot(XT,θT) act
as input terms, while Rot(ZC,ψCT) and Rot(XC,θCT) play a role in the feedback.

The visual system framework of a 1-DOF visual sensor stabilization platform is depicted in
Figure 4. Specifically, it is updated with an improved LADRC utilizing the total disturbance estimated
by linear extended state observer (LESO) to compensate in the yaw direction, and coupled with a rapid
digital stabilization algorithm to stabilize the roll direction. Considering the limited head space of the
robotic shark, the angle of the vision sensor is collected by IMU instead of a laser diode [26].
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Figure 4. Schematic diagram of the 1-DOF visual sensor stabilization platform in the shark-like
robotic fish.

3.5. Mechanical Stabilization

A servomotor with the control board removed was utilized as a controlled object for a fast response,
and its transfer function is formulated as

W(s)
U(s)

=
Km

(Tes + 1)(Tms + 1)
(16)

where Km is the motor gain constant, Te is the field time constant, and Tm is the mechanical time
constant. Owing to Tm > 10Te, the field time constant is usually neglected. Thus, the dynamic model
of the controlled object without uncertainties and disturbances is written in the state space in the
following form: { .

x(t) = Ax(t) + Bu(t) + C
y(t) = Dx(t)

(17)

where A =

[
0 1
0 −

1
Tm

]
, B =

[
0

Km
Tm

]
, C =

[
0

−
Ke
Tm

Me

]
, D =

[
1 0

]
, x =

[
x1(t) x2(t)

]T
,Ke is the

load coefficient, and Me is the external load moment. Combined with u(t) calculated by the improved
LADRC, the mechanical stabilization in the yaw direction is achieved.

3.6. Stability Analysis

The proposed improved LADRC for the controlled DC motor is bounded-input bounded-output
(BIBO) stability. The analysis is divided into two parts, one is the stability of the LESO, and the other is
the stability of the closed-loop system.

Theorem 1. Suppose a general error dynamic system

.
η = Mη+ G(η) (18)
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where M is a Hurwitz matrix and G(η) is bounded, η ∈ Rn, and M ∈ Rn×n, the error η is uniformly ultimately
bounded [27–30].

3.6.1. Convergence of LESO

Firstly, the augmented state space of (17) with the expanded state x3 can be reformulated by
.
x1(t) = x2(t)
.
x2(t) = x3(t) + bu
.
x3(t) =

.
f

(19)

where f = − 1
Tm

x2(t) −
Ke
Tm

Me +
(

Km
Tm
− b

)
u serves as the total disturbance.

Let ẽi = zi − xi, i = 1, 2, 3. Thus, the error dynamics in the observer can be shown as

.
ẽ = Ãẽ + B̃

.
f (20)

where Ã =


−3w0 1 0
−3w2

0 0 1
−w3

0 0 0

, B̃ =


0
0
−1

, ẽ = [ ẽ1 ẽ2 ẽ3 ]
T

.

Assumption 1. The differentiation of the augmented state f is bounded
∣∣∣∣ .
f
∣∣∣∣ ≤ B1, where B1 is a positive constant.

The eigenvalues of Ã is −w0, that is, the real part is negative. Thus, the matrix Ã is Hurwitz.
Combined with the reasonable Assumption 1, the observed estimation error ẽ is uniformly ultimately
bounded, and its upper bound decreases with the observer bandwidth w0 [31].

3.6.2. Stability of the Closed-Loop System

Let êi = xi − vi, i = 1, 2. Specifically,

.
ê2 =

.
x2 −

.
v2

= f + bu−
.
v2

(21)

Using the control input (14),

.
ê2 = f + kpbe1 + kdbe2 − Jz3 −

.
v2 (22)

Then, ei = vi − zi = −êi − ẽi and it is considered that

.
ê2 = −kpbê1 − kdbê2 − kpb̃e1 − kdb̃e2 − Jz3 + f −

.
v2 (23)

Thus, the error dynamics in the closed-loop system can be expressed as

.
ê = Âê + B̂h (24)

where Â =

[
0 1
−bkp −bkd

]
, B̂ =

[
0 0 0 0 0
−bkp −bkd −J 1 −1

]
, h = [ ẽ1 ẽ2 z3 f

.
v2 ]

T
,

ê = [ ê1 ê2 ]
T

, J ∈ (−1, 1).

Assumption 2. The target acceleration
.
v2 is bounded

∣∣∣ .
v2

∣∣∣ ≤ B2, where B2 is a positive constant. In addition,
the augmented state f is bounded

∣∣∣ f ∣∣∣ ≤ B3, where B3 is a positive constant.

The kp > 0 and kd > 0 are satisfied, that is, the matrix Â is Hurwitz. In addition, due to the
BIBO stability of the LESO and the reasonable Assumption 2, the closed-loop system tracking error is
uniformly ultimately bounded.
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3.7. Digital Stabilization

Due to the limited space, digital stabilization is exploited to compensate for insufficient mechanical
stabilization. Traditionally, digital stabilization consists of motion estimation, motion compensation,
and image generation. Due to the integration of many new technologies, there has been rapid
development in this area, including motion estimation, which is the most notable. For instance,
Kim et al. (2008) proposed a probability model for global motion estimation to improve computational
efficiency [32]. Dong et al. (2019) designed a software algorithm concentrating on motion estimation
to obtain an optimal transformation matrix using three steps [33]. After utilizing moment-based
speeded-up robust features (MSURF) to obtain original transformation matrix, k-means clustering
was used to exclude outliers, and sequential quadratic programming (SQP) was employed to acquire
robust results. Li et al. (2020) suggested an optimization method for shaking hand-held adaptive video
stabilization [34]. The novelty of this method included decomposing the complicated signal by empirical
mode decomposition (EMD), and avoiding over-cutting by over-smoothing with feature-centric EMD.
However, due to time delays as well as poor-quality feature points, these methods are not applicable
to aquatic environments. Therefore, we decided that the data collected by IMUs should replace
motion estimation. Ertürk integrated a Kalman filter into a real time stabilization system to eliminate
unintentional motion and retain intentional motion [35]. Specifically, the Kalman filter is a standard
real-time filter for motion compensation [36]. Thus, the Kalman filter can be employed to process the
angle information and in the end, a stable image sequence is acquired through image generation.
Through these steps, digital stabilization can be realized in the roll direction.

4. Experimental Results

To verify the effectiveness of the visual sensor stabilization platform, we used an experimental
platform that simulates shark-like robotic fish oscillations, as shown in Figure 5. Two servomotors
were employed to create the yaw and roll motion, respectively. They all rotated as a sine wave, with the
same frequency and different amplitudes. Two IMUs were mounted to play the roles of RW

C and RW
T .

One was used to measure the visual system angle, which was attached to the camera. The other was
utilized to estimate the central axis position of the shark-like robotic fish, which was fixed to the roll
servomotor. This platform mimicked the swimming of the shark-like robotic fish since the motion of
the pitch maneuver could be neglected.Sensors 2020, 20, x FOR PEER REVIEW 10 of 16 
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4.1. Mechanical Stabilization Experiment

The experimental process involved a move linearly, turn right, resume a linear motion, and then
this was repeated. One periodic motion was 8 seconds and the turning motion lasted for 2 s. The turning
process was controlled by constantly adjusting the central axis of the yaw servomotor. The yaw angle
was provided by an IMU fastened onto the roll servomotor. Due to the sine wave around the central
axis, the angle cannot be used as the position of the turning central axis. Thus, a rectangular window
method played an important role, and took advantage of the sine wave. The selection of the window
function length was consistent with a sinusoidal motion period, and the window kept adding the latest
angle and eliminated the oldest angle to make an average.

Within the context of the visual sensor stabilization platform, close attention was paid to the
dynamic performance including the response time. Thus, the traditional proportion differential (PD)
algorithm served as a benchmark. It was defined as

C(s) = kp + kds (25)

where kp and kd are the proportional and differential coefficient, respectively. LADRC, the switching
system, and improved LADRC were also verified to choose the best algorithm. Since the mechanical
stabilization targeted the yaw direction, the experimental results were concerned with the yaw angle.
The experiments were progressed through a frequency range of 0.5 Hz to 1.5 Hz and we found that the
higher the frequency, the greater the differences. Thus, 1.5 Hz was chosen as an example for detailed
analysis, and the results are depicted in Figure 6.
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Figure 6. Experimental results of proportion differential (PD) control, LADRC, switching system,
improved LADRC, yaw disturbance, and axis angle under the yaw sine wave disturbance with
frequency of 1.5 Hz and amplitude of 30◦, the roll sine wave disturbance with a frequency of 1.5 Hz an
amplitude of 10◦, and a turning speed of 25◦/s.

The experimental conditions and data processing were as follows. Firstly, the yaw sinusoid
amplitude was 30◦ and the roll sinusoid amplitude was 10◦. The difference between them was
determined by the actual shark-like robotic fish motion. The turning speed was 25◦/s. Then, for the sake
of the transparency of the graph, the yaw angle curve was the difference between the camera real-time
angle and the central axis angle. Consequently, the curve varied around zero, which means that the
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zero line was the target position. The axis position change and the sinusoid yaw angle disturbance
are also shown in Figure 6, as calculated by the rectangular window function. These intuitive profiles
suggest that the most suitable algorithm is the improved LADRC using the nature of the disturbance.
In addition, other objective and valuable evaluating indicators are determined by:

APR =
1
N

N∑
p=1

(
ypmax − ypmin

)
(26)

Range = ymax − ymin (27)

MAE =
1
n

n∑
i=1

∣∣∣yi − yaxis
∣∣∣ (28)

RMSE =

√√
1
n

n∑
i=1

(yi − yaxis)
2 (29)

where ypmax and ypmin are the maximum and minimum angles over a period, ymax and ymin are the
maximum and minimum angles of the whole process, yi is the yaw angle of the camera, yaxis is the
angle of the target axis, n is the number of the sampling points, and N is the number of the periods.

The specific evaluation values are listed in Table 2. APR is the average of the range of each period,
which illustrates the visual sensor platform stabilization effect and precision. MAE and RMSE are used
to judge the deviation of the actual from the ideal yaw angle. The difference between them is that
RMSE is more sensitive to unsatisfactory angles.

Table 2. Stabilization precision of visual sensor platform with different methods.

Method APR (◦) Range (◦) MAE (◦) RMSE (◦)

PD 20.0357 23.2881 7.0878 7.5673
LADRC 14.7707 38.5620 7.0657 9.5887

Switching system 16.7520 36.2005 6.8003 8.7368
Improved LADRC 15.6724 23.4746 5.6715 4.8038

Based on the obtained experimental results, the following conclusions were drawn:

• The PD method does not show any drift phenomenon, which demonstrates its outstanding
dynamic performance. The other algorithms have a significant drift when turning, which indirectly
minimizes the range. Although the tracking performance is improved with less drift phenomenon,
the excessive APR reduces this advantage.

• All of the indicators for LADRC are almost the biggest compared to the other methods. This is
mainly due to the slow response to the axis changes, which is clearly shown in Figure 6. The RMSE is
9.5887◦, which indicates that there are many obvious abnormal points. However, it is worth noting
that it has the smallest APR, which shows its better control error performance. This phenomenon
suggests that the LADRC is the best model when there is only linear motion.

• Although the switching system is slightly improved compared with LADRC, there is a significant
gap compared to the improved LADRC, and parameter tuning is more difficult. The stability
of the switching system is closely related to tuning of the parameters, which was previously
discussed in [25].

• The range, MAE and RMSE of the improved LADRC are much enhanced, compared to the
traditional LADRC. Moreover, the APR is almost the same. Thus, the effectiveness of the rational
use of disturbance is verified. In particular, the drift phenomenon is not apparent in this method,
thus excessive changes in range are avoided.
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The profiles demonstrate that the improved LADRC is the best choice, especially because of its
particular emphasis on the control error and dynamic performance, which combines the advantages of
PD and LADRC. This experiment shows the superiority of the improved LADRC algorithm.

4.2. Digital Stabilization Experiment

The purpose of this part was to reduce the distortion of the images caused by the rolling of the
fish body, and make the image sequence more conducive to target detection, tracking, and recognition.
The method of motion estimation was used to calculate the optimal motion vector based on two
adjacent frames from underwater videos [37]. The poor results that were obtained were due to
the few valid feature points, and indicated that this method was not useful for the roll maneuver.
Additionally, the complex algorithms were not applicable because of their requirements for real
time. Consequently, the motion estimation step was changed in order to focus on the roll angle of
the IMU, which was fixed on the camera [38]. The accuracy of this alternative approach should be
higher. Remarkably, the frequency of the IMUs was much higher than the frame rate of the camera.
Thus, multi-threading was utilized to ensure real-time performance. Eventually, the final stable image
sequence was obtained with the following Kalman filter and motion compensation. The vision sensor
needs to be calibrated before the experiment.

One cycle image sequence was selected to compare the results for the three cases: no stabilization,
mechanical stabilization, and the combination of mechanical stabilization and digital stabilization,
which are depicted in Figure 7. The periodic motion lasted for 0.67 seconds at a frequency of 1.5 Hz.
The symbol of the cross shape was 0.015 m in front of the camera. The resolution of the camera was
1920 × 1080 pixels. To avoid shadows after motion compensation, the image was cropped from the
center to 800 × 600 pixels. The middle picture shows the initial position, the left and right sides were
moving to the left and right of this, respectively.
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Figure 7. Comparison of the different visual sensor stabilization platform experiments. (a) The system
without mechanical stabilization and digital stabilization; (b) The pure 1-DOF mechanical stabilization
system; and (c) The system combining mechanical stabilization with digital stabilization.

Obviously, tilting, offset, and ghosting phenomenon are very pronounced when there is no
visual sensor stabilization system. The center point of the cross has vanished from the frame in the
worst case.The 1-DOF mechanical stabilization system, by contrast, has a noticeable stabilizing effect.
The center of the cross-shaped mark always shows clearly in the graphic. In addition, the degree of
tilting is also greatly improved in the visual sensor stabilization platform that combines mechanical
stabilization with digital stabilization. In general, the target detection bounding box is a quadrangle.
Thus, digital stabilization can weaken the influence of the roll disturbance, it reflects the real shape
under view, and enhances the recognition accuracy.
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4.3. Target Recognition

With regard to the ultimate goal of the visual sensor stabilization of the platform, the effectiveness
of the visual sensor stabilization system in target recognition during a part of the process was verified.
First, the system without any stabilization methods was used as a control group, while the stabilization
system constructed in this paper served as a test group. Secondly, the YOLOv3-tiny algorithm
was used based on the frame rate of the current camera, which was 30 fps although this might be
higher in the future [39]. It worked with excellent speed, and was able to meet the requirements.
The identification object was the clock, which was in the COCO database [40]. Finally, the experimental
layout is illustrated in Figure 8, in conjunction with the confidence contrast scatter diagram as shown
in Figure 9. The recognition process only exhibited objects detected with a confidence of 0.25 or higher,
and the processing time was 10 s.
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Figure 9. Confidence contrast scatter diagram, where the control group is the system without any
stabilization methods, the test group is the visual sensor stabilization system, and the first period
is stationary.

As seen in Figure 9, the number of frames recognized by the clock after stabilization was
greater than that of the system without stabilization. The reason is that the image blurring caused
by high-frequency motion reduces the accuracy of the algorithm, which means the control group is
unable to recognize the object in motion. Therefore, choosing a better visual sensor and a more suitable
algorithm can significantly improve the effect. To summarize, the visual sensor stabilization platform
described in this work significantly improved the accuracy of target recognition under the condition of
oscillatory motion.
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5. Conclusions and Future Work

This paper proposed a novel 1-DOF visual sensor stabilization platform for obtaining continuous
steady image sequences in real-time for the 3-D motion of the shark-like robotic fish. An improved
LADRC that combines DCI and LADRC was employed because it strikes a balance between the
control error and dynamic performance in practice. It takes into account the characteristics of the
disturbance and improves the performance of the LADRC. The MAE and RMSE of the improved
LADRC were greatly enhanced, and were 5.6715◦ and 4.8038◦ respectively. Furthermore, a digital
stabilization algorithm that takes advantage of IMUs was applied, which improves the effect of the roll
direction stabilization. The tilting phenomena was greatly improved. Ultimately, the effectiveness of
the visual sensor stabilization platform was verified through different experiments. In addition to the
first stationary cycle, the remaining fourteen motion cycles increased the detection rate from 2.86% to
87.86%. The obtained results offer a valuable insight into the construction of underwater visual sensing
systems, and shed light on the updated design and control of oscillatory structures for better mobility
and target tracking performance.

Ongoing and future work will focus on enhancing the algorithm stability and response speed.
With regard to digital stabilization, the IMUs data can be combined with ranging sensors, such as
ultrasonic sensors to compensate for the offset due to the disturbance. Furthermore, in the visual sensor
stabilization systems of other types of robots, the components of mechanical stabilization could be
optimized in dolphin-like swimming robots with larger interior space.
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