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Abstract: Photoacoustic imaging (PAI) combines optical contrast with ultrasound spatial resolution
and can be obtained up to a depth of a few centimeters. Hand-held PAI systems using linear array
usually operate in reflection mode using a dark-field illumination scheme, where the optical fiber
output is attached to both sides of the elevation plane (short-axis) of the transducer. More recently,
bright-field strategies where the optical illumination is coaxial with acoustic detection have been
proposed to overcome some limitations of the standard dark-field approach. In this paper, a novel
multiangle long-axis lateral illumination is proposed. Monte Carlo simulations were conducted to
evaluate light delivery for three different illumination schemes: bright-field, standard dark-field,
and long-axis lateral illumination. Long-axis lateral illumination showed remarkable improvement
in light delivery for targets with a width smaller than the transducer lateral dimension. A prototype
was developed to experimentally demonstrate the feasibility of the proposed approach. In this
device, the fiber bundle terminal ends are attached to both sides of the transducer’s long-axis and
the illumination angle of each fiber bundle can be independently controlled. The final PA image
is obtained by the coherent sum of subframes acquired using different angles. The prototype was
experimentally evaluated by taking images from a phantom, a mouse abdomen, forearm, and index
finger of a volunteer. The system provided light delivery enhancement taking advantage of the
geometry of the target, achieving sufficient signal-to-noise ratio at clinically relevant depths.

Keywords: photoacoustic imaging; illumination scheme; in vivo; mouse; Monte Carlo; linear array

1. Introduction

Photoacoustic imaging (PAI) is a technique based on the photoacoustic (PA) effect, which consists
of pressure waves generation due to the absorption of light [1–5]. Currently, laser-based PAI
systems use short-duration laser pulses (i.e., ~10−9 s) ensuring thermal and stress confinement.
As pulsed-light propagates within the target material, its absorption increases the local temperature,
causing a thermal-elastic expansion [6] and generating a pressure wave. Thus, PAI encodes the optical
absorption information into pressure waves, therefore combining optical contrast with ultrasound
spatial resolution [4].

PAI can provide physiological and anatomical information of tissues by accessing their optical,
thermal, and mechanical proprieties [5,7]. Since PA signal magnitude is temperature-dependent,
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PAI has been used, for example, to map temperature variation within tissues during hyperthermia
procedures [8–11]. Moreover, PA magnitude is proportional to the optical absorption of a chromophore;
therefore, multi-wavelength PAI is capable of identifying structures with different optical absorption
profiles [12,13]. In this context, a typical application of multispectral PAI is to estimate blood oxygen
saturation (sO2) from the relative concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin
(Hb) [14–19]. In addition, exogenous contrast agents, for example, nanoparticles and organic dyes,
can be accessed to obtain molecular PAI and for drug delivery studies [20]. PAI is frequently combined
with clinical ultrasound arrays. This approach allows simultaneously displaying conventional
ultrasound images of different modalities (e.g., B-mode and Doppler) with PAI. Different preclinical
and clinical, e.g., breast cancer [21] and joint arthritis [22,23], applications of PAI integrated with
ultrasound scanners are under investigation.

Hand-held PAI systems usually operate in reflection mode (also known as epi-mode),
where illumination and PA wave detection are arranged on the same side [24–28]. For linear
array transducers, it is common to illuminate the tissue using a rectangular optical fiber output, which
is attached to both sides of the elevation plane (short-axis) of the transducer, see Figure 1a (here
this strategy will be referred to as standard dark-field illumination, following the terminology used
in [29–32]). For this dark-field illumination scheme, when the transducer face is in contact with the
skin, light is delivered obliquely and relies on light scattering within the target to illuminate the whole
field-of-view (FOV) of the transducer. In addition, light absorption outside the imaging plane generates
PA waves that can reach the ultrasound transducer. These signals are a source of clutter, which is also
an important limiting factor to obtain PA images at deeper regions [33–35]. Different studies have
investigated, for this standard dark-field illumination scheme, light delivery optimization to enhance
PA image contrast and signal-to-noise ratio (SNR) by varying the distance between the fiber output and
the transducer and incidence angle between the light beam and the imaging plane [30,33,36–38]. In [39],
the authors verified, through Monte Carlo simulations, that the optimal illumination configuration
depends on the optical properties of the tissues under investigation. They observed that thickness and
optical scattering of skin play a major role for this optimization. Another possible strategy to optimize
light delivery is to accommodate an optically transparent spacer between the transducer and target’s
surface to deliver light directly to the tissue underneath the transducer [25,27,28,32]. Improvements
in light delivery could also be achieved by using a concave-shaped light catcher that redirects the
light reflected by the skin surface back to the tissue, improving the PA signal magnitude at higher
depths [40,41]. The aforementioned studies evaluated laser-based PAI systems. More recently, pulsed
light-emitting diodes (LED)-based PAI technique has been proposed as an interesting and cost-efficient
option [42,43]. LED-based PAI with linear array usually operates using a similar setup as shown in
Figure 1a [42,44]. The study [44] suggested that the high divergence of LED illumination decreases the
source direction dependency on PA signal compared to laser.

Since optimal light delivery to the tissue is essential to increase image depth and SNR,
custom transducers, new materials, and new strategies have been developed to explore different
illumination geometries to improve the quality of the PA image. For example, an ultrasonic transducer
fabricated on a glass substrate has an improved transparency allowing the laser beam to propagate
through the transducer’s material with low absorption, resulting in overlapped optical excitation
and acoustic detection [45]. An ultrasound transducer with a hollow central bore [46] or an optically
transparent acoustic transducer [47] could be other options to provide reflection mode illumination.
However, these approaches require an extensive redesign of the ultrasound probe and cannot be easily
integrated into standard clinical scanners. In epi-mode PAI using standard linear array transducers,
optical and acoustic fields can be coaxially arranged (see Figure 1b) by redirecting the laser beam using
an optical/acoustic coupler [48] or by using a single or double acoustic reflector to redirect the acoustic
waves [29,31,49]. Another strategy for coaxial illumination consists of a custom linear array transducer
where the optical fiber outputs and piezoelectric elements are linearly and alternately arranged [50].
These studies [29,31,48–50] showed that this illumination strategy improved light delivery when
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compared with the standard dark-field approach. In the present paper, this strategy will be referred to
as bright-field illumination, following the terminology used in [30–32,49].

An alternative illumination approach, not yet investigated in the literature, would consist of
attaching the fiber bundle terminal ends to both sides of the transducer’s long-axis (from now on we will
refer to this technique as long-axis lateral illumination), see Figure 1c. In the present paper, we propose
a long-axis lateral illumination scheme as a new epi-mode PAI strategy, where the light is delivered
within the imaging plane similarly to the coaxial arrangement. In the first part of the paper, Monte Carlo
simulations of photon propagation were used to compare light delivery for different illumination
strategies; i.e., standard dark-field, long-axis lateral, and bright-field illumination. A transparent spacer
positioned between the transducer and the tissue surface was considered for all cases. Tissues with
three different geometries were simulated; i.e., targets larger and smaller than the lateral dimension of
the imaging plane simulating the human forearm and index finger, respectively and an intermediate
situation simulating the cross section of a mouse torso where the abdomen was smaller than the image
width and the lower limbs fitted the transducer FOV. The simulations demonstrate that the lateral
illumination strategy can provide remarkably improved fluence distribution for targets smaller than
the imaging plane.
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angles. This is a similar strategy as described in [51], where a narrow laser beam scanning approach 
was proposed for a combined real-time PA-ultrasound imaging system. Then the final PA image was 
the summation of the sub-images obtained at each laser beam scanning position. 
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coupling modules usually induce important phase distortion to the PA wavefront which can reduce 
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Figure 1. (a) Standard dark-field illumination scheme to acquire photoacoustic (PA) image in reflection
mode; a rectangular optical fiber terminal illuminates the surface of the target. (b) Bright-field
illumination where the laser beam and the acoustic field are coaxially aligned. (c) Proposed long-axis
lateral illumination architecture; the variation of light incidence angle provides wide illumination to
the surface of the target.

In the second part of this paper, the development of a simple and easy way to construct a device
for long-axis lateral illumination PAI is described. This device employed a nonexpensive commercially
available bifurcated optical fiber bundle for light delivery, where no other optical components were
required. Since the setup, as shown in Figure 1c, would irradiate only a limited area within FOV,
the optical fiber bundle outputs were mounted on movable sockets arranged parallel to the imaging
plane to provide multiangle long-axis lateral illumination. The final PA image, covering the full
scan area, is then obtained by combining the PA sub-images acquired at different angles. This is a
similar strategy as described in [51], where a narrow laser beam scanning approach was proposed for a
combined real-time PA-ultrasound imaging system. Then the final PA image was the summation of
the sub-images obtained at each laser beam scanning position.

Therefore, this paper presents a novel PAI light delivery where light and sound are coaxially
illuminated. Different from other approaches with similar capability [29,31,48,49], the proposed
technique does not require an acoustic/optical coupling device. This is an advantage because these
coupling modules usually induce important phase distortion to the PA wavefront which can reduce
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image quality [32]. The light delivery device was prototyped to provide freedom to independently
choose the illumination angle, at each side of the transducer, allowing multiangle illumination planning.
To show the feasibility of the multiangle long-axis lateral illumination PAI device, images taken from
phantom, mouse abdomen, forearm, and index finger of a volunteer were analyzed.

2. Materials and Methods

2.1. Monte Carlo Simulation of Illumination Schemes

The spatial energy deposition may vary depending on the illumination scheme and target shape.
To evaluate the performance of the illumination schemes depicted in Figure 1, light transport was
simulated using the MCXLAB Matlab toolbox, which is a 3D voxel-based Monte Carlo model [52],
for three different target geometries: (i) a cylindrical target shape simulating a situation similar
to what was observed for the human index finger (lateral dimension smaller than transducer’s
width); (ii) geometry similar to the human forearm (lateral dimension larger than transducer’s width);
(iii) mouse torso as an intermediate case, i.e., part of the target was smaller (mouse abdomen), while
the lower limbs of the animal was larger than the transducer’s width.

The standard dark-field illumination scheme shown in Figure 1a, based on the setup described
in [53], was composed of two optical fiber terminals (38 mm × 1.25 mm) with the same width as the
ultrasound linear array used in the experiments of the present paper. Each terminal was positioned
so that the light beam incident angle was 20◦ and the light beams overlapped at the upper surface of
the target. For all three illumination schemes, an optically transparent spacer of 19.5 mm (i.e., water)
was positioned between the transducer and the target. For the bright-field illumination scheme
shown in Figure 1b, the laser beam was coaxial with acoustic detection. In this case, the illumination
dimension hitting the target was 38 mm × 5 mm, which is in accordance with [48]. For the long-axis
lateral illumination, Figure 1c, the fiber optic bundle terminals were circular in shape with 5 mm
diameter. To illuminate the entire transducer FOV, the same multiangle illumination strategy used
for the experiments (see next sections for a detailed description) were adopted in the simulations.
We verified that at least 5 laser beam incident angles were necessary to ensure a complete illumination.
In this case, all simulation parameters were the same as the experimental setup. A total of (5.0 × 106)
photons were used to simulate each situation.

The volume dimension for all simulations was 89 mm × 60 mm × 30 mm with a voxel size of
0.25 mm. The volume consisted of two different materials, the background (water) and an inclusion
(target) to simulate the tissue. The optical proprieties of the background were: absorption coefficient
µ

bkg
a = 3.5640× 10−5 mm−1, scattering coefficient µbkg

s = 1.0 mm−1, gbkg = 1, and ηbkg = 1.37; where g
denotes the anisotropic factor and η denotes the refraction index. For the target, the optical scattering
and optical absorption coefficients were chosen for a generic tissue, following the equations [54]:

µ′s = a(λ/500nm)−b, (1)

µa = BOµHbO2
a + B(1−O)µHb

a + Wµwater
a + Faµ

lipid
a (2)

where µ′s denotes the reduced scattering coefficient, µa denotes the absorption coefficient, B denotes
the average blood volume fraction, O is the oxygen saturation of blood, W is the water content, and Fa

is the fat content. Selecting a generic tissue composed of 15% of blood at 75% of oxygen saturation,
20% of water, and 10% of fat results in µtissue

a = 0.062 mm−1 at 800 nm. The a and b values were
chosen as the mean values estimated for soft tissues (a = 1.89 mm−1, b = 1.286) [54] resulting in
µ′tissue

s = 1.033 mm−1 at 800 nm. The anisotropic factor (gtissue) and the refraction index (ηtissue) were
0.95 and 1.37, respectively.
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2.2. Device for Multiangle Long-Axis Lateral Illumination

The PA system is composed by an Nd:YAG Laser (Brilliant B, Quantel Laser, Les Ulis, France)
and an Optical Parametric Oscillator (MagicPRISM OPO, Opotek, Carlsbad, CA, USA) connected to a
trifurcated optical fiber bundle (Oriel Glass Fiber Optic Bundle; numerical aperture 0.56; core diameter:
7.9 mm (common), 5.5 mm (legs); fiber length 36 in; Newport, Irvine, CA, USA). One terminal end of
the optical fiber bundle was connected to the sensor of an energy meter (FieldMax II-TOP, Coherent,
Santa Clara, CA, USA) providing the measurement of laser fluence in real-time. The other two terminals
were used to illuminate the sample. PA and ultrasonic radiofrequency (RF) data were acquired using a
commercial ultrasound system (SonixOP, Ultrasonix Medical Corp., Richmond, BC, Canada) connected
to a parallel acquisition receiver module (SonixDAQ, Ultrasonix Medical Corp., Richmond, Canada),
operating at a sampling frequency of 40 MHz.

The device for multiangle long-axis lateral illumination was developed using a new architecture
that differs from most used configurations presented in previous studies [9,23–26,33–38]. The optical
fiber bundle terminal ends were attached to movable sockets placed on the lateral sides of the
transducer’s long-axis (see Figure 1c), so that different focal illumination spots within the transducer
FOV could be obtained by varying the incident laser beam angles (see Figures 2 and 3).
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Figure 3. Depiction of the experimental setup used to acquire the multiangle long-axis lateral
illumination PA images. The distance of 19.5 mm between the transducer and the phantom surface
forces the focal illumination region to be at the phantom surface for θi = 0◦.

The device consists of three main parts: the ultrasound transducer support, the motion transmission
system, and two motors. The support and the motion transmission system were designed using the
FreeCAD open-source parametric modeling software, see Figure 2a, and printed with Acrylonitrile
Butadiene Styrene (ABS) plastic using a 3D printer (ZMorph 2.0 SX, ZMorph, Wroclaw, Poland),
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as shown in Figure 2b. The angle of the movable sockets is controlled by the servo motors (MG996R,
Tower Pro, Shenzhen, China) connected to the motion transmission systems and controlled by an
open-source microcontroller (Arduino UNO, Arduino, Turin, Italy).

A linear L14-5/38 ultrasound transducer (Ultrasonix Medical Corp., Richmond, Canada) with 128
piezoelectric elements and a nominal center frequency of 7.2 MHz, was positioned inside the support,
which was then attached to the 3D linear stage (HSC-103, Sigmakoki, Tokyo, Japan). A LabVIEW
virtual interface (National Instruments Corp., Austin, TX) was developed to control the position of the
device as well as the illumination angles. The timing sequence of the synchronous RF data acquisition
and multiangle illumination consists in acquiring a pair of PA and B-mode images for each laser pulse
(laser repetition rate is 10 Hz). After K laser pulses (K·100 ms) the illumination angle is incremented, the
process is then repeated for n illumination angles. A 3D volume is obtained by moving the transducer
along the elevation axis with a 3-axes translational stage.

2.3. Coherently Summing the PA Subframes

The RF data were acquired intercalating the laser pulse with the pulse-echo transmission for
obtaining a prebeamformed PA subframe and then a prebeamformed B-mode frame. The PA sub-image
and B-mode image were generated with the delay and sum technique. In PA images, the RF signal s(xi, t)
represents the pressure waves generated by the light absorbers and detected by the i-th transducer
element. The PA wave time of flight from the absorber position to each element of the array is

δ(x, xi, y) =
√

y2 + (x− xi)
2/c (3)

where x and y are the lateral and axial position of the pressure wave source, respectively, while xi
denotes the lateral distance of the i-th element of the array to the central element. The delay and sum
technique for PA subframe reconstruction consists in applying a delay δ(x, xi, y) to the RF signal s(xi, t)
detected by the elements of the transducer and adding coherently [51]

S(x, y) =
∑x+α

x−α
s(xi, δ(x, xi, y)) (4)

where α is the aperture of receive beamforming, i.e., the number of adjacent elements summed.
The coherent sum of reconstructed PA subframes acquired using each illumination angle,

without other processing steps, is equivalent to a reconstructed PA image acquired using a wide
illumination due to the linear behavior of the delay and sum operation (Huygens–Fresnel principle) [51].
Thus, PA signals reconstructed using the delay and sum technique can be coherently added to gather
the contribution of each illumination angle as:

SC(x, y) =
∑θn

θ0
Sθi(x, y), (5)

where Sc(x, y) is the reconstructed RF signal coherently summed (PA final image), Sθi(x, y) is the
reconstructed RF signal acquired at the i-th illumination angle (PA subframe), θn is the maximum
illumination angle.

2.4. Phantom Experiments: Evaluation of Multiangle Long-Axis Lateral Illumination PAI

A cubic phantom with a homogeneous distribution of light absorbers (magnetic nanoparticles)
was used to evaluate the multiangle illumination and the PA images. The phantom dimensions were
8.0 cm × 8.0 cm × 3.5 cm, and it was manufactured using a mixture of gelatin (Bloom 250, Gelita,
Eberbach, Germany) and agar powder (RM026; Himedia Laboratories-LLC, Kennett Square, USA),
diluted at dry-weight concentrations of 4% and 2% of water mass, respectively. Iron oxide nanoparticles
(Fe3O4) with dimensions ranging from 20 nm to 30 nm (Nanostructured and Amorphous Materials Inc.,
Houston, TX, USA) in the concentration of 0.1% of water mass were added to act as light absorbers.
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Formaldehyde in a weight concentration of 0.5% of gelatin mass was added to increase stiffness and
melting temperature. The phantom was manufactured according to the description in [55,56].

To avoid any coupling issues, the experiments were performed using targets immersed in water
to guarantee that the gap between the ultrasound transducer and the target was completely filled by an
optically transparent coupling medium. However, we believe it would be possible to acquire images
using a matching layer. For example, this layer could be ultrasound imaging gel (see, for example, [57])
or a gel pad (see, for example, [58]). This is a topic of ongoing research and should appear in
future publications.

The phantom was immersed in a water tank with its surface 19.5 mm from the transducer face.
For this condition, the focal illumination region was at the phantom surface for θi = 0

◦

, considered as
the smallest possible angle (see Figure 3). Then, for each illumination angle, two PA subframes were
acquired and the angle was varied n times in steps of ∆θ until the n-th angle was achieved

θn = θmin + n∆θ. (6)

The device moved across the elevation axis to obtain a volume (Table 1), resulting in a total of 360
frames. The PA images were acquired at 720 nm with an average fluence of 15 mJ/cm2 at the phantom
surface. This wavelength was selected for the phantom experiment because one of the energy peaks of
the laser is observed at 720 nm; in addition, iron oxide nanoparticles present higher optical absorption
at lower wavelengths within the near infrared spectrum region [59]. For the in vivo experiments,
800 nm was selected because it is the isosbestic point of blood [60].

Table 1. Multiangle illumination and acquisition parameters.

Parameters Phantom Finger and Forearm Balb/C Mouse

Angle step 2◦ 4◦ 4◦

Elevation step 2 mm 2 mm 2 mm
Image axial 45 mm 35 mm 35 mm

Image lateral 38 mm 38 mm 38 mm
Number of angle steps (n) 9 4 4
Number of elevation steps 19 9 5

Number of frames per angle (K) 2 2 2
Wavelength 720 nm 800 nm 800 nm

The phantom was assumed to have a homogeneous distribution of light absorbers; the optical
attenuation coefficient was calculated measuring the fluence of transmitted light through the layers
of the phantom with different thickness. The estimated light attenuation of the phantom was
µatt

phantom = (0.133± 0.011) mm−1. Therefore, an analysis of the light delivery was performed by
evaluating the PA signal as a function of axial and lateral directions of an averaged PA image taken
over the elevation axis. Since the magnetic nanoparticles at low concentration, which is the case of the
present experiment, mainly absorb the light energy, optical scattering was considered negligible for
this analysis [59].

We defined image depth as the axial distance between the position of a RF signal inside the target
and the target surface, therefore not considering the distance between the transducer face and target
surface. The average RF signal of the PA subframes at depths and in lateral direction were evaluated
using distinct regions of interest (ROI). Based on the number of elements of the transducer (i.e., 128
elements), we defined a central ROI-1 within FOV, which included the five central elements (62–66)
and extended from the phantom surface to the maximum depth, with dimensions 1.5 mm × 25.5 mm.
Also, peripheral ROIs (ROI-2 and ROI-3) were defined including two sets of five elements positioned
at opposite sides of transducer elements: 5–9 (ROI-2) and 119–123 (ROI-3). ROI-2 and ROI-3 had the
same dimensions as ROI-1. In addition, the average PA signal magnitude, in the lateral direction from
0 mm to 2 mm of depth, was calculated for all elements (1–128).
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Since the phantom had a homogenous distribution of light absorbers, the PA signal amplitude
was related to the amount of light delivered. The quantitative analysis of illumination, in the ROI-1
region, as a function of illumination angle was performed using the mean square root of the RF signal
amplitude (ARMS) calculated in each PA subframe:

ARMS(θ) =

√√√∑xb
j=xa

∑yb
i=ya

(
Sθ

(
x j, yi

))2

(yb − ya)(xb − xa)
(7)

where xa, xb, ya, and yb are the limits of the ROI-1.
The spatial light delivery information, in the central region of the final PA image, was estimated

taking the mean axial position of the RF signal (y ) as a function of illumination angle in ROI-1

y(θ) =

∑xb
j=xa

∑yb
i=ya

(∣∣∣∣Sθ(x j, yi
)∣∣∣∣yi

)
∑xb

j=xa

∑yb
i=ya

(∣∣∣∣Sθ(x j, yi
)∣∣∣∣) (8)

Thus, ARMS provides information about the mean amount of light delivered per illumination
angle in the central region of the transducer while y provides spatial information about the mean axial
position of generated pressure waves.

The final multiangle PA image SNR was calculated taking the envelope-detected image
amplitude [61]:

SNR =
∑

i

∑
j

[
SH

(
xi, y j

)
− SnH

]
/σnH (9)

where SH is the Hilbert transform modulus of the RF signal (SH = |H{SC}|), SnH and σnH are the average
and standard deviation of the background noise in SH, respectively.

2.5. In Vivo Experiments: Human (Finger and Forearm) and Animal (Balb/C Mouse)

The index finger of the left hand and left anterior forearm of a human volunteer were
photoacoustically imaged using multiangle PAI with illumination parameters according to Table 1.
Figure 4a shows photographs of the index finger and forearm where the dashed lines indicate the
position and orientation of the transducer. The volunteer immersed his hand and forearm in a water
tank; the distance between the transducer face and the skin was chosen so that the laser beams were
focused at the skin surface when illumination angle was minimum (θi = 0◦). The experiments were
performed using an average fluence of 9.0 mJ/cm2 at 800 nm, obtaining a total of 90 frames.
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in vivo PA images of Balb/C mouse.
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A male Balb/C mouse, at the age of ten weeks, was anesthetized using vaporized isoflurane
(1.0–1.5% isoflurane, Vetflurano, Virbac, São Paulo, Brazil). The animal was positioned in a ramp
platform immersed in water with a controlled temperature of 36 ◦C, as shown in Figure 4b. Using
the same wavelength and fluence of the human experiment, PA images of the animal abdomen
were acquired.

The experiments involving humans and animals used controlled fluence lower than 20.0 mJ/cm2,
considering the limit for short-pulse lasers at the skin, which is defined by the American National
Standards Institute (ANSI). The animal procedures were approved by the Animal Ethical Committee
of Ribeirão Preto Medical School, University of São Paulo (process No. 005/2017-1). The experiments
with the volunteer were conducted according to the procedure approved by the Research Ethical
Committee of Faculty of Philosophy, Science, and Letters of Ribeirão Preto, University of São Paulo
(CAAE: 08860819.4.0000.5407).

3. Results and Discussion

3.1. Comparison of Illumination Schemes for Different Target Shapes Using Monte Carlo simulation

Monte Carlo simulations were conducted to analyze the influence of the target shape and
illumination scheme on light delivery. Figure 5 shows the normalized fluence maps obtained for all
illumination strategies. Figure 5a–c,e–g show the results for the cases where the target is larger and
smaller than the image width, respectively. Figure 5i–k show an intermediate situation representing a
mouse torso. In this case, the geometry was obtained by segmenting an experimental B-mode image
which will be shown in the next sections. Figure 5a,e,i show the results obtained for multiangle
long-axis lateral illumination, while in Figure 5b,f,j, the results for the bright-field illumination coaxial
with acoustic detection are shown. Finally, Figure 5c,g,k show the results obtained using the standard
dark-field illumination scheme. In these images, ROIs were used to compare the light fluence for
different spatial locations (white square is ROI-A; black square is ROI-B and magenta square is ROI-C).
Figure 5d,h,l show bar graphs comparing the average fluence estimated within ROIs A, B, and C.

In the central region, all illumination schemes presented similar relative fluence at a shallow depth
(ROI-A); yet, to some extent it was consistently higher for the bright-field illumination independent of
the target shape. For targets with a nonflat surface, the focus region of the two laser beams used in the
standard dark-field arrangement can be partially outside of the material and imaging plane as can
be seen on the left side of Figure 6. The light delivered outside of the imaging plane contributes less
to the PA image generation and can be a clutter source [62]. In this case, both situations, bright-field
and long-axis lateral illumination, have the advantage of delivering light inside the imaging plane
even when the target’s surface is not flat. For this reason, the average fluence within ROIs B and C,
located at higher depths, was consistently lower for the standard dark-field illumination scenario. It is
important to recall that the light beams used for the standard dark-field were overlapping at the tissue
surface. Other studies have shown that light delivery can be increased at higher depths, by using
a deeper located illumination focus [30,37,38,53]. However, this strategy can dramatically decrease
light delivery at shallow depths. For example, the study [48] showed that by positioning the focus at
13.5 mm depth, the simulated fluence estimated for the standard dark-field optical illumination was
considerably lower than what was estimated for the bright-field illumination scheme at depths lower
than 10 mm.

For targets smaller than the images’ lateral dimension, the long-axis lateral illumination can deliver
light to the sides of the target, increasing the penetration of light inside the material, which is depicted
at the right side of Figure 6 and can be observed in the Monte Carlo simulation results. Moreover,
the long-axis lateral illumination redirects the light to the target while part of the bright-field and
standard dark-field illumination schemes do not contribute to PA signal generation. The simulations
show that the relative fluence obtained with multiangle long-axis lateral illumination was dramatically
improved for the case of a cylindrical geometry with a diameter smaller than the width of the
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ultrasound probe, which is a similar situation as the human finger as will be described in the next
sections. Figure 5h shows that the average fluence for the long-axis lateral illumination scheme,
measured within ROI-C, was four times higher than fluence delivered by the bright-field illumination
and one order of magnitude higher compared to the dark-field illumination scheme.

For a target that combines parts smaller and parts larger than image width, as the mouse’s
torso, both long-axis lateral and the bright-field illumination schemes provided a relatively uniform
light delivery to the entire target surface. On the other hand, the light delivered by the standard
dark-field illumination was considerably higher at the top surface. For this situation, the long-axis
lateral illumination provided a little increment of fluence within ROI-C compared to the bright-field
illumination scheme.

The next two sections aim to evaluate the feasibility of generating PA images using the long-axis
lateral illumination scheme. First, the device and the multiangle imaging strategy are evaluated with a
phantom experiment; then the possibility of generating the PA images, in vivo, of targets with similar
geometries adopted for the simulations are verified.
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smaller (e–g) than the image width. An intermediate situation representing a mouse torso was also
considered (i–k). All cases were simulated for the bright-field, standard dark-field, and long-axis lateral
illumination schemes. Average fluence values were estimated within regions of interest (ROIs) A, B,
and C for all cases (d,h,l).
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Figure 6. Comparison between the standard dark-field illumination scheme and the multiangle long-axis
lateral illumination. For targets larger than the image width with a nonflat surface, the long-axis lateral
and the bright-field illumination schemes have the advantage of delivering light within the imaging
plane. For targets smaller than the transducer width, the long-axis lateral illumination scheme can
deliver light to the sides of the target.

3.2. Analysis of Illumination Angles Contribution to the PA Image of the Phantom

The homogeneous phantom with a flat surface is useful for the characterization of light delivery
using different illumination angles. To evaluate the light delivered to the phantom, each PA subframe
at θi is represented as the average of the 19 PA subframes acquired at different positions of elevation
axis (slice) using the same i-th illumination angle. The averaged PA subframes in Figure 7 shows the
light propagation along depth. The blue arrows indicate the PA signal generated beyond the laser focal
region for the illumination angles 0◦, 2◦, and 4◦. This observation can be understood as an advantage
of providing illumination from the laterals of the transducer, therefore generating PA signals within
FOV for regions not only at the focus. However, the amplitude of the PA signal is a function of the
illumination angle, because the laser focus region moves towards higher depth, while the light path
increases, reducing the fluence due to light attenuation.

PA signal magnitude increased for depths greater than 10 mm and illumination angles higher than
8◦, as it can be seen in Figure 8a. Although illumination along the peripheral areas of the transducer
is mostly achieved by just one of the optical fiber outputs, the incident angle of the laser beam in
this region decreased relative to the normal surface, delivering light at higher depths, as shown in
Figure 8a,b. Moreover, the average PA signal showed the separation of laser beams along the lateral
direction; see Figure 8c.
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Figure 7. PA subframes of the homogeneous phantom for increasing illumination angles in the range
0◦–18◦. Each subframe is an average of the phantom’s elevational dimension (i.e., 3.8 cm). Blue arrows
indicate the generation of PA signals beyond the laser focal region.
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Figure 8. Average PA signal as a function of the illumination angle, along the axial direction at (a) central
(ROI-1) and (b) peripheral ROIs (ROI-2 and ROI-3); (c) average PA signal magnitude along lateral
direction for depths ranging from 0 mm to 2 mm.

The analysis of the ARMS at the central region revealed a proportional decrease in the amount
of light delivered for angles higher than 4◦, which is probably related to light attenuation within the
phantom (Figure 9a). Besides, a peak of maximum ARMS could be observed for θi = 4◦, showing that
the maximum light delivery to the central area occurred when the laser focus region was completely
inside the phantom, where the light was less attenuated (shallow depths). These results show the
contribution of illumination using θi < 4◦ was less significant for the image of the phantom. In addition,
the mean depth of the PA signal increased as a function of the illumination angle (Figure 9b), which
could be qualitatively inferred from the plots in Figure 8a.

The final PA image was obtained from the summation of the PA subframes at different illumination
angles. For example, a PA image of a single image slice of the phantom is shown in Figure 10a.
The average PA signal calculated at depths ranging from 0 mm to 25.5 mm for all elements of this PA
image showed the contribution of all illumination angles; see Figure 10b. Figure 10c shows SNR as a
function of depth demonstrating the multiangle long-axis illumination PA imaging could be used to
perform studies at relevant imaging depths.
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3.3. In Vivo PA Images

Different in vivo experiments were conducted to evaluate the multiangle long-axis lateral
illumination PAI. The first in vivo PA images were acquired from a human forearm. In this case, the
shape of the surface was larger than the long-axis dimension of the transducer, providing similarities
with the flat surface of the phantom and the simulation study. The anatomical structures of the human
forearm such as palmaris longus tendon, subcutaneous blood vessels, and epithelial tissue could be
identified in the B-mode image as well as in the PA image, as it can be seen in Figure 11a,b. SNR was
calculated within two ROIs of 2.4 mm × 1.6 mm in the axial and lateral dimensions, respectively. For the
in vivo evaluation, noise ROIs, with the same dimensions, were positioned within 5 mm distance from
the structure under analysis. At a tissue depth of 7.3 mm, ROI overlaid the tendon of flexor digitorum
superficialis [63] and provided SNR = 14 dB (green rectangle in Figure 11a), while another ROI overlaid
a subcutaneous blood vessel and provided SNR = 25 dB at a 2.5 mm tissue depth (cyan rectangle in
Figure 11a). Differences in the SNR values between deep and shallow regions were mostly due to light
attenuation; the tendon (collagen) also presents an optical absorption coefficient lower than those for
melanin or hemoglobin at 800 nm [64], which reduced its SNR on the PA image.

The second acquisition of PA images was obtained from the human index finger, which has a
cylindrical-like shape that differs from the forearm or phantom’s surface and has a maximum lateral
extension of approximately 20 mm. However, the finger cross-section lateral dimension is smaller than
the lateral FOV, allowing illumination from laterals to be more efficient. Consequently, the laser focus
becomes deeper while the light path within the tissue is shortened, reducing the light attenuation.
SNR was analyzed within ROIs of 2.0 mm × 3.0 mm in the axial and lateral dimensions, respectively.
Those ROIs were placed over the location of the dorsal and palmar digital arteries at 3.4 mm (cyan
rectangle in Figure 11c) and 10.3 mm tissue depths (green rectangle in Figure 11c), resulting in SNR of
22.5 dB and 22 dB, respectively.

Lastly, a challenging combination of both aforementioned surface shapes was observed when
acquiring the PA image of the cross-section of the mouse abdomen. The abdomen had a lateral
dimension smaller than the lateral length of the transducer, while the lower limbs fit FOV. In this case,
illumination angles provided light delivery to the sides of the mouse abdomen and hit the surface of
lower limbs obliquely. Furthermore, the mouse skin has an average thickness of 0.5 mm and optical
absorption lower than human skin [65], increasing light penetration. In the B-mode image of the mouse,
the bladder, femoral artery, and a branch of the abdominal aorta can be identified [66]. PA signals from
the femoral artery were evaluated at 1.3 mm (cyan rectangle in Figure 11e) and the aortic branch at
10.5 mm of depth (green rectangle in Figure 11e) presenting SNR = 21.5 dB for the femoral artery and
SNR = 17.5 dB for the aortic branch (ROIs of 2.0 mm × 2.8 mm).

For three among the most studied PA targets in biomedical applications, the multiangle long-axis
lateral illumination was able to provide PA images with high SNR at a depth of 10.5 mm for target
shapes with lateral extension smaller than the lateral length of transducer (mouse and index finger).
In the human forearm, a tendon at depth of 7 mm generated PA signal with sufficient SNR for good
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visualization of the structure. However, it should be mentioned that the in vivo PA images were
acquired using a measured laser fluence of 9 mJ/cm2, which is much lower than the limit for short-pulse
laser at the skin. Increasing the laser fluence to values close to the safety limit can improve SNR of PA
images at greater depths.
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Figure 11. In vivo multiangle long-axis lateral illumination PA and B-mode images. (a) PA image and
(b) B-mode image of the human forearm, anatomical structures such as tendons and subcutaneous
blood vessels can be identified; (c) PA image and (d) B-mode image of the human index finger, the
cylindrical shape allows light delivery by the laterals promoting the visualization of the palmar digital
artery at depth of 10.3 mm. (e) PA image and (f) B-mode image of the Balb/Cmouse abdomen, PA signal
from an aortic branch at 10.5 mm of depth can be visualized.

Figure S1 shows the subframes acquired at each illumination angle for the in vivo experiments
and plots with the corresponding SNR for ROIs positioned at the selected structures (vessels and
tendon). The pronounced variation in the SNR values across the subframes acquired at different angles
is evident. Clearly, SNR, at each ROI, observed for the final PA image is similar (only slightly higher)
to that subframe with the highest SNR where the illumination area comprised the structure of interest.
In the case of combining N PA images at the same illumination angle, it is expected that the SNR will
be increased by

√
N, which would be higher than SNR obtained with the multiangle approach for a

particular ROI. A more concentrated illumination in the proposed approach, when compared to the
techniques illustrated in Figure 1a,b, can also help improve SNR at specific locations of the image.
This concept has been also explored in other studies [51,53].

Multiangle long-axis lateral illumination could be a useful approach to improve the quality of
PA images in preclinical studies with mice, since important anatomic structures are smaller than the
FOV. Even for higher frequency linear arrays with a width smaller than the probe used here, murine
tumor models still fit in this category [53]. In [53], the authors demonstrated that improving light
delivery for this situation can greatly improve PA image quality. Since PA images taken from the
human finger joint has shown great potential to evaluate inflammatory arthritis [22,23], it is a possible
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clinical application where the proposed technique could be beneficial. Future studies will include:
(i) evaluating multi-wavelength PA images and fluence correction strategies [57] to monitor blood
oxygen saturation and (ii) evaluate the feasibility of using a high divergent source like LED [44] to
reduce the number of illumination angles.

Since the pulse repetition frequency of the laser (LPRF) is 10 Hz, the in vivo images of the present
study were acquired at a frame rate of 1 frame per second. Each image was composed of two subframes
per angle and five different angles were used. The maximum frame rate for this configuration is two
frames per second if a single frame was acquired per angle. To acquire the full transducer FOV, a few
subframes acquired at different angles are needed; therefore, the frame rate for the proposed technique
will be lower than that obtained for the configurations shown in Figure 1a,b. This is a limitation of
the proposed approach, especially for the cases where the illumination source operates at low PRF as
the laser used in the present study (LPRF = 10 Hz) and monitor fast-changing dynamics is the goal.
However, for lasers working at higher repetition rate (LPRF ~ 100 Hz), see, for example, [67]) this
limitation can be minimized and the frame rate can be increased. The maximum LPRF supported by
the setup depends of the angular velocity of servomotors (ωs), and the step angle (∆θ): LPRF = ωs/∆θ.
The servomotors used in the setup can take 0.2 s to rotate the fibers output from 0◦ to 60◦, resulting in
a maximum angular velocity of ωs = 5.2 rad·s−1 when operating at 5 V. In this case, the setup could
acquire PA subframes using = 75 Hz with ∆θ = 4◦ and provide 15 frames per second when five
illumination angles are used.

The present paper introduced and evaluated the feasibility of the multiangle long-axis lateral
illumination to generate PA images, contributing to the development of new illumination strategies in
PAI. An advantage of the setup presented here is that it could be additive to other existing illumination
schemes. Light delivery by the laterals of the target could be used together with more conventionally
used illumination schemes to improve light delivery to targets with lateral dimension smaller than the
transducer’s width. The concept of PA images acquired using multiangle illumination can also be
applied to setups with similar design as described in [37,38], where the angle of incident light delivered
by transducer’s short-axis can be controlled.

4. Conclusions

This paper demonstrated the feasibility of using a novel multiangle long-axis lateral illumination
PAI. Monte Carlo simulations compared light delivery to tissue for three different illumination
schemes: bright-field, standard dark-field, and long-axis lateral illumination. Illumination schemes
performance were evaluated for three preclinical and clinically relevant cases for PAI. The shape of the
target influenced light delivery for all illumination schemes. Long-axis lateral illumination provided
substantial improvement when targets smaller than the lateral width of the transducer were evaluated.
The prototype developed to produce multiangle long-axis lateral illumination was evaluated with
phantom and in vivo experiments. PA images of good quality were generated from mouse abdomen,
forearm, and index finger of a volunteer. Based on the results presented here, a novel PAI system
was proposed for preclinical and clinical research. In addition, long-axis lateral illumination could be
used together with more conventional illumination schemes to improve light delivery in reflection
mode PAI.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/14/4052/s1,
Figure S1: Subframes acquired at each illumination angle used to generate the in vivo PA images shown in
Figure 11 of the main article for the (a) forearm, (c) index finger, and (e) mouse abdomen. SNR as a function of
illumination angle for each subframe of selected structures located at the (b) forearm, (d) index finger, and (f)
mouse abdomen.
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