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Abstract: Disease diagnosis is a critical task which needs to be done with extreme precision. In recent
times, medical data mining is gaining popularity in complex healthcare problems based disease
datasets. Unstructured healthcare data constitutes irrelevant information which can affect the
prediction ability of classifiers. Therefore, an effective attribute optimization technique must be
used to eliminate the less relevant data and optimize the dataset for enhanced accuracy. Type 2
Diabetes, also called Pima Indian Diabetes, affects millions of people around the world. Optimization
techniques can be applied to generate a reliable dataset constituting of symptoms that can be useful for
more accurate diagnosis of diabetes. This study presents the implementation of a new hybrid attribute
optimization algorithm called Enhanced and Adaptive Genetic Algorithm (EAGA) to get an optimized
symptoms dataset. Based on readings of symptoms in the optimized dataset obtained, a possible
occurrence of diabetes is forecasted. EAGA model is further used with Multilayer Perceptron
(MLP) to determine the presence or absence of type 2 diabetes in patients based on the symptoms
detected. The proposed classification approach was named as Enhanced and Adaptive-Genetic
Algorithm-Multilayer Perceptron (EAGA-MLP). It is also implemented on seven different disease
datasets to assess its impact and effectiveness. Performance of the proposed model was validated
against some vital performance metrics. The results show a maximum accuracy rate of 97.76% and
1.12 s of execution time. Furthermore, the proposed model presents an F-Score value of 86.8% and a
precision of 80.2%. The method is compared with many existing studies and it was observed that
the classification accuracy of the proposed Enhanced and Adaptive-Genetic Algorithm-Multilayer
Perceptron (EAGA-MLP) model clearly outperformed all other previous classification models. Its
performance was also tested with seven other disease datasets. The mean accuracy, precision, recall
and f-score obtained was 94.7%, 91%, 89.8% and 90.4%, respectively. Thus, the proposed model can
assist medical experts in accurately determining risk factors of type 2 diabetes and thereby help in
accurately classifying the presence of type 2 diabetes in patients. Consequently, it can be used to
support healthcare experts in the diagnosis of patients affected by diabetes.

Keywords: diabetes; classification; attribute optimization; genetic algorithm; classification accuracy;
F-Score; mutation; fitness function

1. Introduction

Type 1 and type 2 are two primary categories of diabetes which are affecting people throughout
world. Both these types are chronic. Persons affected with type 1 diabetes are unable to generate
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insulin while individuals detected with type 2 diabetes fail to respond to insulin and in the long run
cannot produce insulin. Pima Indian Diabetes is a potentially life threatening disease that may create
serious worldwide havoc. Type 2 Diabetes is also referred to as Pima Indian Diabetes. It can have
serious complications on our heart, kidney and eyes. As per the International Diabetes confederation,
382 million people are affected with this disease worldwide. By 2035, this figure may get doubled to
592 million [1]. Determining factors and symptoms of diabetes during initial phase is of the utmost
importance. Diabetes treatment concentrates on controlling glucose levels to avert different side effects
and entanglements through the solution, eating regimen and exercise. This disease, if not treated
legitimately and on timely basis, can create intense entanglements and even loss of life [2,3]. Due to
the rapid rise in diabetic cases and increased complexity in massive data records of diabetic patients,
it is becoming increasingly difficult for medical experts to provide effective treatment manually [4].
Hence for better diagnosis of a diabetic patient, medical data mining can be successfully implemented
since it enables the detection of diabetes in an earlier stage. Data Classification technique can be used
to categorize diabetes patients from non-diabetic ones. Nevertheless, certain irrelevant and ambiguous
Attributes exist in raw unstructured disease datasets. Due to the presence of such Attributes, the overall
efficiency of classification in data mining is affected. Consequently, an effective attribute optimization
method can be used to eliminate these less relevant data and generate an optimized dataset with vital
symptoms which can be accurately mined using a suitable classification algorithm [3]. The attribute
optimization method acts as an optimizing agent, which can be successfully applied to massive and
complex datasets to reduce the sample size without compromising any critical data. Therefore, attribute
optimization minimizes the execution time and improve the effectiveness of classification.

The treatment of diseases starts with the proper identification of the symptoms. To deal with
a widespread disease like diabetes, the detection of its symptoms on time is essential. In a disease
like diabetes, various risk factors are involved and moreover data instances consist of missing values,
redundant values and other inconsistencies. As a result, sometimes even with lesser data samples
detecting important symptoms become difficult. If correct symptoms are not selected, then it affects
the performance in prediction and classification. Overall the disease diagnosis is affected. In a
diabetic patient, some common symptoms include increased thirst, frequent urination, increased
hunger, unintended weight loss, fatigue, blurred vision and slow healing sores. There are presence of
missing values and duplicate values in the dataset under consideration, which needs to be removed.
An attribute selector can be used to handle this issue. The core purpose of our study is to discuss a
new attribute optimization model which is based on genetic algorithm to help in precise identification
of relevant symptoms which can be used to predict the likelihood of a person getting affected with
diabetes in future. Based on the recorded readings of symptoms, a person can be notified and alerted
about a possible occurrence of diabetes in future. Then on basis of the relevant symptoms obtained,
effective classification can be carried out to determine the presence of diabetes. Thus, it provides
an accurate and fast diagnosis of type 2 diabetes. Hence the primary contribution of this study is
to present the development and implementation of an Enhanced and Adaptive Genetic Algorithm
(EAGA) to be used on diabetes dataset and then using Multi-layer Perceptron (MLP) model to classify
between diabetes and non-diabetes patients. The purpose of the work is to make early diagnosis of
type 2 diabetes based on symptoms observed in patients seeking medical help. Based on symptoms
seen in patients, our proposed classification model can assist medical experts to differentiate diabetic
from non-diabetic patients so that appropriate medical attention is provided to them at an early stage.

The Pima Indian Diabetes (http://networkrepository.com/pima-indians-diabetes.php) dataset is
used in this work. Our analysis provides a positive impact of attribute optimization on the diabetes
dataset, which can assist the healthcare professionals to determine the presence of diabetes in patients
on the basis of their symptoms. The presented attribute optimization technique is an adaptation of
the genetic algorithm method. A different initial solution space is taken with a new and improved
adaptation of crossover and mutation phase in a genetic algorithm. A new variation of the fitness
function is developed and used in the study. The new enhanced attribute optimization method is
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named Enhanced and Adaptive Genetic Algorithm (EAGA). The Genetic Algorithm is related to the
idea of “survival of the fittest” and it imitates the process of Natural Selection. These algorithms are
effective in determining solutions related to search and optimization problems. It operates on three
basic principles of nature, which include selection, crossover and mutation. These operations are run
in a loop until specific conditions are satisfied. The steps of GA are highlighted in Figure 1.

Figure 1. Overview of Genetic Algorithm.

This algorithm generates an optimized diabetes dataset which is further partitioned into 60%
training set and 40% testing set. The MLP (Multi Layer Perceptron) is the classifier used in our research
study. The classification model is first trained and then it is evaluated with the testing set using specific
performance metrics like accuracy rate, precision and recall.

This paper is arranged into different distinct sections. The Section 2 presents a literature survey
where several vital existing works related to diabetes prediction and analysis using various algorithms
and models are highlighted. The Section 3 is the core part of the study. It presents the methodology,
where the Pima Indian diabetes dataset details are provided and the proposed technique of attribute
optimization and classification is outlined with a diagrammatic explanation. Several pseudo-codes of
the different steps are presented. Then the Section 4 illustrates an experimental demonstration of our
proposed model with simulation results. The Section 5 analyses the results obtained in work along with
its inferences. Finally, the paper is concluded with the main findings and analysis of implementation
in the Section 6.

2. Literature Review

Several research works are being carried out by different authors for the effective treatment of
diabetes using machine learning. In this section, relevant similar works on diabetes analysis and
prediction are discussed.

In Reference [4], a proposal was presented to uncover the hidden patterns to enhance the health
facilities for patients who have diabetes. It gave an insight into frame hidden variables that can
predict the intensity of diabetes mellitus symptoms on patients. Patient records and clinical tests were
analyzed to uncover hidden trends in diabetes datasets to improve the quality of living of diabetic
patients. In this analysis, decision tree and rule based classifiers were mainly used for classification.

Ref. [5] predicted the patterns of diabetes on people with distinct age groups and lifestyles.
The study discussed ways to deal with missing values in diabetes dataset. Neural network was used
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for classification and when it was used with some pre-processing methods, it produced an optimum
accuracy of 99%.

A dimensional reduction in heterogeneous diabetes dataset using Self Organizing Map (SOM)
clustering was performed and established similarities among patients using (Unified distance)
U-Matrix [6]. Questionnaires consisting of both text as well as numeric responses were used. SOM
was used as a data visualization tool. It aimed at interpreting patient’s behavior and interlinking
diabetes factors with each other to show the correlation among them. The output was illustrated in
U-matrix format. Researchers in Reference [7] developed a classification and risk analysis framework
for diabetes and hypertension on clinical centers in Kuwait. The authors compared the performance of
four different classifiers, including multifactor dimensionality reduction, logistic regression, k-nearest
neighbors and Support Vector Machines (SVM) using non-laboratory attributes. It gave an accuracy
rate of 85% for diabetes and more than 90% for hypertension disorder. Classification with K-NN
algorithm gave the highest risk of 75% in diabetic patients and 94% in hypertension patients.

The decision tree model for predicting symptoms in diabetic patients is discussed in Reference [8].
The model comprised two phases which include data pre-processing and data prediction. In data
pre-processing phase, relevant attributes were selected and missing values were dealt with.in second
phase, decision tree was sued for predicting the potential diabetic patients based on their symptoms.
78% accuracy was produced in this classification. Proposed a Genetic Algorithm based fuzzy model
to predict the presence of diabetes disease. In this study, fuzzy model was used as a learning and
self-adapting capability [9]. It was used in combination with genetic algorithm to classify the reduced
attribute set of diabetes mellitus. It gave an accuracy of 83%. A meta combination of Extreme Learning
Machine and Genetic Algorithm was developed for the diagnosis of Pima Indian diabetes [10]. Genetic
algorithm was used as an attribute selector while extreme Learning Machine was used for classification,
10-fold cross-validation was used for performance evaluation using metrics like accuracy, specificity
and f-score. It generated an accuracy of 89.54%. In [11], degree of occurrence of diabetes is predicted
by the use of random forest classifier. Electronic health record of patients are used and analysed to
sort the vital symptoms causing diabetes disorders. Then random forest is applied for classification of
diabetes. Accuracy obtained was 92%.

A new cascaded learning using Least Square Support Vector Machine (LS-SVM) and Generalized
Discriminant Analysis (GDA) was developed for diabetes diagnosis [12]. GDA was used to categorize
the patients into healthy and affected with diabetes.LS-SVM was used to efficiently classify the
diabetes dataset. The proposed model gave 82.05% accuracy rate with 10-fold cross validation method.
An Artificial Neural network-based system and a fuzzy neural network model were proposed by
Reference [13] to identify Pima Indian diabetes disease risks effectively. 84.24% was the classification
accuracy obtained in this study. A new controller based on fuzzy logic expert domain knowledge
system to control blood glucose level was proposed by Reference [14]. it discussed a multiple daily
injection regimen (MDIR) for effective treatment of diabetes. It utilized expert domain knowledge by
applying fuzzy logic controllers to control the glucose level in blood. It worked in a two loop feedback
mechanism. The inner loop regulates the quantity of insulin generation on day today basis while the
outer loop supervised the inner loop.

A model based on a stochastic system that presents variability from automated blood glucose
level time series is proposed [15]. Here, the interrelationship between the long term associated side
effects of diabetes and glucose variability are projected using a stochastic model. The proposed method
was later validated and simulated with three different diabetes patient datasets. Researchers have
proposed a modified cross-validation method that used an objective function and proposed SVM
based optimization techniques which used Particle Swarm Optimization-Support Vector machine
(PSO-SVM) and Genetic Algorithm (GA-SVM) [16]. An objective function on the basis of leave-one-out
cross-validation was adopted by both of them. Genetic algorithm was used to optimize the parameters
of SVM. It was observed that PSO-SVM model was successfully able to handle SVM parameter tuning
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in a cost effective way. It was successfully applied to a diabetes dataset to classify patients based on
relevant symptoms.

In Reference [17], Hasan Temurtas used the Levenberg–Marquardt (LM) method to train the
structure of the neural network. The model was used for diabetes disease diagnosis and was compared
with several previous works on diabetes diagnosis. It gave an overall prediction accuracy of 82.37%.
The integration of fuzzy computing and genetic algorithm to detect presence of diabetes in patients
was discussed. Genetic algorithm was used for selecting relevant attributes from the Pima Indian
diabetes dataset [18]. Then fuzzy logic was applied to the reduced dataset for proper classification of
patients. A mapping of dataset attributes with the use of membership functions based on appropriate
measures was carried out. The presented model was evaluated and an accuracy of 87% was produced.
A multi-combination of Attribute selection, clustering, Genetic algorithm and decision trees was
developed and implemented by Reference [19] for diabetes risk prediction. It combined and built the
optimal decision trees on the basis of predefined threshold criteria. It used a lower number of leaf
nodes and complexity size was quite less. An accuracy of 83.3% was the output of this hybrid model.

In Reference [20], author has proposed a Rule-based genetic algorithm classifier that optimized the
fitness function metric and present a better performance than conventional approaches such as Naive
Bayes (NB). Developed a Fuzzy logic-based expert model to predict diabetes based on knowledge of
the patient’s history. Fuzzy Logic based Diabetes Diagnosis System (FLDDS) incorporated various
parameters for effective diagnosis of diabetic patients. It considered both fuzzy rules generated as
well as knowledge of medical experts in predicting diabetes symptoms. The results showed that the
performance of the developed fuzzy model increased when the number of parameters and variables
are increased. FLDDS model produced an accuracy rate of 87.2% in diabetic dataset [21].

Reference [22] presented an intensified fuzzy expert system for diabetes diagnosis. The system
model comprised of fuzzy inference, implication and aggregation module. Knowledge is denoted
in fuzzification to transform crisp values into fuzzy values. Fuzzy values is converted back to crisp
values by defuzzification. Aim of the proposed fuzzy based model was to enhance the accuracy rate
and knowledge quality for diabetes prediction task. This fuzzy system presented effective results with
reasonable diabetes data samples and produced a classification accuracy of 88.35%. A classification
framework on pattern recognition and rule-based extraction was developed [23]. This method
introduced an inverted hierarchical Neuro-fuzzy Binary Space Partitioning (BSP) framework to classify
records and extract rule-base from databases. It performed a recursive partitioning of the input feature
space and auto-generated its own structure. It permits knowledge extraction with interpretable fuzzy
rules. It was evaluated with several datasets and diabetes was one of them. A classification accuracy
of 78.26% was produced with diabetes data.

A hybrid combination of different data mining methods for Pima Indian diabetes diagnosis.
K-means algorithm was used [24] to validate class label of provided instances. The final classification
model using k-fold cross validation was developed using C4.5 algorithms. When evaluated with
different existing algorithms, the proposed hybrid prediction model got an accuracy of 92.38%.
Reference [25] demonstrated a prediction model by pruning the diabetes dataset. The J48 classifier
was used to classify the patients into diabetic and non-diabetic. It aimed to compare the accuracy of
prediction of Pima Indian diabetes using multi-layer perceptron with tree based classifiers. J48 classifier
gave an optimum accuracy of 89.3% when compared to multi-layer perceptron, which produced 81.9%
accuracy. When the attribute ‘number of times pregnant’ was removed from the dataset, the accuracy
jumped to 89.7%.

A new variation of MLP called the artificial metaplasty based MLP model (AMMLP) was developed
in Reference [26]. The AMMLP model was used to validate a Pima Indian diabetes dataset. The results
were compared with other classifiers using the same dataset. It generated an accuracy rate of 89.93%.

An automated diabetes prediction model on a relatively sparse dataset was proposed [27].
The authors propose the Attribute Weighted Support Vector Machines (FW-SVMs) and a Modified
Cuckoo search (MCS). Principal component analysis was used to remove irrelevant attributes from
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the dataset. Then the level of significance of attributes was computed using mutual information
method. Later MCS was applied to the dataset to choose the attributes with optimum parameter
indices. The reduced optimized set was classified using FW-SVMs. The results presented an accuracy
of 93.58%. In Reference [28], researchers have studied the significance of hidden pattern in a variation
of the SVM model. A new one class SVM model on the basis of hidden information was derived.
The performance was demonstrated with many publicly available datasets and while evaluating on
diabetes dataset, it gave a prediction accuracy rate of 87.6%.

Reference [29] presented an effective diagnosis of diabetes using an artificial intelligence approach.
In this analysis, a new artificial Bee Colony algorithm was developed to predict the presence of diabetes.
In this work, a new blended crossover phase of the genetic algorithm was applied to the chromosomes,
which helped in improving the diversity of the ABC algorithm. The results show an accuracy of 91.9%.

An expert system model [30] based on multi-layer fuzzy prototyping to highlight the uncertainty
in knowledge was developed. Here a 5-embedded layer of fuzzy system which includes fuzzy group
relation, fuzzy group domain, fuzzy group personal domain and fuzzy group ontology layer. It is
used to represent uncertain knowledge. It is applied in this study to define and model the knowledge
base of diabetes data. The mean accuracy produced after implementing the fuzzy-based expert system
was 93.8%. Reference [31] presented an ensemble learning based classification framework for effective
prediction and diagnosis of diabetes mellitus. It uses decision stump as the base classifier and the
Adaboost module for classification. The presented model was compared with other classifiers like
naive Bayes and SVM for validation. The implemented Adaboost classification model showed an
accuracy of 84.09%. An extensive comparison analysis among several algorithms was performed [32].
The study focused on the prediction and analysis of gestational diabetes symptoms and relevant
Attributes. The data samples consisted of 600 records. The classifiers used were the random tree,
decision tree and NB (Naive Bayes). After classification, it was observed that a random tree generated
an optimum accuracy of 93%.

The author of Reference [33] presents a new multi-view knowledge gaining approach for the
proper diagnosis of Alzheimer’s Disease (AD) using genetics and neuro imaging datasets. At first,
a Multi-Layer Multi-View Classification (ML-MVC) method is built to establish the interrelationship
between attributes and classes. Then, the Alternating Direction Method of Multipliers (ADMM) was
used to solve the minimization issue. The results were validated and it showed good performance
with varying datasets. A new survival mechanism was developed [34] where models were trained
from historical electronics records. It is helpful in developing potential complications in diabetic
patients. A more accurate prediction of symptoms and good ranking of risk factors associated with
diabetes are the two vital benefits of this approach. Moreover, a multi task survival framework was
presented to analyze the interrelationship between risk factors of the survival approach. At the end, the
model was verified with diabetes mellitus diabetes data instances and the performance was recorded.
In Reference [35], the authors presented a boosting ensemble classification model for diabetes patients
based on their personal as well as medical history data. Random committee classifier was used for the
study. A real time diabetes data with 100 records were used and 81% accuracy was the result with
10-fold cross validation method. Reference [36] developed an enhanced non-invasive technique for
detection of diabetes disease where a probabilistic classifier with facial key block variables were used
the evaluation was performed on a data record with 284 diabetic affected patients and 142 healthy
persons. The result indicated that the presented probability model was able to accurately predict the
diabetes disorders compared to other seven classification methods used. Researchers discussed a
work on diabetes which analyzed the lack of awareness and bad eating habits as the prime factors in
developing nations [37]. Six machine learning approaches, which include SVM, regression, neural
network, classification tree, naive Bayes and rule classifier, were used for evaluation. Regression
produced an accuracy of 78% while neural network gave 77% accuracy.

A traditional technique iridology has been discussed [38] for the treatment of pima Indian diabetes
using a machine learning approach. 338 data samples were taken out of which 158 were not affected
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with diabetes and rest 180 were diabetic patients. Infra-red snaps of eyes were cropped and the
desired region of the iris was taken, which correlates to the pancreas location based on an iridology
study. The texture and statistical variables were selected from the desired region of interest. Many
classifiers were used for the evaluation and it was observed that random forest produced a higher
accuracy of 89.63%. In another related work on diabetes, Reference [39] performed a diabetes risk
assessment on basis of family background and lifestyle of people. Nine hundred and fifty two data
samples were collected from both online as well as offline mode. Diabetes risk was evaluated and
demonstrated with six classifiers and random forest model provided the best accuracy of 94.1%. Amelec
Viloria [40] asserted that blood sample data was not enough for the effective diagnosis of diabetic
patients. This study applied the SVM classifier for treatment of diabetes. The analysis was used on
Colombian residents and it produced 99.2% accuracy but it drastically dipped to 65.6% accuracy with
people from other ethnic backgrounds. Reference [41] presented five different machine learning models
to determine the presence of pima Indian diabetes. Boruta method was used as a wrapper approach
for attribute selection which produced an optimized dataset. R language was used for evaluation.
It was experimentally shown that all five classifiers gave good performance. Among them, SVM-linear
technique gave the highest accuracy of 89% and 88% precision metric. Table 1 highlights a summary of
some popular research work studied by authors.

Table 1. Comparative analysis of the accuracy rate of similar existing work.

Authors Algorithm and Method Used Accuracy Rate Year

Goncalves et al. [23] Hierarchical Neuro-fuzzy BSP system 78.26% 2006

Polat, K., Gunes, S. & Arslan, A. [12] Generalized Discriminant Analysis (GDA) and
Least Square Support Vector Machine (LS-SVM) 82.05% 2008

Kahramanli, H. & Allahverdi, N [13] Fuzzy neural network (FNN) 84.24% 2008

Hasan Temurtas et al. [17] LM algorithm and a probabilistic neural network 82.37% 2009

B.M Patil [24] Hybrid prediction model 92.38% 2010

Jarullah, Al. A. [8] Decision tree algorithm 78% 2011

E. P. Ephzibah [18] Fuzzy and genetic algorithms 87% 2011

A.V.Senthil Kumar, M.Kalpana [22] Intensified Fuzzy Verdict Mechanism 88.35% 2011

Aliza Ahmad [25] Pruned Decision tree 89.3% 2011

Alexis Marcano-Cedeno [26] Artificial Metaplasticity based MLP 89.93% 2011

Chang-Shing Lee and Mei-Hui Wang [30] Fuzzy Expert System 93.8% 2011

Giveki, Davar, et al. [27] Attribute Weighted Support Vector Machines
(FW-SVMs) 93.58% 2012

Sapna. S [9] Fuzzy and GA 88% 2012

Koteswara Chari et al. [11] Random forest algorithm 92.2% 2019

Fayssal Beloufa and Chikh [29] Modified Artificial Bee Colony 91.9% 2013

Aishwarya, S. & Anto, S [10] Gaussian radial basis function 89.54% 2014

Wenxin Zhu and Ping Zhong [28] SVM+ 87.6% 2014

Srideivanai Nagarajan et al. [32] Random tree 93% 2014

Rahman Ali [35] Random committee 81% 2014

Vaishali Jain, Supriya Raheja [21] Fuzzy Logic-based Diabetes Diagnosis
System(FLDDS) 87.2% 2015

Vijayan, V. Veena and C. Anjali. [31] Adaboost 84.09% 2015

Harleen Kaur [41] SVM-linear model 89% 2018

Piyush Samant [38] Iridology technique 89.63% 2018

An extensive literature survey was performed primarily based on classification accuracy. Different
works used different machine learning approaches for diabetes diagnosis. Common algorithms used
in existing research works include decision tree, neural network, SVM, fuzzy logic and ensemble
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classifiers like random forest. In some of the works, the attribute selection method was also applied.
Genetic algorithm was the most common attribute selector used in many research works undertaken.

Among all works analyzed, maximum accuracy was obtained using SVM classifier but its
performance also dipped with heterogeneous attributes and data samples [40]. Though in some works,
ensemble learning was used, the accuracy rate was still not so high and even if it is good, the execution
time delay and other parameters like precision and recall were still not up to standard. Also in many
previous works, data preprocessing was not done effectively. Hence there is a need for a more efficient,
optimized and productive classification model for diabetes detection and diagnosis. In the next section,
the proposed model is discussed in detail.

3. Materials and Methods

In this section, the authors aim to clearly present all the requirements and tools needed to
obtain the results. Consequently, detailed technical information and pseudo-codes are presented in
this section. This research work has been carried using the Waikato Environment for Knowledge
Analysis (WEKA) machine learning software tool. This software tool is mainly developed in Java
language and is platform-independent. It has a collection of multiple machine learning techniques and
algorithms which help to study real-world data analysis problems. This tool requires the dataset to be
present in an American Standard Code for Information Interchange (ASCII) text format called ARFF
(Attribute-Relation File Format) format. This ARFF constitutes a distribution of various occurrences
of attributes and their values in a file. This ARFF file is constructed for data storage in the database,
which is then transformed by WEKA and loaded accordingly to perform the experiments. The diabetes
dataset used in our study is presented in this ARFF format before performing pre-processing and
classification techniques. “weka.classifiers.functions. MultilayerPerceptron” is the WEKA library
package used to implement MLP. In this study, the MLP classifier is used to detect the presence of
diabetes on the basis of symptoms [42]. It is one of the most reliable, flexible, non-linear and classical
categories of neural networks. Two layers of neurons are taken into consideration. The input layer
receives the raw data which is moved forward to hidden layers that acts as an abstraction interface.
Finally, the output layer is used to predict the class label based on the problem under consideration.
The diabetes dataset used is a text based data records available in tabular form. The MLP classifier can
learn and model itself in non-linear and complicated problem domains. It can offer generalization
ability. Once the model is trained with input data using the MLP classifier, it can establish unseen
associations in unseen data instances as well. This is quite helpful in predicting the unseen data.
It can also be used in handling larger datasets. The complexity of parameters can be handled by
adjusting network complexity and its weight values [43,44]. Since it is non-parametric in nature,
error is eliminated in estimating parameters. Apart from these benefits, no limitations are imposed
on the overall distribution of the input attributes when using the MLP classifier [45]. Similarly, the
“weka.attributeSelection.GeneticSearch” package needs to be loaded to use the Genetic algorithm for
the attribute selection task. For effective data analysis and visualization, the JFreeChartis, which is
an open-source Java framework, is utilized in our work. The system requirements to implement the
results of this research work are quite simple. A 64-bit Windows Operating system with a Quad-core
processor and a minimum of 8 GB RAM is the primary requirement while at least Java 1.7 version or
higher is required to install WEKA software.

The Pima Indian diabetes dataset is utilized for our research. It is derived initially from the
National Institute of Diabetes and Digestive and Kidney Diseases. This dataset constitutes a total of
8 distinct attributes along with 768 instances, as shown in Table 2. All recorded instances belong to
female category. Among these attributes, ‘preg’ denotes the pregnancy count which is applicable to
women. A high glucose level in the mother can affect the baby during the initial stage of pregnancy.
Women with gestational diabetes tend to develop type 2 diabetes in the future. The data samples have
missing and redundant values in some attributes column. In attributes ‘preg’ and ‘mass’ many cell
values are missing. So an effective and enhanced attribute selection approach is required.
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Table 2. Attribute Details of Pima Indian Diabetes [46].

Attribute Name Labelled Value

Frequency of Pregnancy Preg
The concentration of Plasma glucose level Plas
Diastolic blood pressure (mm Hg) Pres
The thickness of Triceps skin (mm) Skin
Serum insulin (2-h) Insu
Body mass index (kg/m2) Mass
Diabetes pedigree function Pedi
Age (years) Age
Class label (0 or 1) Class

This study includes proposing a progressively productive Attribute selection methodology which
is related to the Genetic Search method to identify the presence of diabetes. The authors have defined
a probability of 20% and a 2-point crossover. In order to use a probability of 25% after crossover,
the 1-bit Mutation is applied. The crossover and mutation rate is predefined for all generations
of genetic algorithm. With variation in mutation and crossover rate, a more diverse solution set
is obtained thereby making the process more adaptable and dynamic in nature. The variable and
dynamic nature of mutation and crossover probability is a major highlight of this proposed Attribute
optimization technique.

In our research, there are different abbreviations and parameters used and are part of the proposed
model as highlighted in Table 3.

Table 3. Acronyms discussed in the proposed technique [47].

Name of Metric Definition

ISS_Gen Initial Solution Set_Generate
ISS_Gen (FSinitial, FSfinal) Pseudo-code fto generates Initial set of attributes for first round
Comp_fn (x) Pseudo-code for computation of Fitness unit fn (x)
RS_Mutate Pseudo-code for Restrict Mutate unit
FSinitial Attributes of diabetes dataset at initial stage
FSfinal Attribute set after application of Optimized Genetic Search method
Attributes A threshold value of every attribute to identify if diabetes is present or not.
Attributei (worth) The merit of individual variable
Average (Attributes) Average worth of every attribute
ORmax (value) Optimum Occurrence Rate
ORmin (value) A minimum Occurrence Rate
[1′s count] Attributei Number of 1′s in the attribute column
Attributes 1′s count (min) Lower indexed 1′s count attribute column
Attributes1′s count (max) Higher indexed 1′s count attribute column
0′s (total) Total number of 0′s in a specific solution.
PR Prediction Accuracy
fn(x) Fitness (Evaluation) Function
1—Prediction accuracy rate Misprediction Rate = MPR
ff fitness factor (0.5)
z No. of 0′s in a specific set of solution
HOB High order bit
LOB Low order bit
Crossprob A metric representing the frequency of crossover.
CRR-MRR Crossover Rate-Mutation Rate
f ‘(n) Data structure used in storing pre-crossover fitness unit values [47]
f “(n) Data structure used in storing pre-crossover fitness unit values [47]
Rank (Soln) Indiv Ranking order specifying every set of solution based on the fitness function value
Mutationprob Metric that indicates the frequency of mutation of a chromosome.
K Number of rounds until the algorithm is executed.
CMα and MMα Crossover Mean and Mutation Mean. [47]

Steps of the proposed algorithm model is here presented. It has four distinct functional units
that involve:



Sensors 2020, 20, 4036 10 of 31

i. ISS_Gen (FSinitial, FSfinal) module: Pseudo-code 1 (Table 4) represents the initial binary-encoded
solution space.

ii. Comp_fn(x) module [35]: Pseudo code 2 (Table 5) represents the Enhanced Genetic Search
which is a new fitness function.

iii. Adaptive_CRR-MRR module [47]: Pseudo code 3 (Table 6) represents the dynamic capability
of the EAGA algorithm, which is done by changing the CR and MR in every round. [47]

iv. RS_Mutate module: Pseudo code 4 (Table 7) represents the modified Mutation operation that is
based on HOB and LOB.

Table 4. Pseudo-code 1 for ISS_Gen (FSinitial, FSfinal). [47].

Pseudo Code 1: ISS_Gen (FSinitial, FSfinal)

Step 1: Initialize FSinitial = {F1, F2 . . . Fn} for n Attributes
Step 2: Determine Threshold for every attribute, Attributei

th

Step 3: Divide the value of the column of every attribute in two parts:
Upper limit (> Attributei

th)
Lower limit (< Attributei

th)
Step 4: If attribute == quantitative,
Compute Average (Attributei)
If Attributei (value) ≥Mean (Attributei)
Attributei (cell) = 1
Else
Attributei (cell) = 0
Step 5: If Attribute! = quantitative,
ORmax (value) = 1 & ORmin (value) = 0
Step 6: Compute [1′s count] Attributei (frequency)
Step 7: Discard Attributes Min. 1′s count (RejectionProb = 6%)
Step 8: Calculate FSfinal = {1- Attributes Min. 1′s count}

Table 5. Pseudo code 2 for Comp_fn(x). [47].

Pseudo Code 2: Comp_fn(x)

Step 1: Develop the solution set for 1st round by ISS_Gen (FSinitial, FSfinal) module
Step 2: Select attributes on basis of class ‘1′ allocation on individual solution
Step 3: Determine 0′s (frequency) of every attribute
Step 4: Compute PR as: Correct predictions/Total predictions
Step 5: Find MPR as: 1-Correct predictions/Total predictions
Step 6: Calculate fn(x): fn (x) =MPR + qz
Step 7: Solutions ranking on basis of fn(x): Pre-solution α 1/fn(x)

Table 6. Pseudo-code 3 for Adaptive_CRR-MRR. [47].

Pseudo-Code 3: Adaptive_CRR-MRR

Step 1: for generation ≤ roundmax do
Step 2: Restart a new search set Q1;
Step 3: Each set of chromosome in Q; is computed to an evaluation function fn(x)

for |P1| ≤ N do
Step 4: Select 2 parental chromosome from P;
Step 5: Crossover happens in a collection of crossover variant (CV)
Step 6: Mutation happens in a collection of Mutation variant (CV)
Step 7: Add child chromosome to P1;
End while
Step 8: Calculate CMα and MMα and adapt the rate of crossover (CRR) and rate of mutation (MRR);
Round = Round + 1;
End for
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Table 7. Pseudo-code 4 for RS_Mutate [47].

Pseudo-Code 4: RS_Mutate

Step 1: Chromosome set post-crossover = input
Step 2: Calculate fn(x)
Step 3: upturn HOB when fn(x) is low
or
Step 4: upturn LOB

The pseudo-code of ISS_Gen (FSinitial, FSfinal) unit, is shown in Table 4, where the raw pool of
attributes is used to produce the solution set for the first round. For each attribute, a predefined upper
bound is considered. For numerical attributes, the threshold point is the average worth of attribute
that is the cause of the disease occurrence. The Attribute value of each character is varied on the basis
of threshold value. Observed column values that are less than the mean are defined as 0 and the
values higher than the mean are represented as 1, in numerical Attributes. Similarly, for non-numerical
Attributes the presence of the disease is labelled as 1 otherwise, it will give 0. Cumulative count of all
occurrence of 1′s is done for each column and on the basis of optimum 1′s count for a specific attribute,
the relevant attributes are retained. The total 1′s count is done for every column in the table and the
attributes with least 1′s count is dropped.

The new fitness function module is generated with the help of compute_f (n) as seen in Table 5.
The Fitness function depends on the misprediction rate [47] and total number of zeros in the
chromosomes set. The new fitness function is developed based on those two factors and as per
the suitability ranking of chromosomes is done. The most priority is given by the least fitness function.

The adapt_CRR-MRR process, as illustrated in Table 6, handles the difference between the rate
of crossover and the rate of mutation. At first, it analyzes the initial rate of crossover (CRR) and
mutation (MRR). The genetic algorithm prefers an optimum crossover rate with a minimum mutation
rate. As the rate of crossover and mutation rate have differed values, for the first-generation rate of
crossover and mutation 0.5 were set.

Assume two parent chromosomes undergoes crossover operation. Let f1 and f2 be the fitness
value of two parents for the two offspring. The crossover variant (COV) is represented as:

COV = f1− f2. (1)

Average of the crossover variant CMα for a generation with cn crossover rate is [47]:

CMα =
1
cn

∑
CM, (2)

where, cn represents the crossover rate for nth round. Consequently, crossover operation for a specific
CMα parameter is utilized. So, let mutation variant (MTV) depicts the mutation outcome as:

MTV = fnew − fold, (3)

where the fitness function value of the resulting solution is fnew and fold. The mutation mean (MM) for
a round that witness mn transformations are:

MMα =
1

mn

∑
MM, (4)

where n is the number of bits mutated. These mean values support the probability rate of crossover
and mutation to be adapted towards the termination of every iteration. The operators are self-adjusted
based on the previous rounds. It proposes that the support of the participants with a higher mean
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frequency of mean value is more and thereby, the probability improves in the succeeding round and
vice versa, which is illustrated below:

Case 1 [47]:
CM > MM
CRR = CRR + q, MRR = MRR −w
Case 2 [47]:
CM < MM
CRR = CRR − q, MRR = MRR + w
Here q and w represent the adaptability factors related to CRR and MRR, respectively.
Table 7 highlights the variation of mutation that take place in the last generation as shown in the

RS_Mutate unit. It can be applied only for the last round. On the basis of the outcome of crossover
activity, the results are correctly analyzed. The fitness factor of chromosomes upturns towards the
high order bits (HOB). If solution converges at global optimum if low and if it was more, then the low
order bits (LOB) is upturned to make the solutions fine-tune.

Pseudo-code 5 (Table 8) represent EAGA module technique which enhanced and adapts the
genetic algorithm technique. The generation of solution space for the first binary coded chromosome
is done on basis of ISS_Gen (FSinitial, FSfinal) module. For each set of solutions, the fitness function is
determined by Compute_f (n). The Attributes of fitness function are recorded and stored. To encode
the solution set two-point, crossover operation is used and then result of the fitness function after
crossover is calculated. On the basis of the computed values of fitness function in the solution set,
least priority chromosomes are replaced with better and high priority fitness function solutions.
The individual solution is implemented after the crossover. This procedure continues until the
predetermined penultimate iterations. According to the RS_Mutate module, a modified procedure is
used excluding the last generation. Therefore, after mutation, the last reduced attribute set is the yield
that is utilized for characterization. The adaptability characteristic of EAGA is due to variation of CR
and MR in each iteration. In light of the estimations of Crossover Mean Variant (CMα) and Mutation
Mean Variant (MMα), the mutation and crossover probability is updated in each round. It forms one
of the major highlights of the Adaptive_CRR-MRR unit.

Table 8. Pseudo-code 5 for EAGA [47].

Pseudo-Code 5: EAGA

Step 1: Start the encoded chromosome set with ISS_Gen (FSinitial, FSfinal) module
Step 2: Accept fn(x) set calculated in Comp_fn(x) module in fn‘(x)
Step 3: Apply 2-Point Crossover to the chromosomes on basis of f‘(n) with Adaptive_CRR-MRR unit
Step 4: Restore fn(x) determined post-crossover in f ”n(x)
Step 5: fn‘(x) compared to f n‘’(x)
Step 6: Swap minimum Rank (Soln) Indiv in fn ‘’(x) with upper Rank (Soln) Indiv in fn ‘(x)
Step 7: Iterate till predefined criteria met (k rounds)
Step 8: RS_Mutate unit applied to kth phase post step 7
Step 9: Calculate reduced attributes← Attributes1′s count (max)

Step 10: Result = {Optimal attributes}

Hence, it may be inferred that our developed EAGA model is a combination of two prime
constituents which are:

− Chromosomes swapping for optimal fitness value at each iteration.
− Variation in crossover and mutation probability in every iteration.

Based on the first constituent, an Enhanced Genetic Algorithm (E-GA) may be developed which
retains the chromosomes with good fitness values as compared to its previous round. It is done by
swapping better fitness valued chromosomes of the current round with low fitness valued chromosomes
in the last round. Table 9 highlights the E-GA constituent.
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Table 9. Pseudo-code 6 for Enhanced Genetic Algorithm (E-GA) [47].

Pseudo-Code 6: E-GA

Step 1: Start with an initial optimized binary coded set of solution
Step 2: Save fn(x) calculated in Comp_fn(x) module in fn’(x)
Step 3: Chromosomes priority order based on fn(x) value
Step 4: Use 2-Point Crossover over chromosome set basis of fn’(x) [20% CRR]
Step 5: Compute and reserve fn (x) set determined after Crossover in fn”(x)
Step 6: Evaluate fn’(x) with fn”(x)
Step 7: Reorder the less Rank (Soln) Indiv in f “(x) to higher Rank (Soln) Indiv in fn ‘(x)
Step 8: Use 1-bit Mutation [20% MR] and compute its f (n)
Step 9: Reorder chromosomes based on fn (x) value & repeat till criteria satisfied (k rounds)
Step 10: Determine Resultant Attribute Set←Max. 1′s score
Step 11: Result = {Optimal attributes}

Similarly, the pseudo-code 7 (Table 10) highlights the second idea using the Adaptive_CRR-MRR
module. A dynamic crossover and mutation adapting scheme can be employed to determine the
gain in information regarding the ability of each operation to generate offspring with better fitness
values. It is referred to as an Adaptive Genetic Algorithm (A-GA), which varied the crossover and
mutation rate in every round based on the performance at its previous round. These variations (A-GA
and E-GA) are used for comparative analysis with our proposed EAGA algorithm to demonstrate the
algorithm performance.

Table 10. Pseudo-code 7 for Adaptive Genetic Algorithm (A-GA).

Pseudo-Code 7: A-GA

Step 1: Start with the parameters;
Step 2: Begin with a random population space P;
Step 3: Iteration= 1;
while iteration ≤ max do
Step 4: Restart newly generated population P1;
Step 5: Each set of solution in P; is determined with a fitness value computed as fn(x)
while |P1| ≤M do
Step 6: 2-parent individuals selected from P;
Step 7: Crossover occurs and aggregate Crossover Variant (CV)
Step 8: Mutation occurs and aggregate Mutation Variant (CV)
Step 9: Push the child solutions to P1;
Step 10: Find CMα and MMα and adjust Crossover Rate (CRR) and Mutation Rate (MRR)
Iteration = Iteration + 1;
stop

Figure 2 represents the diagrammatic algorithm of the EG-GA. The input attribute is denoted by
the original dataset of Diabetes. The maximum occurrence of 1′s count rule generates a sub-optimal
Attributes presented in ISS_Gen (FSinitial, FSfinal) module. This reduced Attribute set generates the
initial chromosome set. Then the fitness function is determined as per the Compute_f (n) module.
Subsequently, on the basis of fitness function values, the chromosome ranking is calculated. A 20%
probability of chromosomes is performed with 2-point crossover operation. The chromosome’s fitness
function after crossover is recalculated while the low priority values are removed from the set of
solutions for the successive round. The fitness function is ranked again based on their value. The
result set is having a mutation probability of 20% with a 1-bit flip Mutation. In first-generation CR
and MR are predefined at 20% while for the resulting generation, these variables are processed by the
Adaptive_CRR-MRR unit.
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Figure 2. Proposed Optimized Attribute Selection Method.

In this unit, the CMα and MMα are resolved and afterward, the CRR and MRR values are
balanced as per the needs of the subsequent round. Specified for k iterations, the complete method is
repeated. In the final iteration, the Restrict Mutate idea is implemented on the optimized solution
set in the RS_Mutate module. For the final attribute set, a total count of the occurrence of 1′s is done.
It follows with a maximum of 1′s count policy where the attributes containing a low 1′s count in their
corresponding attribute column gets eliminated while remaining attributes are validated, which are
further presented as the optimum attribute set.

Figure 3 represents the proposed novel classification algorithm. The initial raw diabetes data
records are the input to the developed optimized attribute selection model. The less relevant attributes
are dropped. Simultaneously it collaborates with the neural network, which acts as the classifier and,
thereby, a reduced attribute set is the output. The resultant Attribute set is applied with MLP for the
classification task. On the basis of this output, the presentation of the categorization is processed
utilizing execution metrics and the prediction rate of accuracy is calculated.Sensors 2020, 20, x FOR PEER REVIEW 16 of 33 
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Figure 3. Classification Model based on our Proposed Attribute Selection method (Enhanced and
Adaptive-Genetic Algorithm-Multilayer Perceptron (EAGA-MLP)).

4. Practical Evaluation

In this section, a practical demonstration of our proposed EAGA algorithm is presented. The sample
simulation result of our work is implemented on Diabetes dataset with 8 attributes and 768 instances.
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The ISS_Gen (FSinitial, FSfinal) module generates a first reduced attribute set by max 1′s count norm. At
first, the mean value is computed and based on that frequency of 1′s for every attribute is found out.
Table 11 depicts the mean value calculation for each attribute in diabetes dataset.

Table 11. Calculation of Mean value for each column (attribute).

Preg Plas Pres Skin Insu Mass Pedi Age

5 166 72 19 175 25.8 0.587 51
5 97 60 23 0 28.2 0.423 22
7 114 66 0 0 32.8 0.258 42
1 89 76 34 37 32.2 0.192 23
8 183 64 0 0 23.3 0.672 32
7 160 54 32 175 30.5 0.588 39
4 146 85 27 100 28.9 0.189 27
13 126 90 0 0 43.4 0.583 42
2 197 70 45 543 30.5 0.158 53
3 83 58 31 18 34.3 0.336 25
2 141 58 34 128 25.4 0.699 24
15 136 70 32 110 37.1 0.153 43
2 110 74 29 125 32.4 0.698 27
3 120 70 30 135 42.9 0.452 30
4 173 70 14 168 29.7 0.361 35

Mean 5 136 69 23 114 32.1 0.425 34.4

The frequency count for each attribute is done in Table 12. It is seen that the frequency counts
of 1′s for ‘Pedi’ attribute is only 5, hence it is eliminated. After the removal of the ‘Pedi’ attribute on
the basis of lest 1′s count, then reordering of attributes on the basis of 1′s count is performed. In the
subsequent step, as shown in Table 13, a solution space is generated, which id dependent on number of
attributes in the dataset. After applying ISS_Gen (FSinitial, FSfinal) module, a solution space is derived
from the remaining 7 attributes based on the formula: Solution space count = 2n [where n denotes the
cumulative count of attributes in the dataset].

Table 12. Calculation of 1′s count for each column (attribute).

Preg Plas Pres Skin Insu Mass Pedi Age

1 1 1 0 0 0 1 1
1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 1
0 0 1 1 0 0 0 0
1 1 0 0 0 0 1 0
1 1 0 1 1 0 1 1
0 1 1 1 0 0 0 0
1 0 1 0 0 1 1 1
0 1 1 1 1 0 0 1
0 0 0 1 0 1 0 0
0 1 0 1 1 0 1 0
1 1 1 1 0 1 0 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 0

Mean 5 136 69 23 114 32.1 0.425 34.2
1′s count 7 8 9 10 6 7 5 7
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Table 13. Sample Chromosomes are taken at random.

Preg Plas Pres Skin Insu Mass Age

1 0 1 1 0 1 0
1 1 1 1 1 0 1
0 0 0 1 1 0 1
1 0 0 1 0 0 1
1 0 0 1 1 1 1
1 1 1 0 0 1 1
0 0 1 0 1 1 1
1 1 1 1 0 1 0
0 1 1 0 1 0 0
0 1 0 1 1 0 0

The samples of 10 chromosomes are demonstrated to present the working of the EAGA method.
The fitness function for each chromosome is computed and ranked using Compute_f (n) module
(Table 14). The less is the fitness function value and more is the priority of that chromosome.

Table 14. Priority-based chromosome ranking based on Fitness Function.

Preg Plas Pres Skin Insu Mass Age f (n)

1 1 1 1 1 0 1 18%
1 0 0 1 1 1 1 21%
1 1 1 0 0 1 1 29%
0 0 0 1 1 0 1 33%
1 1 1 1 0 1 0 34%
1 0 0 1 0 0 1 37%
1 1 1 1 0 0 1 38%
0 0 1 0 1 1 1 41%
0 1 0 1 1 0 0 42%
0 1 1 0 1 0 0 48%

The selected chromosomes set are subjected to 2-point crossover step. The crossover probability is
fixed at 20%. The crossover operation is shown in Figure 4.
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Then following crossover operation, fitness function values are recalculated using the same
procedure as presented in Table 15.
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Table 15. Recalculation of Fitness function after Crossover on the chromosome set.

Preg Plas Pres Skin Insu Mass Age f (n)

1 1 0 1 1 0 1 25%
1 0 1 1 1 1 1 19%
1 1 0 1 1 1 1 17%
0 0 1 0 0 0 1 44%
1 1 0 1 0 1 0 35%
1 0 1 1 0 0 1 20%
1 1 1 0 1 0 1 21%
0 0 1 1 0 1 1 26%
0 1 0 1 1 0 0 42%
0 1 1 0 1 0 0 48%

On the basis of their fitness function value, chromosomes before and after crossover are compared,
as highlighted in Table 16. The lower priority chromosomes are eliminated and better-placed ones are
swapped accordingly and placed in the next generation.

Table 16. Swapping and Ranking of chromosome set based on Recalculated Fitness function
after Crossover.

Preg Plas Pres Skin Insu Mass Age f (n)

1 1 0 1 1 1 1 17%
1 1 1 1 1 0 1 18%
1 0 1 1 1 1 1 19%
1 0 1 1 0 0 1 20%
1 1 1 0 1 0 1 21%
1 1 0 1 1 0 1 25%
0 0 1 1 0 1 1 26%
1 1 1 0 0 1 1 29%
1 1 0 1 0 1 0 35%
0 1 0 1 1 0 0 42%

It is followed by a random 1-bit mutation with an initial mutation rate of 20% as observed in
Table 18. In total, 20% of chromosomes undergo mutation operations, as seen in Table 17.

Table 17. 1-bit Mutation of the chromosome set.

Preg Plas Pres Skin Insu Mass Age

1 1 0 1 1 1 1
0 1 1 1 1 0 1
1 0 1 1 1 1 1
1 0 1 1 0 0 1
1 1 1 0 1 0 1
1 1 0 1 1 0 1
0 0 1 1 0 0 1
1 1 1 0 0 1 1
1 1 0 1 0 1 0
0 1 0 1 1 0 0

It is to be noted that the CR and MR for the first generation are predefined (20%).
The Adaptive_CRR-MRR module is applied in the subsequent generations for the calculation of
CR and MR. Therefore, every round uses a new and dynamic CR and MR. This process continues for
k specified generations or until the termination condition is met according to the problem in hand.
Then finally RS_Mutate module is used which is a modified version of mutation as highlighted in
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pseudo-code 4 (Table 5). This ensures that the final output is an optimal attribute set that avoids being
trapped in a local optimum (Table 18).

Table 18. Applying Restrict Mutate on the Chromosome set in the last generation.

Preg Plas Pres Skin Insu Mass Age

1 1 0 1 1 1 1
0 1 1 1 1 0 1
1 0 0 1 1 0 1
0 0 1 1 0 0 1
1 1 1 0 1 0 0
1 1 0 1 1 1 1
1 0 1 1 0 0 0
1 1 1 0 0 1 1
1 1 1 1 0 1 0
0 1 0 1 1 0 0

At the end of Restrict Mutate, the frequency counts of 1′s is calculated on every column of the
table representing attributes. As can be seen from Table 18, the attribute “mass” has the least count of
1′s (4) and, therefore was eliminated. The final reduced and optimum attribute set after repeating for
k generations is denoted in Table 19.

Table 19. Final Optimal and Enhanced Attribute set after k generations.

Preg Plas Pres Skin Insu Mass Age

1 1 0 1 1 1 1
0 1 1 1 1 0 1
1 0 0 1 1 0 1
0 0 1 0 1 0 1
1 1 1 1 0 0 0
1 1 0 1 1 1 1
1 0 1 0 1 0 0
1 1 1 0 0 1 1
1 1 1 0 1 1 0
0 1 0 1 1 0 0

1′s count 7 7 6 6 8 4 6

Furthermore, at the end of the simulation, the final ranking of the six attributes in the diabetes
dataset is shown in Table 20. This section highlights a sample simulation outcome performed by
authors to highlight the working of each step of the proposed EAGA approach. A sample chromosome
is taken and each step of the proposed EAGA approach is applied and demonstrated. All the four
modules of the presented algorithm are implemented to the sample chromosome and the output is
shown in tabular form. The implemented dry run started with the computation of the mean value
of each attribute column and is followed by determining the 1′s count for every attribute column.
The attribute with the last 1′s count is eliminated from the dataset. The fitness function is calculated as
specified in the Compute fn(x) module and the chromosome is ranked according to their priority.

Table 20. Final Ranking of attributes after the termination of EAGA.

Preg Plas Pres Skin Insu Age

7 7 6 6 8 6 1′s count

3 2 4 5 1 6 Ranking of
Attributes
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A 2-point crossover is used to the chromosome sample and the fitness function value is recalculated
after crossover. On the basis of recalculated fitness function value after the crossover phase, swapping
and re-ranking of the chromosome is done, which is subsequently followed by a 1-bit mutation on the
chromosome. The process is repeated for the desired iterations. The Restrict Mutate on the resultant
chromosome is applied in the last iteration of generation using RS_Mutate module described in Table 5.
The final optimized attribute set in the diabetes dataset is the final output after successful completion
of all generations. Based on the final attribute set, the ranking is done to eliminate the least relevant
attribute from the dataset.

5. Result and Analysis

In this research, a recently enhanced and versatile adaptation form of the Genetic Algorithm was
created that was referred to EAGA. The newly developed algorithm works on the Pima Indian Diabetes
dataset to identify the current status of the patients who have diabetes. Different execution parameters
are developed to increase the performance of our proposed model. The algorithm is implemented for
100 generations. In the experimental set up, the network complexity is varied by limiting the values of
weight of nodes within a specified range of 0.5. It helps in minimizing the overfitting issue in the MLP
classifier that is restricted by varying the complexity of network.

The proposed method has been evaluated using accuracy, latency, precision, recall and F-Score.
The performance of classification is analyzed by the prediction accuracy used as an effective

evaluation metric. It denotes the ratio between accurately classified samples and cumulative samples.
Equation (5) denotes the accuracy rate.

Accuracy =
Accurately_classified_diabetic_instances

Total_diabetic_instances
(5)

Having a reasonable data classification rate of accuracy is not the main performance parameter.
Therefore, other metrics are in a critical stage other than classification accuracy. The performance
is the proportion between positive prediction samples and the cumulative data samples of positive
prediction. The proportion between the favorable inferences accuracy and the recall ratio of inferences
in the class.

Precision and recall are applied for the computation of an optimal technique. Precision represents
the actual number of diabetic data samples among all labelled diabetic instances. Equation (6) shows
the precision metric.

Precision =
Accurately_classified_pos_diabetic_instances

Total_predicted_pos_diabetic_instances
(6)

Recall denotes the number of correctly predicted diabetic instances among all the diabetic instances
present in the dataset. It is highlighted in Equation (7).

Recall =
Accurately_classified_pos_diabetic_instances

Total_diabetic_instances
(7)

However, a single metric is required to predict the performance of classification for simplicity
purposes. Consequently, F-Score was used to evaluate performance. The harmonic mean of precision
and recall is known as F-score. The performance of a classifier is difficult to decide when it might have
a better positive predictive value but comparatively lower sensitivity value. In this case, the F-Score
is utilized that describes as a balanced average between positive predictive value and sensitivity.
An optimal value of F-Score indicates that the algorithm is more efficient. Equation (8) denotes the
f-score metric.

F− Score = 2 ∗
Precision ∗Recall
Precision + Recall

. (8)
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The overall latency is processed as the total cumulative time for classification model set up and
output prediction period.

Latency = Model_build_time + Disease_prediction_time. (9)

The performance evaluation of our proposed EAGA algorithm is performed when it is used with
the MLP classifier. The sub-constituents of EAGA such as E-GA, A-GA and GA are also tested with MLP
classifier to determine its performance. The accuracy rate of the proposed EAGA-MLP is compared
with its sub-components. It is observed that classification with EAGA algorithm provides an accuracy
of 97.96%, while classification with only the GA has an accuracy rate of 92.3%. The sub-components
of EAGA algorithm shows good results and though its accuracy is higher than GA-MLP. However,
it is less than the EAGA-MLP model. The classification accuracy is shown in Figure 5.Sensors 2020, 20, 23 of 34 
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It is also observed from Figure 6 that the EAGA-MLP model is able to perform classification
of diabetes patients more proficiently with a minimum time delay of 1.12 sec as compared to its
components. The E-GA-MLP takes 1.6 s. However, the A-GA-MLP consumes 1.9 s to execute and
generate the classification results.
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The proposed attribute optimization technique also shows a promising result when evaluated
with other metrics such as Precision, Recall and F-Score. Figure 7 shows a diagrammatic representation
of comparative analysis among the presented works with precision values. The EAGA-MLP model
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presents a precision value of 80.2%. While the GA-MLP, E-GA-MLP and A-GA-MLP model show
75.3%, 76.8% and 78% value, respectively.Sensors 2020, 20, 24 of 34 
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The Recall value of our implemented work is recorded at 72.2% after simulation. The GA-MLP
model generates the maximum recall value of 77.5%. There is fluctuation observed in recall value of
E-GA-MLP and A-GA-MLP models with a minor difference in their recall value. The Recall analysis is
depicted in Figure 8.
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The F-Score metric is a vital parameter for evaluating a classification model. It is the harmonic
mean of precision and recall. The recorded estimation of the F-Score value is as high as 86.8% when
the MLP classifier worked with the proposed EAGA algorithm. The GA-MLP model shows the least
F-Score value of 79%. Also, it is seen that the sub-component A-GA algorithm performs better than
the E-GA algorithm when classified with MLP. Figure 9 presents the overall evaluation with the
F-Score metric.
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The EAGA was also tested with the MLP classifier varying the number of iterations and rounds.
A comparative analysis of the accuracy rate of EAGA-MLP is carried out with other components
(GA–MLP, E-GA-MLP and A-GA-MLP) after every 10 generations. It was noted that after almost every
generation, the EAGA-MLP outperforms its constituents. After 10 iteration count, the classification of
the EAGA algorithm generates an optimum accuracy rate of 80.22%. Moreover, the GA algorithm
shows a reduced accuracy rate of 72.4% after 10 generations. The performance of E-GA and A-GA are
also quite average with an accuracy of 71.2% and 76.65%, respectively. However, after 50 iterations, it is
observed that the EAGA algorithm performs better than the other constituents producing an accuracy
of 84.67% while classification with GA shows an 84.12% accuracy rate. The E-GA constituent generates
a maximum of 88.45% classification accuracy, while A-GA constituent shows 80.11% accuracy after
50 generations of simulation. At the end of 100 generations, it is seen that EAGA algorithm produces
better classification results with MLP classifier with an accuracy rate of 97.69%. At the same time,
its sub-components E-GA and A-GA also show good growth and shows 92.42% and 91.41% accuracy,
respectively. The GA produces the least accuracy of 81.23% after completion of 100 generations.
The results are summarized in Figure 10.
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In Figure 11, an experimental evaluation of the prediction accuracy rate of our proposed EAGA
algorithm is done concerning the number of folds in the cross-validation method. The training phase
was applied with a 10-fold cross-validation. The partition of the informational index was done into
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10 sets of equivalent size everywhere 9 sets were prepared as training samples while 1 set is to be
used as test data. This process is conducted for ten rounds, thereby the arithmetic mean of prediction
accuracy is determined. The proposed EAGA algorithm is classified with the MLP classifier and
validated against different folds starting with 1-fold validation to 10-fold validation. Overall it is
observed that the accuracy rate is above 96% in every fold of validation. In 1-fold validation, it shows
an accuracy rate of 97.7%. Nevertheless, the 3-fold validation method shows a slight dip of accuracy
with 96.3% when compared to other folds of the validation method. In the 10th fold of validation,
it can be seen that the performance of classification with MLP shoots up to 97.96% accuracy.
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A comparison analysis of EAGA concerning other sub constituents was performed with different
sizes of data samples. The performance was evaluated with two parameters, which include accuracy and
latency to determine the performance of the proposed attribute optimization algorithm. It is observed
that the classification accuracy reaches its peak value of 97.96% when the data samples size is 700 while
the time taken to predict the disease presence is also a minimum with a value of 1.12 sec compared to
other methods with the EAGA method. It is represented in Table 21.

Table 21. Comparative analysis of classification accuracy of EAGA with GA, E-GA and A-GA.

Data Samples Size Performance GA-MLP E-GA-MLP A-GA-MLP EAGA-MLP

100
Accuracy (%) 91.46 92.76 93.02 94.02

Latency (s) 0.05 0.03 1.06 0.06

200
Accuracy (%) 94.47 94.43 94.87 95.17

Latency (s) 0.88 0.78 0.82 0.8

300
Accuracy (%) 90.98 91.98 92.32 94.32

Latency (s) 0.99 0.93 0.95 0.75

400
Accuracy (%) 87.26 89.56 90.31 94.51

Latency (s) 1.53 1.03 0.97 0.9

500
Accuracy (%) 89.78 91.78 89.67 91.67

Latency (s) 1.73 1.23 1.76 1.04

600
Accuracy (%) 86.33 88.65 89.22 95.22

Latency (s) 2.07 1.77 1.89 1.89

700
Accuracy (%) 92.24 94.14 93.29 97.96

Latency (s) 1.86 1.56 1.92 1.12

Accuracy analysis of the proposed EAGA-MLP model was done with different literature surveys
that are discussed in this study. Several researchers have used different disease datasets in their
studies. These studies used different machine learning approaches on variety of healthcare datasets
to facilitate treatment of disease disorders and generated reliable accuracy metrics. A comparative
analysis is done in Table 22 to show the significant gain in the accuracy rate of EAGA-MLP model.
A 93.58% accuracy was obtained by the authors of Reference [27] using FW-SVM approach. 91.3%
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accuracy was the outcome in Reference [29] where a blended ABC algorithm was used as an attribute
evaluator. Similarly, 93.8% accuracy was generated by Reference [30] by implementing a fuzzy expert
system on the diabetes dataset. Some other works also generated good accuracy rate as shown in the
figure. The EAGA-MLP model shows the optimum accuracy of 97.76% with PIMA Indian diabetes, as
compared to other related works noted in the literature survey section.

Table 22. Parameters for Statistical hypothesis analysis.

Variable Description

m Number of data samples in diabetes dataset
y1 Number of correctly classified samples using fuzzy model
y2 Number of correctly classified samples using EAGA-MLP model
A1 Accuracy obtained using fuzzy model
A2 Accuracy obtained using EAGA-MLP model
S Test statistic measure

As observed in Figure 12, a 97.6% accuracy is produced by the EAGA-MLP model using the MLP
classifier while the fuzzy model [30] gave the second best accuracy of 93.8%. As the accuracy rate is the
percentage of correctly classified data samples so a statistical hypothesis test can be applied here with an
objective to determine the better model among these two to classify diabetic and non-diabetic patients.
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Now from the parameters specified in Table 22, the accuracy of diabetes classification using both
models can be computed as follows.

The accuracy rate using the fuzzy model is denoted as: A1 = y1/m = 720/768 = 93.8
The accuracy rate using the fuzzy model is denoted as: A2 = y2/m = 750/768 = 97.6
Hence the test statistic measure is computed as:

S =
A1 −A2√

2A(1−A)
m

, (10)

where A = (y1 + y2)/2m.
The aim is to show that the global accuracy of the EAGA-MLP model (A2) is better than that of

fuzzy model (A1) for PIMA Indian diabetes dataset. So accordingly the hypothesis is formulated as:

H0 : A1 = A2
{
Null hypothesis denotes both fuzzy and EAGA−MLP model are equal

}
Hβ : A1 < A2

{
Alternate hypothesis denoting EAGA−MLP is better than fuzzy model

}
Now the rejection zone is represented as:

S < sα
(
if true then reject H0 and accept Hβ

)
,

where sα is derived from normal distribution standard and points to a degree of significance α
(predefined value taken as 0.5).

∴ S0.5 = 1.65 for 5% significance degree.
It projects that if a norm S < −1.645 is true, it can be inferred with 95% confidence (1 − α) that

EAGA-MLP model is more accurate than fuzzy model.
Now using Equation (10), the value of test statistic measure is obtained as:

S =
93.8− 97.6

√
2 ∗ 0.95 ∗ 0.05/768

= −307.8.

Since, value of S is −307.8 which is much less than −1.645 so it is statistically proved that the
alternate hypothesis holds true and the EAGA-MLP model offers a better performance when compared
to its next best fuzzy model.

The reliability and generalization of a machine learning model is determined if it performs well
with different datasets. The proposed EAGA-MLP model was tested with seven other frequently
occurring disease datasets as shown in Table 23. The number and types of attributes differ in these
datasets. The instances also vary. It was observed that EAGA-MLP gave a very good accuracy of
95.36% with lesser instances as in lung cancer at the same time it generated 93.76% accuracy with the
arrhythmia disease dataset, which had 279 attributes. Hence, irrespective of the number of attributes,
instances or types of attributes the proposed EAGA-MLP model gives a steady and high performance
with different disease datasets. A mean accuracy of 94.7% was observed. Table 23 highlights the
accuracy obtained with the EAGA-MLP model on different disease datasets.
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Table 23. Performance analysis of EAGA-MLP model with different chronic disease datasets.

Disease Dataset Attributes Types Instances Attributes Accuracy (%)

Pima Indians Diabetes Integer, Real 768 8 97.76
Kidney Disease Real 400 25 94.24
Statlog (Heart) Categorical, Real 270 13 95.12
Breast Cancer Real 569 32 94.56
Arrhythmia Categorical, Integer 452 279 93.76
Hepatitis Categorical, Integer 155 19 94.42
Lung Cancer Integer 32 56 95.36
Parkinson’s Real 197 23 92.68

Figure 13 presents the precision metric comparative study. The precision analysis of EAGA-MLP
was also done on these seven disease datasets. An optimum 92.4% was noted with diabetes dataset
while the precision value remained almost steady and did not dip significantly with other datasets.
The heart disease dataset gave a slightly low precision of 88.4% compared to others. The mean precision
obtained after evaluating with different disease datasets is 91%.
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The recall value represents the proportion of accurately labelled positive values to total actual
labels present. The recall measure of the EAGA-MLP model was computed with other disease datasets.
Diabetes showed the highest value of 91.4% while the kidney dataset and arrhythmia dataset generated
the same value of 90.2%. Lung cancer data gave 90% recall value. Mean recall value computed was
89.8%. Figure 14 highlights the recall metric values obtained with different datasets.
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Figure 14. Recall analysis of EAGA-MLP model over different chronic disease datasets.

The F-Score metric provides a balancing act between precision and recall. It is a more realistic
measure to determine the effectiveness of classification. F-score was also used to evaluate the proposed
EAGA-MLP technique with other disease datasets taken into consideration. Among the top three
f-score value obtained with hepatitis, arrhythmia and diabetes datasets were 92.2%, 91.4% and 90.8%,
respectively. The least f-score value with heart disease dataset was 88.2% was. In general, the f-score
value was consistent with all the datasets taken in the study. A very high mean f-score of 90.4% was
the outcome of evaluation. Figure 15 represents the f-score evaluation.
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Figure 15. F-Score analysis of EAGA-MLP model over different chronic disease datasets.

The proposed EAGA algorithm was effectively implemented in the diabetes dataset and produces
an optimized dataset eliminating irrelevant attributes. This reduced attribute set of symptoms was used
to classify patients further using MLP classifier to detect the presence of diabetes. The experimental
analysis was evaluated against crucial performance metrics such as classification accuracy, latency,
precision, recall and F-Score. The EAGA-MLP presents better results when compared with its
sub-components (E-GA-MLP, E-GA-MLP or GA-MLP).
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The classification accuracy of the EAGA-MLP model was also compared with its components
concerning the number of generations. The simulation was performed starting with 10 generations
to 100 generations. It was observed that in almost a round of generation, the proposed EAGA-MLP
model presents better accuracy than its sub-components.

The cross-validation method was also analyzed and the EAGA-MLP also outperformed its
components in terms of accuracy rate.

The size of data samples was also considered for evaluation. With an initial sample of 100 data
samples, the data size was enhanced up to as many as 768 data samples. The EAGA-MLP model
produced an optimum accuracy rate and minimum latency delay in every size of the diabetic sample.

Statistical analysis was performed to evaluate the performance of EAGA-MLP model. Among
literature survey works, fuzzy model gave the best accuracy of 93.8%. Its performance was compared
with EAGA-MLP model using hypothesis testing and it was proved that EAGA-MLP model offered
better results than fuzzy approach.

Performance analysis of EAGA-MLP model was evaluated with seven other disease datasets to
access its performance. Classification accuracy rate of EAGA-MLP was also compared with previous
works in the literature survey. The accuracy of the EAGA-MLP model with diabetes, kidney, heart,
breast cancer, Arrhythmia, hepatitis, lung cancer, Parkinson’s disease are 97.76%, 94.24%, 95.12%,
94.56%, 93.76%, 94.42%, 95.36% and 92.68%, respectively. Precision observed with diabetes, kidney,
heart, breast cancer, Arrhythmia, hepatitis, lung cancer, Parkinson’s disease are 92.4%, 88.6%, 88.4%,
91.6%, 90.2%, 90.8%, 89.2% and 88.8%, respectively. Observed recall value with diabetes, kidney, heart,
breast cancer, Arrhythmia, hepatitis, lung cancer, Parkinson’s disease are 91.4%, 90.2%, 88.6%, 89.4%,
90.2%, 89.8%, 90.0% and 88.4% respectively. F-score value noted with diabetes, kidney, heart, breast
cancer, Arrhythmia, hepatitis, lung cancer, Parkinson’s disease are 90.8%, 89.4%, 88.2%, 90.6%, 91.4%,
92.2%, 89.8% and 90.4% respectively. The mean value of accuracy, precision, recall and f-score was
computed and it was found to be 94.7%, 91%, 89.8% and 90.4% respectively. As it is seen the overall
performance was very much consistent with all eight medical datasets.

6. Conclusions

This study has presented a novel hybrid model approach of Attribute Optimization called the
EAGA technique. This can be called a more enhanced and optimized variation of the Genetic Algorithm
which was used with MLP to detect the presence of diabetes in patients. In this work, the Pima Indian
Diabetes dataset was used to validate the proposed EAGA approach. The maximum 1′s count rule
and a new fitness function evaluation norm were introduced in our proposed algorithm. Chromosome
swapping and their ranking on basis of priority are included in the proposed enhanced attribute
optimization model. Moreover, 1-bit mutation with 2-point crossover operation was used in this study.
A new variation of mutation called Restrict Mutate was applied to the last generation of our EAGA
algorithm, which produced promising results.

Multiple evaluation indicators like accuracy rate, latency rate, precision, recall, f-score were
analyzed in the study. It is seen that the outcomes are promising. The proposed EAGA-MLP model
state an optimum accuracy rate of classification of 97.76% with the least latency delay of only 1.12 sec
to execute the classification process. The results show a precision value of 80.2% with EAGA-MLP
model. The EAGA-MLP hybrid model presents an F-Score of 86.8%. Moreover, the proposed EAGA
is compared with its other constituents and other related existing works of renowned researchers.
It is noted that the presented model outperforms similar existing works.

The proposed EAGA-MLP model presents better results when compared with different folds of
the cross-validation method, and data sample size. Also the presented model was evaluated and tested
with seven other chronic disease datasets like heart disease, breast cancer, kidney disorders among
others. The mean accuracy, precision, recall and f-score obtained was 94.7%, 91%, 89.8% and 90.4%,
respectively. Thus EAGA-MLP approach can be promising for clinical professionals to accurately
determining the presence of Diabetes in patients.
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However, this study has limitations. The data sample size and number of generations can be
increased to enhance and validate its scalability. Future research will focus on a more progressive,
adaptive and execution-oriented approach. The authors aim to update specific characteristics and
metrics such as the size of the population. Furthermore, in future, the developed hybrid model can be
upgraded and modified for classification of images of different disease disorders such as brain, lungs,
thyroid and other real-time image categorization domains.
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