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Abstract: A low-profile high-directivity, and double-negative (DNG) metamaterial-loaded antenna
with a slotted patch is proposed for the 5G application. The radiated slotted arm as a V shape has been
extended to provide a low-profile feature with a two-isometric view square patch structure, which
accelerates the electromagnetic (EM) resonance. Besides, the tapered patch with two vertically split
parabolic horns and the unit cell metamaterial expedite achieve more directive radiation. Two adjacent
splits with meta units enhance the surface current to modify the actual electric current, which is
induced by a substrate-isolated EM field. As a result, the slotted antenna shows a 7.14 dBi realized gain
with 80% radiation efficiency, which is quite significant. The operation bandwidth is 4.27–4.40 GHz,
and characteristic impedance approximately remains the same (50 Ω) to give a VSWR (voltage
Standing wave ratio) of less than 2, which is ideal for the expected application field. The overall size
of the antenna is 60 × 40 × 1.52 mm. Hence, it has potential for future 5G applications, like Internet of
Things (IoT), healthcare systems, smart homes, etc.
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1. Introduction

Mobile or wireless technology is rapidly changing its high-speed data transfer requirement
strategy, thus pushing researchers to develop a faster and dynamic system of communication devices.
Increasingly more users are coming online, making existing fourth-generation (4G) technology approach
capacity, whereas the demand is increasing. Now, fifth generation (5G) mobile technology is being
developed to fulfil this requirement for various applications. Hence, different radio wavebands from
3–5 GHz are allotted to Europe, the USA, and China. Enormous amounts of 5G applications demand
versatile properties in antenna parameters, such as a stable high gain and radiation pattern, good
beam focusing, and directivity. In the last few years, negative index materials (NIMs), also known
as metamaterial, have been widely mentioned in reported articles to expedite the versatility of 5G
antennas, such as the frequency selectivity, beam steering, gain, and bandwidth enhancement [1–5].
A balanced resonator structure using metamaterial has wide applicability within antenna applications.
For instance, microwave image processing [6–8], fluid sensing [9], biomedical or diagonalization
research [10,11], electromagnetic (EM) cloaking and Specific Absorption Rate (SAR) reduction [12,13],
etc. All these studies have shown that the metamaterial behaves well with the antenna. However,
few studies have focused on out-of-band rejection and its practical applications. With the proposal of
fifth-generation wireless systems, people have paid more attention to the use of the necessary band
and good rejection outside the working band. Some new antennas have been designed for good
out-of-band rejection, but the whole structure of these antennas is larger. Some antennas have a
dual-polarization characteristic but do not behave well in the out-of-band rejection. Moreover, other
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filtering antennas with the multilayer coupled radiation structure have been designed and possess an
out-of-band rejection function; however, the high selective filtering property of the antenna needs to be
improved [14].

Numerous communication system and IoT applications in 5G are not just an evolutionary upgrade
of the conventional cellular systems but are envisioned to improve quality of life by encompassing
massive connectivity for new mobile application, e.g., in telemedicine, eHealth, machine-to-machine
(M2M) communication, autonomous vehicles, and smart cities and homes. More recently, the low-profile
antenna with high gain and directivity has been a crucial task for antenna developers. There are only a
few types of antennas that are promising for such applications. An H-plane ridged substrate-integrated
waveguide (SIW) horn antenna mounted on a large ground plane was introduced [15]. This antenna
has an arc-shaped horn aperture with the wideband operation, but due to cone-shaped feeding, it is
more difficult to fabricate. The low-profile surface wave antenna developed by Chen and Shen has a
grounded ceramic slab with a very high dielectric constant (εr = 25) [16]. Besides, it was shown to
achieve a wide bandwidth and a stable and quasi end-fire radiation beam for potential applications.
The log-periodic array antenna is also beneficial since a wide bandwidth is easily achieved for the large
metallic platform in 5G applications. Hu and his research group demonstrated a unique low-profile
log-periodic monopole array antenna, where top-hat loading of the patch structure exemplified a height
reduction benefit [17]. A very low-profile antenna of 0.053 λL (free space wavelength) was reported,
where a wide bandwidth was attained with lower reflected power from the antenna [18]. Artificial
magnetic conductor (AMC) surface-based low-profile antenna also achieved a narrow bandwidth with
a two-dimensional array. AMC shows in-phase reflection characteristics in a particular frequency
spectrum, which expands its applicability as a reflector antenna [19–22]. Earlier than these stated articles,
metamaterial resonators of various shapes were used for low-profile dipole antennas. For example,
dogbone-shaped metallic conductors were implemented in a dipole antenna to enhance symmetric
and antisymmetric resonance. Furthermore, antisymmetric resonance comes along with artificial
magnetism, which helps to reduce the prototype antenna’s thickness [23–27].

The slotted antenna, or the extended arm Vivaldi metamaterial antenna (VMA), has a unique
feature of EM wave propagation modification. This particular shape was first introduced by Gibson [28],
where a sharp coincident of the adjacent patch creates a significant concentration of the EM field.
Besides, the slot lines use a specific radiation mechanism to maintain a strong feeding continuity and
radiating ranges. It is noteworthy to mention that the bandwidth and wideband operation depend on
the microstrip patch dimension. Recent stated [29–32] antennas used an array combination to achieve
versatile characteristics.

In this paper, a high-directivity double-negative (DNG) metamaterial-loaded antenna is reported.
The balanced positioning of the DNG unit cell at both the front and backplane of the antenna harmonizes
the electromagnetic (EM) field distribution. Besides, the retro shape of the slotted antenna and consecutive
DNG cell achieve high reflection. The main goal was to maintain the specific bandwidth from
4.12–4.44 GHz with an average gain of 6.65 dBi both in the simulated and measured case. The realized
antenna was first designed, simulated, and optimized in commercially available Computer Simulation
Technology (CST) microwave studio 2017, followed by the Ansoft 3D electromagnetic high-frequency
simulator (HFSS), and then validated by fabrication and measurement. Thus, the DNG feature and
extended slotted arm patch expedite a particular narrowband operation. The analytical and measured
performance ensure the proposed antenna can be a good candidate for sub-6 GHz potential applications.

2. Antenna Design and Methodology

2.1. Antenna Geometry

The proposed antenna, as shown in Figure 1, illustrates a narrowband operation loaded with a
metamaterial unit. The structure of the slotted metamaterial antenna contains a 60 × 40 mm2 unit cell
antenna, and the feedline was set to 4.32 mm with a width of 2.40 mm to achieve 50 Ω impedance.
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The physical architecture of design and fabricated retro VMA was used on Rogers RO4350B epoxy
PTFE-based materials with a thickness of 1.52 mm. This material maintains a low loss tangent of 0.0037
and relative permittivity (εr) of 3.48. The electrical dimension was 0.58 λ × 0.30 λ × 0.010 λ considering
the lowest −10 dB at the resonance frequency. The patch structure clearly shows an extended V-shaped
arm, creating balance in the EM field resonance. Besides, a significant amount of surface current flows
in each part, which will be discussed in the following sections. Similarly, the ground plane comprises
of the half ground patch with two slits near the feedline and three DNG meta unit cells, ensuring the
balance in the patch structure feeding and surface current control. A tapered V-shaped arm with an
extended patch excites the antenna and steers between the impedance and feed.
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Figure 1. Proposed VMA design geometry (a) front view (b) bottom view; fabricated front (c) and
bottom (d).

In each arm, there are three 3.6 × 0.2-mm-long slits and one parabolic horn adjoined to the tapered
arm with an optimized gap of 2.40 mm. These slits and horns concentrate the electric field at a particular
frequency to achieve a narrowband operation in the desired sub-6 GHz band. Hence, the optimized
physical parameters of the proposed retro VMA are given in Table 1.

Table 1. The dimensions of proposed retro VMA.

Parameter a b c d e f g h i

Value (mm) 60 40 35.20 15.72 5.60 11.20 7.12 4.66 5.01

Parameter j k l m n o p q gl

Value (mm) 17.52 24.80 11.19 5.30 4.32 2.40 14.50 1.0 20
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2.2. Transmission Line Principle Analysis of VMA Geometry

To obtain the retro VMA design for anticipated band operation, we first analyzed the transmission
line principle [33,34] with improved accuracy for the narrow patch [35]. Generally, the edge-coupled
microstrip feed calculated using step-in-width/impedance junction suffers from an impedance mismatch.
Besides, the gap-coupled feed and coplanar microstrip feed each has limitations regarding the power
handling capability and spurious radiation. There is another feeding technique available [33]; rather,
we chose to model and analyze the patch structure using the transmission line model. This model
improves three major aspects in radiative coupling, side slot radiation conductance, and convenient
analytical expression, thus making it more convenient for any microstrip structure. Despite such
a significant advantage of the transmission line method, the results regarding the accuracy and
versatility of the application have limitations. However, the equivalent circuit, as shown in Figure 2,
was approximated following the equation:

fr =
1

2π
√

LeqCeq
, (1)

where fr = resonance frequency of operation, Leq = equivalent inductance, and Ceq = equivalent
capacitance. For low-frequency operation, the effective dielectric constant (εreff) is:

εre f f =
εr + 1

2
+
εr − 1

2
[1 + 12

h
w
]
−1/2

(for w/h > 1), (2)

w =
ν0

2 fr
√
εr+1

2

, (3)

L =
ν0

2 fr
√
εre f f

− 0.824h
(
(εre f f + 0.3)(w

h + 0.264)

(εre f f − 0.258)(w
h + 0.8)

)
, (4)

where w = width of microstrip patch, h = height of substrate, and υ0 = velocity of light in free space.
They are subject to fringing effects, which means the patch of the microstrip antenna looks electrically
greater than its physical dimensions. It is noteworthy to mention that an increase of the substrate
height expedites fringing and leads to larger separations between the feedline and resonance frequency.
However, inductors (L1 to L6) and capacitors (C1 to C6) individually signify each microstrip on the
proposed antenna. Leq and Ceq are calculated using Equations (3) and (4) using the lumped components’
characteristics [36,37].Sensors 2020, 20, x FOR PEER REVIEW 5 of 20 
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2.3. Metamaterial DNG Unit Cell Design Development and Refinement

Metamaterial DNG unit cell embedded in the proposed retro VMA is a design based on the
finite integration technique (FIT) and detailed design procedure reported in the article [38]. This split
pitch square (SPS) design forms a perfect resonance circuit using the microstrip patch; thus, the EM
signal is stuck between two vertically balanced sections. Moreover, impedance and admittance have
been calculated through proper stimulation to obtain negative index metamaterial properties, widely
termed as DNG. Figure 3 illustrates the overall design evolution with dielectric parameters (ε, µ) for
DNG characteristics’ existence in the operational bandwidth numerically. The initial unit cell design,
design-1 (Figure 3a), started with the SPS patch near the structure edge and the mirror-reflexed L shape
at the center with a gap of 0.5 mm. The negative index of ε = 3.4 starts at approximately 4.32 GHz and
continues up to −26.5, though µ starts to show a positive index of 1.64. Unfortunately, at 4.27 GHz,
µ is only −0.62, which implies that design-1 has a DNG feature but is not so significant in the entire
operational bandwidth. Followed by design-2 and design-3 in Figure 3b,c, both parameters try to
dominate each other, specially design-3. Design-2 includes an additional square patch without center
patching, whereas design-3 comprises the L shape patch. Thus, the mutual resonance expedites but
shifts the permittivity (−8.15, at 4.4 GHz) and permeability (−0.81, at 4.29 GHz) at the edge of the
bandwidth in design-3. Besides both designs, the performance variation indicates combining and
optimizing the patch gaps and widths would enhance the possibility of obtaining a more negative
index simultaneously. Finally, in Figure 3d, optimizing the square patch width horizontally obtains the
metamaterial DNG unit cell’s geometry. Notably, the waveguide port configuration achieves ε = −16.2
and µ = −0.55 at 4.30 GHz. Therefore, the floquet port excitation technique was further investigated
numerically to verify the DNG characteristics.
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The waveguide port configuration reveals the X band performance of SPS [38], but to validate
the negative permittivity (ε) and permeability (µ) feature for the proposed antenna, CST’s default
Floquet theorem was adopted. The theorem considers the SPS as a periodic structure, and periodic
boundary conditions for theta (θ), and phi (ϕ) accordingly. The Eigenmode solver was applied
particularly for TE10 mode and the corresponding dielectric properties (ε, µ) are plotted in Figure 4.
The simulated data illustrate that the real value of ε is approximately −1.1, and the real µ is −9.4 at
4.27 GHz. Following the bandwidth (up to 4.4 GHz), the permeability remains negative (−4.94), but
unfortunately, the permittivity becomes positive. Thus, DNG characteristics exist between 4.27 and
4.4 GHz and indicate a potentiality to enhance the performance based on the literature study. However,
the number of the unit cell for the front and ground plane identified through the extensive parametric
study will be described in the following sections.
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2.4. Parametric Study of Antenna

The proposed retro VMA with an extended V arm and metamaterial loading reveals a significant
key performance modifier. Besides other geometrical parameters like the substrate thickness (t),
the V arm notch has a considerable impact on the major antenna parameter, as shown in Figure 5a–f.
For instance, Figure 5a illustrates the metamaterial DNG unit cell loading effect on both sides of the
proposed antenna. The inset of the figure clearly shows that without any meta unit, the loading reflection
(S11) was not significant between 4.25 and 4.4 GHz. Still, there was a gradual increase in the number of
unit cells enhancing the S-parameter from −22 dB to −43 dB in the simulation. The absence of the meta
unit or one unit cell does not demonstrate any improvement of S11, whereas the arrangement of five
units is much better than the rest. As mentioned earlier, the DNG unit cell-balanced structure reinforces
the EM field along with the proposed antenna structure. However, a mutual coupling of the surface
current reduces and slightly shifts the refection parameter for four unit cells. Hence, incorporating
patch geometry is a great effort to improve the performance. Then again, the ground plane with two
adjacent splits illustrates a shifting of the resonance frequency as well as broadening the bandwidth.
For example, gl = 15 mm shows multiple resonance frequencies between 2.75 and 4 GHz, but gradually,
major resonance shifts above 4 GHz as the height increases (Figure 5b). The substrate thickness and
notch length variation follow the same trend of resonance shifting. The lower notch length enhances
the gain rather than the higher dimension in the expected 4–5 GHz frequency spectrum, as shown
in Figure 5c, because the electric field becomes more dominating at the shorter notch. However,
an interesting change was observed for the substrate thickness during the simulation. At the 0.5-mm
thickness, the proposed retro VMA gives S11 exactly at 2.5 GHz with −33 dB as a potential ISM
band operation. As t increases, a smooth tuning of the reflection parameter is demonstrated and
operated between 4 and 4.5 GHz. In Figure 5e, the realized gain (dBi) is shown with the slotted notch
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length changes, with insignificant variation. At the lower and upper band, negative gain is observed,
and hence, the notch length was selected to be 4.60 mm since it has an average value of 4 dBi. The axial
ratio (AR) bandwidth performance (Figure 5f) to ground plane height shows a range of variation
between 17 and 40 dB. Thus, the polarization of the E-field, especially the circularly polarized field,
is made up of two orthogonal E-field components of equal amplitude that do not comply with the
standard. Further study of the antenna will improve this factor.
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2.5. Field Analysis and Surface Current

EM field variation is evident for any microstrip patch antenna since the dimensions are finite both
in length and width. Hence, the fields at the edges of the patch go through fringing since the proposed
retro VMA antenna was modelled using the transmission line principle and are unable to support pure
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TEM mode. Conventionally, we know the electric field moves in the substrate and even a bit out of the
substrate into the air. So, to understand the field variation during EM wave propagation, we must
consider the fringing field line as an impact of εreff (as per Equation (2)). Since εreff is less than the
substrate permittivity in terms of the numerical approach, the EM field propagation continues not only
in the structure but also in the surrounding air too. So, the field analysis shown in Figure 6 can be
analyzed using the basic model (TM10). Here, the patch length must be less than λ/2 (wavelength in
dielectric medium) and equal to λ0/

√
(εreff), where λ0 is the free space wavelength used to consider this

condition. Thus, the E-field varies and shows an intense electric field concentration by one λ/2 cycle
along the X and Y-axis [39]. Starting from 4 GHz (Figure 6a) to 4.4 GHz (Figure 6c), it was observed
that the extended slotted arm with split parabolic horns exhibits a strong to moderate electric field
concentration, referring to Equation (5) [40]:

f0 =
ν0

2√εre f f

[(m
L

)2
+

( n
w

)2
]
, (5)

where m and n are the mode of EM wave propagation through the proposed antenna. Other important
changes along the length and width are microstrip patch variation, which intensifies the extended
arm tank circuits in the two sides’ resonance to exhibit a significant E-field and H-field concentration.
The harmonic resonance of the LC tank circuit becomes distorted as the frequency increases and is
deformed by field polarization. Remarkably, a minor difference in the magnetic field concentration is
noted in Figure 6d–f. From Maxwell’s equation, the intensity of the electric field E and magnetic flux
density B are related using the curl of the electric field [41]. Similarly, the magnetic field intensity H and
electric flux density D use the same calculation with an extra parameter current density J. Therefore,
the standard ‘Helmholtz equation’ solution comes as a wave vector potential as:

E = − jωµεA +
1

jωε
∇(∇.A), (6)

H = ∇×A, (7)

where A is the magnetic vector potential. So, the frequency dependency and vector component are
optimized with increasing frequency, whereas the magnetic field intensity only has a vector product
of A. In the case of UWB antennas, it just concentrates both fields because of the wide conducting patch
area. Thus, the S parameter gives a consecutive resonance or wideband resonance spectrum.

The surface current distribution (Figure 7) of the low-profile antenna at three distinct frequencies
was analyzed to characterize the patch’s key properties. Numerous reported articles have considering
various facts like the dielectric layer [42], and key parameter analysis like the radiation pattern,
Q factor [43], green function for the wave equation [44], etc. Though limitations in each approach
exist, nevertheless, we preferred the green function method since the microstrip patch is thin (z = z′),
and the characteristics of the impedance are known. It was assumed that the patch surface current
has a three-dimensional component, and the corresponding EM field component can be obtained
using Equations (6) and (7). However, using these two equations and applying the green function,
the solution obtained for any arbitrary patch [44] is:

Ex,y =
jω

(2π)2k2

x

sur f ace

ςsur f acee jkxky , (8)

where the k wave number along x and ζ is the tangential electric field component of the corresponding
surface current. Hence, the lower frequency surface current of the proposed antenna remains
insignificant since the electric field does not show the dominating resonance point at the fabricated
structure. At 4 GHz, the surface current near the feedline and extended slotted arm started to show
approximately 23.6 A/m(log). The gradual increase of the operating frequency (like 4.27 and 4.4 GHz)
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continues to show an almost similar current density but loses a significant Ex and Ey field component.
Consequently, after 4.4 GHz, the amount of surface current started to decrease.
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3. Experimental Results and Discussion

We further justified the performance of the proposed retro VMA, fabrication, and after the
measurement was completed, as shown in Figures 1c and 8c. Comparing the reflection coefficient
(S11) performance by using the commercially available Advanced Design System (ADS) 2017, CST
microwave studio, HFSS, and measurement, good agreement relies on the simulation and measurement.
The reflection coefficient measurement was conducted using the keysight Agilent N5227A PNA
microwave network analyzer and radiation analysis through Satimo StarLab, Microwave, and the
satellite laboratory, UKM. ADS simulation was completed based on the equivalent circuit shown in
Figure 2. The S11 response from ADS shows quite a good response due to minimal computational
constraints and the simulation parameter. Besides, the response was used to get the idea of the
equivalent circuit’s compliance with the microstrip patch of the proposed antenna. Figure 8a also
reveals that the difference between the simulated and measured data is due to the fabrication tolerance
and the resistivity form while connecting the SMA port for measurement. However, the three numerical
analyses indicate a resonance frequency at approximately 4.34 GHz with −25 to −60 dB variation.
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The measured S11 is maximum −20 dB at 4.34 GHz with a slightly wider bandwidth of 0.13 GHz.
Concerning the factors of patch structure, substrate height (t), and feeding patch, the transmission line
model-based characteristics’ impedance follow Equation (9) to match the 50 Ω value [45]:

dZi
dx

+ jβ
Z2

i

Z(x)
− jβZ(x) = 0, (9)

where Z(x) is the characteristic impedance, Zi is the input impedance, and β is the phase constant.
So, Figure 8b represents changes of Z(x) by plotting the real and imaginary values. Though the 49.93 Ω
real value is the initial value at 4.27 GHz, unexpectedly, it decreases to 30 Ω gradually at 4.4 GHz.
In Figure 8d, the simulated and measured gain (dBi) are illustrated as a performance comparison. Even
though the negative gain is shown occasionally at some lower and higher frequencies, the expected
operational bandwidth was achieved up to 7.14 dBi. The negative portion simply means the S11

response became insignificant due to ohmic and dielectric loss of the substrate or coupling of the
unit cell antenna and SMA port, external radiation from the feeds and junctions, and excitation of the
surface wave.
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Two different curve fitting techniques were adopted, namely the Gaussian model and the Fourier
Series (FS) model. The Gaussian model general expression [46] is:

y = y0 +
Ae

−4 ln(2)(x−xc)2

w2

w
√

π
4 ln(2)

, (10)
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where y0 = base, A = area, xc = center, and w = FWHM. For each data, a corresponding Gaussian model
plotted in Figure 9a represents the fitted curve of ADS, measured, CST, and HFSS-simulated reflection
value, respectively. The regression model encountered the fourth-order degree of freedom (DF), and the
number of iterations was 9 in the completion of the fitting for each data. The analysis reveals that
the mean square weighted deviation (MSWD) or reduced chi-square values for CST simulation and
measured are 2.00 and 2.10, respectively. Similarly, the MSWD values for ADS and HFSS are 15.5 and
1.86. Thus, a comparative curve fitting shows the deviation of data between CST and the measured
are closer to unity. Therefore, the predicted data deviation of these two methods has a lesser error
percentage of 4.6% (for CST) and 11.1% (for measured values).
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On the other hand, the FS model converges at the eighth order with the best-fitted data for the
four different reflection coefficient (S11) data set. Figure 9b–e clearly shows all approximated S11 data
using the following general model FS function:

y = a0 +
8∑

i=1

ai cos(iωx) + bi sin(iωx), (11)
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where a0 = model constant, ω = fundamental frequency of the signal, and n = 8, the number of
harmonics. The adjusted R-square for ADS, measured, CST, and HFSS are 0.9063, 0.9324, 0.7543,
and 0.908, respectively. It is an unbiased estimate of the fraction of variance, since it was identified
using a precise sample size and some variables. Observing the MATLAB analysis, the FS model of
CST simulated is best fitted for ideal S11 data prediction. Although the measured data for the FS
model are much higher than 0.75, unfortunately, this is the best available approximation in terms of the
computation accuracy and practical perspective. So, the reason behind the deviation of the measured
and simulated results has a rational explanation. Furthermore, the ADS and HFSS software both have
an approximated reflection coefficient either based on the circuit parameter or the simulation set-up.
For ADS, each inductor and capacitor (Figure 2) is estimated for the equation as mentioned earlier.
Further investigation and tuning of these components may reduce this deviation. In HFSS, tetrahedral
meshing and adaptive meshing were performed separately with a limited number of points. It may
lead to possible variation of S11 in the simulation.

Since the proposed antenna followed the transmission line principle to be designed and developed,
the smith chart would be an appropriate tool to analyze the impedance (Z). Figure 10a illustrates Z from
2–6 GHz but particularly focusing on the expected bandwidth operation, which is 4.27–4.4 GHz from
the SC (short circuit) to OC (open circuit) terminal. Starting from the high impedance end (at 2 GHz)
with two full-wave rotations along the transmission line results in 49.93 Ω at 4.27 GHz. As the
maximum measured reflection coefficient point at 4.30 GHz, as shown in Figure 8a, the impedance
shifts to 55.05 − j1.8 and continues to reach 33.72 + j16.08 at 4.40 GHz. VSWR (voltage standing wave
ratio) of the proposed antenna is approximately the following (Figure 10b) standard value over the
operation band. Earlier, the few reported antennas [47,48] recommended, for potential applications of
the most slotted shape, values less than 2. The proposed VMA shows a VSWR of 1.01 at 4.27 GHz and
was maintained close to that up to 4.34 GHz. After that, it increased to 3 at 4.40 GHz and matching
between the transmission line decreased. This compatible VSWR gives a high directivity of more or
less 7 dBi. Besides, the simulated gain (dB) also aligns with the claim, as shown in Figure 10c, where
the operational bandwidth has a range of 6.93–5.65 dB.

Figure 11a,b shows the simulated 3-D far-field radiation pattern of the proposed antenna, where
the radiation efficiency is about 90% at 4.34 and 4.27 GHz. However, the total efficiency is reduced by
46% and 38%. Furthermore, the simulated and measured radiation efficiency are plotted in Figure 11c.
The experimental efficiency dropped down to 80% compared to the simulated one. However, beyond
and above the stated bandwidth, this difference is much more. A lack of proper finishing during
etching leads to the copper layer being missed (less than 0.1 mm in size) in two vertical extended arm
edges. Therefore, it may affect the radiation efficiency. A measured radiation pattern at 4.30 GHz is
illustrated in Figure 11d, which was measured in Satimo Starlab, UKM. The radiation characteristics of
the E-plane (Figure 11e) and H-plane (Figure 11f) were compared through a simulation and measured
environment at 4.30 GHz. The co-polarization and cross-polarization have some deviation due to an
unequal phase distribution, but referring to the specific directional operation, it has strong field pattern
compliance. However, a general discussion of the out-of-band rejection of the prototype introduces
two issues. First, the proposed antenna structure and microstrip patch followed the narrow adjacent
line rather than the wider arm formation. Furthermore, the antenna must maintain the minimal
dimension for a low profile, so the effect of reducing the substrate thickness reveals the tunability
property. Secondly, the electric field at 4.27 GHz indicates an extended V arm has a more concentrated
distribution in several horizontal, vertical, and tapered patches but increasing the resonance frequency
loses this field. Besides, it concentrates the field closer to the feeding point precisely on the lower part of
the parabolic horns. Hence, the out-of-band peaks are a combination of the two effects above, and both
can be tuned by the substrate permittivity value. This tuning is limited by two reasons: (1) On the one
hand, the change of permittivity modifies the width of the antenna; and (2) the values of dielectric
permittivity are conditioned to the available commercial substrates. A comparison of the features is
tabulated in Table 2 in terms of the design gain and development technique, physical geometry, etc. for
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understanding the contribution of the proposed retro VMA. Certainly, the low-profile antenna with
a thin microstrip patch is unable to meet a few novel characteristics. For example, an incompatible
dimension due to the application perspective, conformality, radiation efficiency with specific gain,
and polarization insensitivity. A few relevant papers have a relatively low and high dimension with
competitive parameters. Still, they are underwhelming in terms of the dimension constraint, efficiency,
or adopted technique limitations for the prospective application field. For example, the transmission
line model [49] or filtering [14] technique has a lower dimension compared to the proposed antenna.
Still, those prototypes have limitations like a reduced realized gain or are bulky in size. Similarly,
the characteristic model [50] and the split ring method [51] either suffers from impedance accuracy of
the overall structure or a lack of experimental validation of the projected data. Besides, a robust design
approach, such as stacking [52] or frequency selective surface (FSS) [53], has a significant realized gain,
though the efficiency was not reported in the corresponding article.Sensors 2020, 20, x FOR PEER REVIEW 14 of 20 
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Table 2. Performance comparison of the proposed antenna with relevant reported antennas.

Reference Design
Technique Dimension (mm)

Operating
Frequency

Band (GHz)

Maximum
Realized

Gain (dBi)

Efficiency
(%) Remarks

[50] Characteristic
model 20 × 20 × 1.6 5–20 9 82–87

Superstrate
metamaterial used

for performance
enhancement

[49] CRLH-TL
method 30 × 30 × 1.6 0–10 5.2 78 Monopole antenna

[52] Stacking 180 × 60 0.5–4 6.1 NR 5G lower frequency

[51] Split Ring
method 40 × 45 × 1.57 3–4 7.43 NR No experimental

evaluation

[14] Filtering 40 × 40 3–5 9 NR Bulky in size

[53] FSS 134.5 × 178.14 × 177 3–10 13.9 NR Bulky in size

Proposed
antenna

DNG
metamaterial

loaded
60 × 40 × 1.52 2–5 7.14 80 Low profile and

directive

NR = Not reported.

Moreover, the dimension of these antennas would be incompatible in some 5G applications like IoT
and smart devices. The proposed antenna exhibits potentially better key performance parameters, such as
the measured realized gain of 7.14 dBi and efficiency of 80%. In contrast, the nearest competitive
prototype is above 82% but is unable to maintain the standard characteristic impedance in the
operating frequency.

4. Conclusions

A slotted loaded with DNG metamaterial antenna was proposed for 5G applications. By combining
the meta unit cell’s inherited dielectric characteristics’ modification and the extended arm structure,
a low profile and narrowband directive features were achieved. The physical geometry was shown to
provide balanced EM resonance to maintain standard VSWR and a maximum 7.14 dBi gain at 4.34 GHz.
Furthermore, the electric field and magnetic field distribution on the corresponding bandwidth ensure
a constant operating frequency for future 5G use case scenarios like smart home applications, IoT,
and other features.
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