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Abstract: Development and validation of reliable environment perception systems for automated
driving functions requires the extension of conventional physical test drives with simulations in
virtual test environments. In such a virtual test environment, a perception sensor is replaced by
a sensor model. A major challenge for state-of-the-art sensor models is to represent the large variety
of material properties of the surrounding objects in a realistic manner. Since lidar sensors are
considered to play an essential role for upcoming automated vehicles, this paper presents a new lidar
modelling approach that takes material properties and corresponding lidar capabilities into account.
The considered material property is the incidence angle dependent reflectance of the illuminated
material in the infrared spectrum and the considered lidar property its capability to detect a material
with a certain reflectance up to a certain range. A new material classification for lidar modelling in
the automotive context is suggested, distinguishing between 7 material classes and 23 subclasses.
To measure angle dependent reflectance in the infrared spectrum, a new measurement device based on
a time of flight camera is introduced and calibrated using Lambertian targets with defined reflectance
values at 10%, 50%, and 95%. Reflectance measurements of 9 material subclasses are presented and
488 spectra from the NASA ECOSTRESS library are considered to evaluate the new measurement
device. The parametrisation of the lidar capabilities is illustrated by presenting a lidar measurement
campaign with a new Infineon lidar prototype and relevant data from 12 common lidar types.
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1. Introduction

Advanced driver assistance system and automated driving (ADAS/AD) functions will provide
many benefits such as improved passenger safety and comfort, reduced congestion and emissions
and so forth. ADAS/AD functions will furthermore enable new transportation use cases and
applications [1]. To derive a suitable driving behaviour and respond to changing surrounding
conditions, ADAS/AD functions must rely on environment perception sensors such as lidar (light
detection and ranging), radar and camera. In particular, automated driving functions have a high
demand regarding environment perception, that is, the sensor system need to provide a precise 3D
map of the vehicle’s surrounding. Diverse and redundant sensor types are required to enable a robust
environment perception during all possible weather conditions. A combination of lidar, radar and
camera is considered to eventually provide the necessary capabilities to fulfil these high demands.
Lidar sensors play an essential role in this sensor suite, since lidars provide a depth map with improved
angular resolution compared to radar [2,3]. High costs of mechanically spinning lidars are currently
a limiting factor, however prices are going down with new technologies like MEMS based mirrors,
optical phased array and so forth [2,4]. For example, Druml et al. [5] presented a lidar prototype that
shall enable commercial lidar sensors with a range of more than 200 m for costs less than $200.
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Development and validation of reliable environment perception systems suitable for ADAS/AD
functions represent major challenges in todays automotive industry. Increasing requirements with
respect to costs, safety, and development time demand the extension of conventional test methods,
for example, physical test drives, with simulations in virtual test environments [1,6]. The environment
perception system is simulated in a virtual test environment by sensor models. Hence, sensor models
are an important prerequisite for virtual testing of vehicles with ADAS/AD functions.

The flow chart in Figure 1 illustrates the data flow of object based and raw data based lidar models
in a virtual test environment for ADAS/AD functions. An environment simulation, like Vires VTD [7],
IPG CarMaker [8], CARLA [9] or AirSim [10] simulates the test scenario including infrastructure,
traffic participants, environment conditions and so forth. The true state of the environment, called
ground-truth, is forwarded to the sensor model either as object list or as complete 3D scenario.
An object based lidar model modifies the ground-truth object list according the sensing capabilities
of the specific lidar, for example, field of view. A raw data based lidar model creates a point cloud
based on the 3D scenario. The output of the lidar model serves as input for the ADAS/AD function
under test. Up to now, there is no standard format for the interfaces between virtual environment,
sensor model and ADAS/AD function. A promising approach by Hanke et al. [11], called Open
Simulation Interface (OSI), is currently under development, however the multitude of both commercial
and open-source virtual environments and sensor specific object classification procedures propose
considerable challenges.

Environment 
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Raw data based
lidar model

Object list
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Lidar capabilities 
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reflectance)

Object list
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Figure 1. Schematic illustration of data input and output for lidar sensor models on object and raw data
level. This publication proposes a new approach to include material reflectance and corresponding
lidar capabilities into both object and raw data based lidar models.

Previous work on object-based sensor models include Hanke et al. [12], Stolz and Nestlinger [13]
and Muckenhuber et al. [14]. Hanke et al. [12] suggest a modular architecture for object based
sensor models. The ground-truth object list from the virtual environment is modified sequentially
by a number of modules. Each module represents a specific sensor characteristic or environmental
condition. Stolz and Nestlinger [13] present a generic sensor model to simulate a perfect or zero-error
sensor on object level. The sensor models recognises all objects in the sensor’s field of view correctly.
Object parameters that influence the perception process and disturbing environmental conditions, like
unfavourable weather conditions, are not considered. Muckenhuber et al. [14] introduce an object
based sensor model including coverage based on a simple ray tracing approach, object dependent field
of views and false negative/false positive detections based on probabilistic relationships.



Sensors 2020, 20, 3309 3 of 25

Complex lidar models such as DIRSIG provide very detailed lidar raw data including atmospheric
and thermodynamic components (http://www.dirsig.org), but are computationally demanding and
not implemented into virtual test environments for testing ADAS/AD functions. Automotive raw
data based lidar models, for example, Hanke et al. [15], typically generate point clouds based on
computationally efficient ray-tracing and rendering methods. Several environment simulations are
already capable of providing a perfect lidar point cloud without considering object parameters and
disturbing environmental conditions and a few environment simulations (e.g., https://www.tesis.de/
en/sensorsimulation/) are advertising reflection intensity simulation based on angle between laser
beam and object surface and material properties. However, to our knowledge little is documented on
how and which material parameters are used for deriving these intensity values. In conclusion, current
automotive lidar models typically provide a reduced ground-truth object list or perfect point cloud
without detailed information on considered material properties and corresponding lidar capabilities.
We propose a novel lidar modelling approach that includes angle dependent material reflectance
and corresponding lidar capabilities based on spectral reflectance Rλ relative to Lambertian targets
(Figure 1). Other effects that have an impact on the range performance of a lidar, exceed the scope of this
publication. For example, atmospheric effects, such as rain and fog [16,17], and other environmental
effects, such as solar radiation received by the lidar or modification of the backscattering characteristics
of a wet surface, can considerably influence the lidar range performance. To eventually enable virtual
homologation of ADAS/AD functions, these effects need to be considered and modelled in addition.
The inclusion of environmental effects into the presented lidar modelling approach will be discussed
in perspectives in Section 9.

Angle dependent material reflectance as considered in the presented lidar modelling approach
have been subject to previous studies. For example, Reference [18] measured angle dependent
backscattering properties and hemispherical reflectance of maple wood, red brick, concrete brick,
and asphalt in a laboratory setup in the visible (488 nm), near-infrared (1320 nm), and mid-infrared
(7600 nm) spectral ranges. To be able to collect relevant reflectance measurements of materials and
objects that cannot be easily brought into a laboratory, we introduce a new portable measurement
device for collecting angle dependent reflectance values Rλ in % relative to Lambertian targets at
a wavelength of λ = 945 nm, which is very close to the wavelength of most lidar types.

Sections 2 and 3 introduce the considered material properties and lidar capabilities and suggest
corresponding measurement concepts. Section 4 introduces the lidar modelling approach and explains
how material properties and lidar capabilities can be included into both object and raw data based
lidar models. Section 5 suggests a material classification for lidar modelling in the automotive context.
Section 6 introduces a new measurement device based on a time of flight camera to measure angle
dependent reflectance in the infrared spectrum. Section 7 evaluates the measurements of the new device
using reflectance data from the NASA ECOSTRESS library. Section 8 elaborates on the parametrisation
of the lidar capabilities in the modelling approach by presenting a lidar measurement campaign and
relevant data from common lidar types. Section 9 completes the paper with a conclusion and gives an
outlook on future work.

2. Material Properties

The radiometric response of a material can be described by the bidirectional reflectance
distribution function (BRDF) expressed as fr(ωr, ωi) with ωi being the direction of the incoming
radiation, and ωr being the reflection direction [19]. The unit of the BRDF is 1/sr and it is defined
as the relationship between the reflected spectral radiance Lr(ωr) reflected by the material into the
direction of the sensor and the incidence spectral irradiance Ei(ωi) received by the surface:

fr(ωr, ωi) =
dLr(ωr)

dEi(ωi)
=

dLr(ωr)

Li(ωi)cos(θi)dωi
[

1
sr
]. (1)

http://www.dirsig.org
https://www.tesis.de/en/sensorsimulation/
https://www.tesis.de/en/sensorsimulation/
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The spectral radiance in wavelength Lx(ωx) is defined as the radiant flux emitted, reflected,
transmitted or received by a surface per unit solid angle, area and wavelength:

Lx(ωx) =
∂3Φ

∂λ∂ωx∂Acos(θ)
[

W
m3sr

]. (2)

The corresponding SI unit of Lr is watt per steradian per metre exponent three. Φ is the radiant
flux in watts, λ the wavelength in meters, ωx the solid angle in steradian, Acos(θ) the projected area in
square meters and θ the incidence angle.

The incidence spectral irradiance Ei is defined as is the radiant flux received by a surface per unit
area and wavelength and the corresponding SI unit of Ei is watt per metre exponent three.

Considering a monostatic lidar, laser emitter and receiver are mounted very close to each other
in a single unit. This means, if other external sources of irradiance are neglected, that the direction
ωi of the incidence spectral irradiance Ei and the direction ωr of the reflected spectral radiance Lr are
always equal. Assuming that the BRDF of the considered material remains constant if the material is
rotated parallel to its surface allows to further simplify the BRDF. In this case, the radiometric response
of a specific material depends mainly on the used wavelength λ and the incidence angle θ. The used
wavelength λ is defined by the lidar hardware setup and typically constant. This allows to express
the radiometric response of a material by a function fλ(θ). In the following, the expression spectral
reflectance Rλ(θ) is used to describe the radiometric response of a specific material:

Rλ = f (θ)[%]. (3)

In the following, Rλ will be given in % compared to a 100% Lambertian target at θ = 0◦

(NB: a Lambertian target is an ideal diffusely reflecting surface, quasi-invariant spectrally with
a backscatter coefficient R/π with R being its spectral hemispheric reflectance). For example,
a value of Rλ=905nm(θ = 45◦) = 50% means that, at a wavelength λ = 905 nm and at an incidence
angle θ = 45◦, the respective material has the same reflectance behaviour as a Lambertian target
with Rλ=905nm(θ = 0◦) = 50% at an incidence angle θ = 0◦. Note that values above 100% are
possible, since some materials (e.g., retroreflectors) concentrate the reflected radiance back towards the
illumination source.

To describe the radiometric response of a material by using spectral reflectance Rλ given in %
relative to Lambertian targets has two major reasons:

1. The specification sheets of common lidar types [20–26] describe the lidar performance depending
on Lambertian target reflectance in %. Using spectral reflectance Rλ given in % relative to
Lambertian targets allows to directly link the lidar performance given in the specification sheet
with the presented material measurements.

2. Well defined Lambertian targets are commercially available [27] and compared to specular targets
less prone to angle inaccuracies during measurement campaigns. This makes Lambertian targets
a good choice both for calibration of the newly developed measurement device, introduced in
Section 6, and for lidar parametrisation, as further illustrated in Section 8.

Measurement Concept

To measure the angle dependent reflectance Rλ of a certain material, a measurement device with
a laser transmitter and receiver operating at the wavelength λ are pointed towards the considered
material and moved at a certain distance from θ = 0◦ to θ = 90◦. The laser receiver must provide
a value expressing the amount of backscattered light, such as the intensity I, to eventually derive the
reflectance Rλ of the illuminated surface. The measurement device is calibrated using Lambertian
targets. The spectral reflectivity Rλ of a certain material can then be measured according to the
following expression: The intensity signal Iλ,θ measured at the wavelength λ, at an incidence angle θ

on the material is divided by the intensity signal IL,λ,θ=0◦ measured by the same measurement device
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on a Lambertian target in nadir incidence (θ = 0◦) multiplied by the hemispherical spectral reflectance
value RL,λ of the Lambertian target at wavelength λ:

Rλ(θ) =
Iλ,θ

IL,λ,θ=0◦
∗ RL,λ (%). (4)

Figure 2 illustrates the proposed measurement concept to derive the angle dependent reflectance
Rλ of a material. Figure 3 depicts a corresponding exemplary reflectance Rλ curve depending on the
incidence angle θ.

Material to be measured

Laser tra
nsm

itte
r & 

receive
r to

 m
easure

reflecta
nce R 𝛌

[%]

angle 𝞱 [0° - 90°]

Figure 2. Measurement concept to derive the angle dependent reflectance Rλ of a material depending
on incidence angle θ.

90°
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R𝛌 [%]
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Figure 3. Exemplary reflectance Rλ curve depending on the incidence angle θ.

3. Lidar Capabilities

The considered lidar property is the lidar’s capability to detect a material with a certain reflectance
value Rλ up to a certain maximum detection range dx. The wavelength λ is here the wavelength of the
considered lidar. The minimum reflectance value that can still be detected at a certain range r is then
called reflectance limit RL. The reflectance limits RL of a lidar typically increase with range r.

There exits several different definitions for the maximum detection range dx depending on
reflectance Rλ from different perspectives of optics, system engineering, as well as perception. In the
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following, the maximum detection range dx is only based on a single reflectance threshold value and
can therefore be given as discrete value in m. Note that this simplifies the the detectability to 0 and 1,
whereas in reality the detection is more close to a probability over a wide range.

A lidar can detect a certain material if the return signal exceeds the detection threshold of the
lidar. The strength of the lidar return signal varies according to the material reflectance Rλ divided by
the range to the power of two, three or four depending on the relative size of the laser beam compared
to the size of the illuminated surface (Figure 4). If the area of the laser beam is smaller than the
illuminated surface in both dimensions, the lidar return signal decreases proportional to 1/r2. If the
area of the laser beam is smaller than the illuminated surface in one dimension and larger in the other
dimension, the lidar return signal decreases proportional to 1/r3. If the area of the laser beam is larger
than the illuminated surface in both dimensions, the lidar return signal decreases proportional to 1/r4.
In the following, we assume that the laser beam is always smaller than the illuminated surface and
therefore a return signal attenuation proportional to 1/r2.

1/r2 1/r3 1/r4

lidar return signal ∝

Figure 4. Schematic illustration how the relative size of the laser beam (illustrated by red circle)
compared to the size of the illuminated surface (illustrated by black rectangles) affects the attenuation
of the lidar return signal depending on range r.

Measurement Concept

Figure 5 illustrates the proposed measurement concept to derive the reflectance limits RL of a lidar.
Targets with defined reflectance values Rλ are placed at different distances to estimate the maximum
detection range dx for each target, and hence, for the corresponding reflectance value Rλ. To minimise
the impact of wavelength and target orientation, Lambertian targets Lx with ideal diffusely reflecting
surfaces are used oriented normal to the lidar, that is, with incidence angle θ = 0◦. The reflectance
limits RL of the lidar are then equal to the reflectance values Rx of the targets at the corresponding
maximum detection range dx.

A quadratic interpolation

RL(r) = a + b× r2, (5)

between the measurement points and towards 0% reflectance at 0 m range, and a linear cut-off at
the measurement point with the highest reflectance value (in this example Rλ(LN)) are applied to
cover all possible reflectance values. Figure 6 illustrates an exemplary reflectance limits function
RL(r) depending on range r that is inter- and extrapolated to cover all reflectance values. As further
elaborated in Section 4, the function RL(r) divides the detection area (green area in Figure 6) and the
undetected area (red area in Figure 6).
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Figure 5. Measurement concept to derive the reflectance limits RL of a lidar: Lambertian targets LX

with defined reflectance values Rλ are placed at incidence angle θ = 0◦ at different distances to estimate
the maximum detection range dx for each target.

r [m]

R 𝛌 [%]

Detected

Undetected

d1 dx dN

R 𝛌 (L1)

RL(r)

R 𝛌 (Lx)

R 𝛌 (LN)

. . . . . .

. . .
. . .

Figure 6. Exemplary reflectance limits function RL(r) depending on range r. Depending on the target
reflectance R and the distance between target and lidar, i.e., range r, the target is either detected (green
area) or undetected (red area).

4. Lidar Modelling Approach

The following Section describes the proposed lidar modelling approach that allows to include
material properties and corresponding lidar capabilities into both object based and raw data based
lidar models.

As described in Section 2, the considered material property is the angle dependent reflectance
Rλ(θ). Section 3 introduced corresponding lidar capabilities, that is, the reflectance limits RL. Figure 7
illustrates how the spectral directional reflectance Rλ(θ) of the material and the reflectance limits RL
of the lidar can be included into a lidar model.
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Figure 7. Lidar modelling approach taking material properties and lidar capabilities into account.
Depending on whether the range r dependent reflectance limit RL of the lidar is above or below the
incidence angle θ dependent reflectance Rλ(θ), the surface (raw data based lidar model) or object
(object based lidar model) is detected or remains undetected.

Each material in the environment simulation is assigned a reflectance function Rλ(θ) function
that depends on the incidence angle θ. By calculating the angle between laser beam direction and
illuminated surface, the reflectance value Rλ of the illuminated material is derived. By calculating the
distance between lidar and illuminated material, that is, the range r, the corresponding reflectance
limit RL is derived from the lidar capabilities. Depending on whether the reflectance limit RL is above
or below the reflectance Rλ, the illuminated material is detected or remains undetected:

RL(r) > Rλ(θ)→ detected

RL(r) < Rλ(θ)→ undetected.
(6)

In object based lidar models, each object gets assigned a reflectance function Rλ(θ) as a function
of incident angle θ. In raw data based lidar models, the reflectance Rλ(θ) function is defined for
each material.

5. Material Classification

Nature provides a wide range of different materials. However, not all materials are relevant for
automotive simulations and several materials have similar reflectance properties in the near-infrared
spectrum. Materials with similar properties can be grouped together into a single material class
without significant impact on the simulation results. Classifying materials is also a requirement of
environment simulations, since they typically build a new environment based on a certain set of objects
and corresponding materials. The alternative, to build a digital twin based on real measurements of
each included material surface, is very uncommon due to the related high cost and time effort.

Therefore, we suggest a material classification (Table 1), that includes the most relevant materials
for lidar simulations in the automotive context, and a classification schema, that allows to choose
between different levels of detail, that is, material distinction can be done by class or subclass. For each
material class and subclass, mean reflectance values incl. standard deviations, minima and maxima as
a function of incidence angle and wavelength need to be derived from a representative set of samples
and stored in a reflectance database. To fill the reflectance database, measurements from a time-of-flight
(TOF) camera mounted on an angle adjustment device (Section 6) were collected and evaluated against
reflectance values from the NASA ECOSTRESS spectral library (Section 7).
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By assigning a material class or subclass to each object or material surface in the environment
simulation, the reflectance database as well as the presented lidar modelling approach can be easily
included into the virtual test environment (see Section 4).

Table 1. Material list and classification of materials into type, class, and subclass. The numbers
in brackets refer to the amount of spectra from the NASA ECOSTRESS library that were used for
evaluation of the time of flight (TOF) camera measurements (Section 7).

Type Class Subclass

dynamic vehicle

paint

metal (7)

glass (1)

plastic

license plate

reflector

rubber (3)

pedestrian skin

clothing

animal fur

static

road

asphalt (3)

road marking

offroad track

traffic sign reflecting

non-reflecting

construction

concrete (5)

glass (see above)

metal (see above)

wood (2)

nature

rock (84)

soil

photosynthetic vegetation (336)

non-photosynthetic vegetation (47)

6. TOF Camera Measurements

To provide reflectance values for the material classes and subclasses listed in Table 1, reflectance
measurements were collected using a TOF camera, that is capable of recording intensity values.
The used TOF camera is a ’FusionSens Maxx GN8-1XNBA1 60 outdoor’, which operates at 945 nm
and builds on the Infineon TOF sensor ’Infineon IRS1125C’ and a 2 W VCSEL illumination source [28].
The viewing angle of the TOF camera is 60◦ × 45◦, the resolution of the resulting image is
352 × 287 pixels, the measurement range is 0.2–4 m, the depth resolution is 1–2% and the frame
rate is programmable between 5–60 fps.

Being an active sensor in the near infrared spectrum (945 nm), the used TOF camera is expected
to experience a similar angle dependent reflectance behaviour by the illuminated material as a typical
automotive lidar. Having a well defined and constant laser source (2 W VCSEL) in the TOF camera,
this allows to derive the material’s reflectance. To keep the distance to the material at a constant value



Sensors 2020, 20, 3309 10 of 25

and observe angle dependent reflectance values, the TOF camera was mounted on an angle adjustment
device, that was specifically designed and built for this purpose.

Similar to a lidar, the TOF camera works by measuring the travel-time of the modulated light
from the active light source to the scene and back to the sensor and by measuring the intensity of
the received light pulse. Each pixel in the resulting depth image represents the distance between the
camera and the corresponding objects. Each value in the intensity image represents the reflection
properties of the illuminated surface. For our use case, the main feature of the TOF camera is its
capability to record intensity images.

Figure 8 illustrates the measurement principle of the TOF camera including all relevant processing
units and exemplary depth and intensity images depicting a Lambertian target on a non-reflecting
surface. The working principle of a TOF camera starts with an active illumination unit, that emits
pulsed infrared light at 945 nm. A part of the emitted light is reflected and travels back to the camera,
where it is projected by a lens on an array of photodiodes. The phase of the incoming pulsed light
signal is shifted due to the travel time. The phase shift between sent and reflected light pulse is
measured in each pixel by a photonic mixer device (PMD). The PMD transfers the generated charge
of the photodiode either into capacitor A or B, depending on the modulation signal frequency Fmod,
which also determines the frequency of the emitted pulsed light signal. A phase value pi is calculated
by subtracting the collected voltages of A and B. Taking four images of the same scene with 0◦, 90◦,
180◦, and 270◦ phase shift of the emitted light pulse allows to derive both the distance d between TOF
camera and object and intensity of the reflected light I [29]:

φ = arctan
p90◦ − p270◦

p0◦ − p180◦
→ d =

c
2
∗ φ

2πFmod
, (7)

I =
√
(p180◦ − p0◦)2 + (p90◦ − p270◦)2

2
. (8)

To ensure robust operation of the TOF camera both in indoor and outdoor applications and
provide reliable material reflectance values also during sunlight, the influence of background light
must be suppressed. Background light is added on the reflected signal as signal offset. Since the
phase value pi is calculated by subtracting the voltages of A and B, and the offset is equally present
in both measurements, the influence of background light is already minimised by the measurement
principle itself. To further suppress background illumination, the TOF camera uses optical filters,
burst operation mode (same average power, but higher peak power than in continuous operation) and
a special circuitry which directly compensates for any active constant offset, called SBI (suppression of
background illumination) [30].

Figure 9 illustrates the measurement setup including the TOF camera, the angle adjustment device
for setting the incidence angle θ and a PC for data recording. The angle adjustment device allows set
the TOF camera orientation to any incidence angle θ between 0◦ and 90◦. The complete measurement
setup is portable and therefore well suited for collecting measurements on materials and objects that
cannot be easily brought into the laboratory, for example, asphalt.

As stated above, the TOF camera has a viewing angle of 60◦ × 45◦, which represents a more
divergent laser source than typical automotive lidar systems. In order to represent a lidar with less
divergence, only a few center pixels of the TOF image are used for evaluation. The close distance to the
target and the consideration of only a few center pixels result in a small footprint, similar to divergent
laser sources as used by typical automotive lidar systems. As described above, the resulting TOF image
has a resolution of 352 × 287 pixels. A line of 40 pixels (pixels 156–196 out of 352) normal to the tilting
angle in the center of the image (row 145 of 287) has been used for evaluation. At each incidence angle,
a total of 300 measurements were taken with a frame rate of 5 fps. The first 200 measurements were
dismissed to allow both laser source and receiver to reach a good operating temperature. The intensity
value I is then calculated as average of the 40 center pixels of the last 100 measurements, that is,
intensity I represents the mean value of 4000 single measurement points.



Sensors 2020, 20, 3309 11 of 25

electrical

electrical

LED

optical
observed 
material

reflected

photodiode
reflected

illumination unit

modulation
pixel array

phase 
shifting

0°
90°
180°
270°

Fmod

image 
acquisition

phase 
values pi

images at 0°, 90°, 
180°, and 270°

processing 
system

depth image & intensity image

ph
as

e 
se

le
ct

io
n

Figure 8. Measurement principle of the time-of-flight (TOF) camera including all processing units.
The illustrated example shows a Lambertian target placed on a non-reflecting surface as illustrated in
Figure 9 and the corresponding depth and intensity image taken with the TOF camera at incidence
angle θ = 0◦.

Figure 9. Reflectance measurement setup including the time-of-flight (TOF) camera, the angle
adjustment device for setting the incidence angle θ and a PC for data recording. Lambertian targets,
placed on a non-reflecting surface, were used for calibration.

To calibrate the measurement setup, Lambertian targets with defined reflectance values Rλ(L) at
10%, 50%, and 95% [27] were used. To suppress potentially disturbing reflections by the surrounding
material, the Lambertian targets were placed on a non-reflecting surface (Figure 9). As described above,
the TOF camera measures an intensity value I. The resulting intensity values I depending on incidence
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angle θ and reflectance value Rλ(L) are depicted in Figure 10. The intensity values I decrease with
increasing incidence angle θ approximately according to cos(θ) (Figure 10a). This is expected, since
the amount of illumination hitting the observed surface is reduced with increasing incidence angle θ

by cos(θ).
In case of the 10% Lambertian target, higher values than suggested by the theoretical curve

I(θ = 0◦)× cos(θ), were measured at high incidence angles (θ = 60◦, 70◦, 80◦). This could have two
reasons. First, the return signals of these particular measurements are relatively weak and closer to the
noise floor of the TOF camera than the other measurements, which means that thermal noise and other
disturbing effects might have a greater impact in this case. Second, the Lambertian targets are about
1 cm high and there might be disturbing reflections coming from the edges of the Lambertian target
that could increase the intensity value I at high incidence angles. Measurements at high incidence
angles (θ = 60◦, 70◦, 80◦) of targets with very low reflectance (order of 10% or less) must therefore be
considered with a higher uncertainty and a potential bias of around 1–5%.

Based on the calibration measurements shown in Figure 10, the relationship between intensity
value I and reflectance value R (%) of a Lambertian target at incidence angle θ = 0◦ can be expressed as:

R(%) = −0.2130 + 0.0698× I. (9)

(a) (b)

Figure 10. TOF camera measurements of Lambertian targets with defined reflectance values at
10%, 50%, and 95% [27]: (a) intensity I depending on incidence angle θ, the points represent the
measurements and the dotted line the theoretical curve I(θ = 0◦)× cos(θ), and (b) calibration curve
linking intensity I with reflectance R (%) of Lambertian targets at incidence angle θ = 0◦.

Intensity values were collected for materials listed in Table 1 at incidence angles θ =

[0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦] and reverted to corresponding reflectance values using
Equation (9). The reflectance values are stored together with an image that depicts the observed
material with the measurement setup. Examples are shown in Figure 11.
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Figure 11. Images of observed materials together with the measurement setup and corresponding
reflectance values R (%) depending on incidence angle θ. The depicted reflectance values are measured
by the TOF camera (red, the measurements marked with rectangles are related to the images above)
and derived from the NASA ECOSTRESS library (mean, minimum, and maximum in blue, green, and
black) assuming a reflectance decrease of cos(θ). Following material subclasses are depicted: (a) metal,
(b) glass, (c) rubber, (d) asphalt, (e) concrete, (f) wood, (g) rock, (h) photosynthetic vegetation, and
(i) non-photosynthetic vegetation. Note the different scales of the Y-axis.
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7. Evaluation of TOF Camera Measurements

The following Section evaluates the TOF camera measurements presented in Section 6 and
addresses two major questions:

• To which extent can TOF camera measurements at 945 nm be used to represent the material
reflection behaviour at other wavelengths that are common for lidar?

• How large is the spread within a subclass and how representative are single TOF camera
measurements to capture the reflection behaviour of an entire material subclass?

To address these questions, data from the NASA ECOSTRESS spectral library [31] were analysed
and compared to the TOF camera measurements.

The ECOSTRESS spectral library version 1.0 was established by Meerdink et al. [32] to support
the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission,
which was launched in June 2018 to measure plant temperatures and better understand how plants
respond to stress. The ECOSTRESS library represents an expansion of the Advanced Spaceborne
Thermal Emission Reflection Radiometer (ASTER) spectral library [33], and includes more than 3400
spectra of lunar and terrestrial soils, man-made materials, meteorites, minerals, vegetation, rocks,
and water/snow/ice.

Based on this extensive material library, several material parameters relevant for the automotive
lidar use case can be extracted. A total of 488 spectra have been considered relevant for the automotive
lidar use case and could be related to the material subclasses metal, glass, rubber, asphalt, concrete,
wood, rock, photosynthetic vegetation, and non-photosynthetic vegetation. The amounts of spectra
relevant for each individual subclass are shown in Table 1.

The considered wavelength range (350–15,400 nm covered with 20 nm steps) of the ECOSTRESS
spectral library covers all common lidar wavelengths, which are typically between 830 nm and 940 nm,
apart from a few exceptions at 660 nm and 1550 nm. Figure 12 depicts an exemplary spectrum of
hemispherical reflection (for the material subclass photosynthetic vegetation) based on the ECOSTRESS
library including the wavelengths of common lidar types and the used TOF camera. The same spectrum
of hemispherical reflection including minimum, maximum, mean and standard deviation values was
derived for all material subclasses that could be related to data from the ECOSTRESS library.

Figure 12. Minimum, maximum and mean hemispherical spectral reflectance values incl. standard
deviation based on the ECOSTRESS spectral library for the material subclass photosynthetic vegetation
including the wavelengths of common lidar types and the used TOF camera.
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To evaluate whether the TOF camera measurements at 945 nm can be used to represent the
material reflection behaviour at other wavelengths of common lidar types, the above mentioned 488
spectra of hemispherical reflectance from the ECOSTRESS library, that could be related to 9 material
subclasses, were analysed. The difference between the hemispherical reflectance value at 940 nm (close
to TOF camera) and the hemispherical reflectance value at 660 nm (close to Leica P30/P40/P50), 840 nm
(close to Leica BLK360, Ouster), 900 nm (close to ibeo, Velodyne, Infineon Prototype), and 1560 nm
(close to Leica RTC360/P30/P40/P50) were calculated for each spectrum. The resulting histograms are
shown in Figure 13 and the mean and standard deviation of the difference in hemispherical reflectance
for each material subclass are listed in Table 2.

The corresponding mean values for the wavelengths 840 nm and 900 nm are 0% with standard
deviations of±2% and±1% respectively. The analysis of the wavelengths 660 nm and 1560 nm provide
a larger difference.

(a) (b)

(c) (d)

Figure 13. Difference of hemispherical reflection value at 940 nm (close to TOF camera) and (a) 840 nm
(close to Leica BLK360, Ouster), (b) 900 nm (close to ibeo, Velodyne, Infineon Prototype), (c) 660 nm
(close to Leica P30/P40/P50), and (d) 1560 nm (close to Leica RTC360/P30/P40/P50) for each material
subclass (PS ... photosynthetic; NPS ... non photosynthetic) based on the ECOSTESS libray. Note the
different scales of the axis.
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Table 2. Mean and standard deviation of the difference in hemispherical reflectance depending on
wavelength for each material subclass based on 488 spectra from the ECOSTRESS library. Values are
given in % reflectance. NB: PS ... photosynthetic; NPS ... non photosynthetic; hemispherical reflectance
of asphalt was not available at 1560 nm.

Material Subclass R940 nm − R660 nm R940 nm − R840 nm R940 nm − R900 nm R940 nm − R1560 nm

concrete 2.80± 2.90 0.51± 1.02 0.27± 0.35 −2.90± 3.35

asphalt 1.80± 1.15 0.52± 0.31 0.14± 0.23 -

metal 1.66± 9.93 1.33± 4.97 0.48± 1.95 −14.22± 9.76

wood 14.51± 0.89 0.10± 0.01 −0.45± 0.06 34.27± 0.38

glass −2.51± 0 −0.73± 0 −0.54± 0 −0.85± 0

rock 1.59± 3.58 0.01± 1.40 0.14± 0.56 −1.95± 5.60

rubber 2.59± 2.12 0.21± 0.27 −0.11± 0.17 0.29± 2.02

PS vegetation 39.86± 7.33 −0.10± 1.02 −0.44± 0.81 22.37± 9.41

NPS vegetation 21.96± 7.65 5.15± 2.54 5.14± 2.53 −4.17± 15.16

The ECOSTRESS library samples represent hemispherical reflectance data given in %. To provide
an incidence angle depending reflectance function Rλ(θ) for comparison with the TOF camera
measurements, that fits to the above described lidar use case, in which both incident and reflected
radiance have the same incidence angle θ, the following assumptions were applied:

• The reflectance values of the ECOSTRESS library corresponds to the above described reflectance
value Rλ(θ = 0◦) at incidence angle θ = 0◦.

• The reflectance function Rλ(θ) decreases with increasing incidence angle θ according to cos(θ).
This takes into account that the illumination of a lidar decreases with increasing incidence angle
according to cos(θ).

The incidence angle depending reflectance function Rλ(θ) based on the ECOSTRESS spectral
library can therefore be derived by the following equation:

Rλ(θ) = Rλ(θ = 0◦)cos(θ). (10)

Figure 11 shows the comparison TOF camera measurements and derived ECOSTRESS library
values (based on Equation (10)) for all material subclasses that could be related to one or more spectra
of the ECOSTRESS library.

8. Lidar Parametrisation

Section 3 introduces the reflectance limit function RL(r), that is required to apply the presented
lidar modelling approach, and proposes a corresponding measurement concept. The parametrisation
of the reflectance limit function RL(r) can be done either by conducting a measurement campaign or
by using data that are provided in the specification sheet of some lidar types. The following Section
further elaborates on the parametrisation procedure for the lidar modelling approach by presenting
a measurement campaign to derive the reflectance limit function RL(r) for a new lidar prototype from
Infineon and by presenting relevant data from lidar specification sheets of common lidar types.

8.1. Infineon Lidar Prototype Measurements

Lidar measurements were conducted according to the measurement concept described in Section 3
using a new Infineon lidar prototype (a successor of the lidar that was presented by Druml et al. [5]).
The measurements were carried out in the Carissma indoor test facility in Ingolstadt. The Carissma
facility has been chosen since it provides constant ambient light conditions and a large area of
100 m × 18 m for testing.
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The working principle of the Infineon lidar prototype is depicted in Figure 14. The Infineon lidar
uses a 1D MEMS laser scanning architecture. A laser bar with eight parallel edge emitting lasers
projects a single solid horizontal line. A 1D scanning MEMS mirror is used to sweep the horizontal
illumination line in a vertical direction. For each angular increment of the MEMS mirror a light pulse
is sent out, covering a rectangular area. Objects located in the scene reflect a part of the light back
towards a receiver, which collects the light on a 1D detector array. Each detector element corresponds
to a specific row in the image taken of the scene, whereas each angle increment of the 1D MEMS mirror
corresponds to a specific column. The receiver module detects the reflected laser pulse, amplifies the
signal with transimpedance amplifiers (TIA) and converts it into a 1bit digital signal. The receiver
module includes two arrays with 32 avalanche photodiodes (APD), four IFX 16 channels RX chip
(containing TIA) and an IFX custom lenses.

Figure 14. Architecture overview and working principle of the Infineon lidar prototype including all
relevant components.

The photons emitted by the transmitter are reflected by the objects in the scene, and a small
portion returns back at the receiver. For each of the pixels in the 1D detector array, the time of flight is
measured. Entire digital signal processing and components synchronization is handled by an FPGA.
Both analog and digital data is collected, as well as the post-processed point-cloud lidar output.
Analog (APD/TIA) and digital (Low Voltage Differential Signaling (LVDS)) data are used as input
for a Matlab-framework to perform cross-check between simulation and real data, as well as testing
different configuration and data processing parameters.

The setup for the lidar measurements is depicted in Figure 15 and included the following steps:
three calibrated targets from SphereOptics [27] with defined reflectance values Rλ(L) at 10%, 50%,
and 95% and a size of 50× 50 cm were mounted on a Tripod covered with absorbing tape. Each target
was moved from five meters to the maximum measuring distance in five meter steps. At each position
the following steps were repeated:

1. Check the distance with external laser distance measurement tool (ground-truth).
2. Align lidar vertically and horizontally using an IR camera to check where the laser is shooting

and ensure that at least one APD channel is fully covered by the target’s reflection.
3. Record analog (APD/TIA) and digital (LVDS) data with the lidar.
4. Compare the lidar measurement of the relevant APD channel with the ground-truth data to

evaluate whether the lidar detected the target or recorded a false alarm.
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To compare the lidar measurements with the ground-truth data, a probability of false alarm,
a probability of missed detection and a ranging accuracy value (standard deviation of the
distance calculated from the correctly recognised targets) are calculated for each measurement.
The parametrisation of the presented lidar modelling approach requires only a distinction of whether
a false alarm is recognised or not, that is, whether the probability of false alarm is 0 or 1. If the
measured lidar distance is equal to the measured ground truth including ambiguity-offset scaled
with a factor based on the ground truth distance and maximum measured distance, no false alarm
is recognised, hence the probability of false alarm is equal to 0. If the measured lidar distance is
much smaller or larger than the measured ground truth including ambiguity-offset, a false alarm is
recognised, hence the probability of false alarm is equal to 1. The reflectance limit RL for the respective
Lambertian target is the last measurement that is not counted as false alarm, that is, it is still close
enough to the ground-truth distance taking the ambiguity-offset into account.

Figure 15. Lidar measurement setup in the indoor test-facility Carissma. The Infineon lidar prototype
is pointed towards a Lambertian target that is mounted on a tripod and placed at different distances.

8.2. Lidar Specification Sheets

The specification sheets of several common automotive lidar types include maximum range
information depending on target reflectance. This data can directly be used to parametrise the lidar
capabilities in the presented modelling approach. Figure 16 illustrates reflectance limit functions RL(r)
derived from specification sheets and the suggested method from Section 3 for the following lidar
types—Ouster OS-0 [23], Ouster OS-1 [24], Ouster OS-2 [25], Velodyne Alpha Prime [26], Ibeo Lux
4L/8L/HD [20], Leica P30/P40 [21], Leica P50 [22].



Sensors 2020, 20, 3309 19 of 25

0 50 100 150 200 250
r [m]

0

20

40

60

80

100

R 
[%

]

Ouster OS-0 (>90% detection probability)
Ouster OS-0 (>50% detection probability)
Ouster OS-1 (>90% detection probability)
Ouster OS-1 (>50% detection probability)
Ouster OS-2 (>90% detection probability)
Ouster OS-2 (>50% detection probability)
Velodyne Alpha Prime
Ibeo Lux HD
Ibeo Lux 4L/8L
Leica P30
Leica P40
Leica P50

Figure 16. Reflectance limit functions RL(r) for common lidar types. The points depict the data values
from the respective lidar specification sheet. Note that two points are missing for presentation purposes:
Leica P50 has two additional data points (r, R) at (570 m, 60%) and (1 km, 80%). The solid and dotted
lines connect the origin with the data points and illustrate the cut-off after the last data point according
to the suggested method from Section 3.

To evaluate the specification data provided by lidar vendors, measurement data were collected
using an Ouster OS-1-64 [24] and three Lambertian targets from SphereOptics [27]. The Ouster OS-1-64
has a vertical resolution of 64 pixels and is able to record intensity values in addition to distance
information for each point. The Lambertian targets have defined reflectance values Rλ(L) of 10%, 50%,
and 95% and a size of 50× 50 cm. The following procedure was conducted three times, that is, for each
Lambertian target:

1. A person holding the Lambertian target with its surface normal pointing towards the Ouster
OS-1-64, moves straight towards the Ouster OS-1-64, while the Ouster OS-1-64 is recording both
distance and intensity values (Figure 17).

2. The measurement points that are associated with the Lambertian target are separated from the
remaining points by a combination of automatic and manual data processing. This requires at
least four measurement points to locate the Lambertian target in the point cloud.

r [m]

Person with Lambertian targets
R𝛌(LX) = 10%, 50%, 90%
moving towards OS1-64

Lx

OS-1 64
on tripod recording point
cloud incl. intensity 

Figure 17. Schematic illustration of measurements setup including the Ouster OS-1-64 [24] and three
Lambertian targets from SphereOptics [27] with defined reflectance values Rλ(L) at 10%, 50%, and 95%.

Figure 18 shows the intensity values I of the points associated with the three Lambertian targets
plotted against distance. Measurement points above 37 m could not be associated to the Lambertian
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targets anymore. This makes sense, considering the target size of 50 × 50 cm, the beam divergence of
the Ouster OS-1-64 and the requirements of the applied data processing chain for the detection of the
Lambertian target in the point cloud. At range r = 0 m, the diameter of the laser beam is defined in the
specification sheet with 9.5 mm and the beam divergence of the Ouster OS-1-64 is defined with 0.18◦,
which corresponds to 31.42 cm at 100 m. Hence, to derive the maximum detection range dx of the
Ouster OS-1-64 for targets with reflectance values Rλ(L) of 50%, and 95%, the size of the Lambertian
target need to be at least 1 m × 1 m.
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I

Figure 18. Ouster OS-1-64 intensity values I of the points associated with the three Lambertian targets
against distance r (m).

Figure 18 shows that the Lambertian targets with reflectance values Rλ(L) of 50%, and 95%,
can still be detected at 37 m distance, while the Lambertian target with reflectance value Rλ(L) = 10%
could only be detected until 30 m distance. Hence the measured maximum detection range dx of the
Ouster OS-1 for a 10% reflectance target is 30 m. According to the specification sheet, the maximum
detection range dx of the Ouster OS-1 for a 10% reflectance target should be between 40 m at > 90%
detection probability and 60 m at > 50% detection probability.

9. Conclusions and Outlook

A new lidar modelling approach is presented that shall enable a more realistic representation of
lidar sensors in virtual test environments by taking material properties (i.e., incidence angle dependent
reflectance) and corresponding lidar capabilities (i.e., capability to detect a material with a certain
reflectance up to a certain range) into account. The approach is suitable for both object and raw data
based lidar models.

A material classification that includes the most relevant materials for lidar simulations in the
automotive context is introduced. This allows to establish a reusable material data set that can
easily be implemented into a virtual test environment, that typically provides a similar object and
material distinction.

To collect angle dependent material reflectance measurements, a new measurement device based
on a TOF camera is introduced and calibrated using Lambertian targets. The intensity measurements of
the Lambertian targets decrease with increasing incidence angle θ according to cos(θ) and the intensity
values increase linearly with increasing target reflectance. This shows that the measurement device
behaves as expected and gives confidence in the TOF camera measurements.

Data from the NASA ECOSTRESS library is used to further evaluate the measurements of the
new device.
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Considering the spectra of almost 500 relevant materials reveals that there is only little difference
between hemispherical reflectance values at 940 nm and hemispherical reflectance values at 900 nm
and 840 nm. Hence, the TOF camera measurements at 945 nm may be used to represent the material
behaviour at wavelengths used by several common lidar vendors that is, ibeo, Ouster, and Velodyne.

Comparing the hemispherical reflectance values at 940 nm to the hemispherical reflectance
values at 660 nm and 1560 nm yields large differences (up to 60%) for certain materials. In particular,
photosynthetic and non-photosynthetic vegetation show a strong variation in reflectance depending
on wavelength. The strong change in reflectance between 940 nm and 660 nm in the vegetation data is
linked to the known phenomenon ’red edge’. The chlorophyll in vegetation absorbs most of the visible
light but becomes almost transparent at wavelengths greater than 700 nm. The cellular structure of
the vegetation then causes high reflectance values because each cell acts like a corner reflector [34].
This behaviour is also well observable in Figure 12. Hence, the TOF camera measurements at 945 nm
cannot be used to represent the reflectance behaviour at wavelengths around 660 nm and 1560 nm
and are therefore not well suited for for example, Leica lidar products such as RTC360/P30/P40/P50.
To cover these wavelength, the measurement device would need to be adopted and equipped with
a sensor that allows to record intensity values at wavelengths closer to 660 nm and 1560 nm.

Based on the spectra from the NASA ECOSTRESS library mean, minimum and maximum
reflectance values are calculated for several material subclasses. This data is then compared to
measurements collected with the new measurement device. The comparison allows three main
conclusions:

1. Most TOF camera measurements are in the same order of magnitude as the NASA ECOSTRESS
data. Hence, in most cases a single TOF measurement can be used to capture the correct order of
magnitude of a certain material subclass, that is, around ±10% reflectance. However, as shown in
Figure 16, a reflectance variation of ±10%, can affect a change in maximum detection range of
several 10 m and in a view cases even up to more than 100 m.

2. The NASA ECOSTRESS data show different spread in reflectance for different material subclasses.
Hence, to provide a good representation of the reflectance spread within a material subclass,
single TOF measurements are not sufficient, but a larger data set is required.

3. The TOF camera measurements reveal the importance of angle dependent measurements in
particular for materials with specular reflection behaviour such as metal or glass. Assuming
Lambertian behaviour based on hemispherical reflectance is not sufficient to describe the angle
dependent reflectance of such materials.

The parametrisation of a specific lidar in the presented modelling approach is done by defining its
maximum range depending on the reflectance of the illuminated material. Several lidar vendors
provide maximum range information depending on target reflectance in the specification sheet.
Figure 16 provides an overview of the specification data provided by common automotive lidar
vendors. An ADAS/AD function based on lidar environment perception can only rely on the lidar up
to this specification limits, since the lidar vendor does not provide any guarantee for measurements
collected outside the specification range. However, as shown in Figure 16, the information currently
provided by common automotive lidar vendors typically consists of only one or two data points.
The few values presented in the specification sheets are probably underestimating the real performance
of a lidar under favourable conditions and overestimating the performance under unfavourable
conditions. Information on the variation of lidar performance are required to provide a more
profound basis for developing ADAS/AD functions based on lidar perception. In conclusion, the spare
information currently provided by automotive lidar vendors (Figure 16) allow to parametrise the lidar
within the legal performance limits on which an ADAS/AD function can rely on, but might not be
sufficient for a good parametrisation of the real lidar performance.

Unlike automotive lidar vendors, manufacturers of high-end terrestrial laser scanners, such as
RIEGL, typically provide very detailed data on the maximum measurement range of their products
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depending on target reflectance and external conditions, such as visibility. Figure 19 illustrates the
maximum measurement range specification of the RIEGL VZ-6000 3D ultra long range terrestrial
laser scanner [35] depending on target reflectance in %, scanning speed in kHz and visibility in km.
A similar precise specification from automotive lidar vendors would be very helpful to both better
define the performance limits on which the ADAS/AD function can rely on and for an easy and good
parametrisation of the real lidar performance in the presented lidar modelling approach.
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Figure 19. Maximum measurement range specification of RIEGL VZ-6000 3D Ultra Long Range
Terrestrial Laser Scanner depending on pulse repetition rate (PRR) and visibility (23 km ... standard clear
atmosphere, 15 km—clear atmosphere, 8 km—light haze, 5 km—medium haze). Data was provided by
RIEGL Laser Measurement Systems GmbH.

To conduct a more profound and realistic parametrisation for current automotive lidar types,
a similar measurement campaign, as presented above with an Infineon lidar prototype, is required.
The data that was collected in the presented measurement campaign with the Infineon lidar prototype
are owned by Infineon AG and due to the prototype status of the used lidar device, the authors
do not have the permission to publish the measurements as part of this publication. Nevertheless,
the detailed description of the measurement procedure shall give a good insight on how the lidar
modelling approach can be parametrised in a measurement campaign.

Environmental conditions are not yet taken into account in the presented modelling approach.
Nevertheless, they can have a strong impact on both material properties (e.g., snow cover or wet
surfaces can change the reflectance properties of a material significantly) and lidar capabilities (e.g.,
heavy rain can reduce the detection range significantly). Hence, a more realistic simulation of adverse
environmental conditions can be achieved by adopting the material reflectance function Rλ(θ) of
the illuminated surface and the reflectance limit functions RL(r) of the simulated lidar accordingly.
In terms of material properties, a feasible option is to adapt the material classification by introducing
an additional category ’attribute’ to each subclass, that states whether the surface is dry, wet or covered
with snow, ice or dirt. Investigating the effects of adverse environmental conditions on lidar sensors for
a better understanding of the limitations of this sensor type and for developing more realistic sensor
models are currently ongoing research activities at the VIRTUAL VEHICLE research center.

For the sake of simplicity, the current lidar modelling approach suggests a discrete transition
between detected and undetected region. However, various small factors, for example, thermal
noise in the receiver, add uncertainty to the detection probability. To include this uncertainty,
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a probability distribution between detected and undetected region could be used instead of a discrete
transition. This would require a more elaborate lidar measurement campaign that allows to build the
probability distribution.

In addition to range information, several new lidar types, for example, Ouster OS [23–25], provide
intensity information for each received point. As shown in Figure 20, the received intensity values can
strongly vary depending on the reflectance of the illuminated material. New ADAS/AD functions
might relay on this additional intensity information for object recognition, for example, detection of
lanes or road markings. The presented lidar modelling approach can be extended to provide intensity
values I, since the intensity values are also a function of material reflectance Rλ(θ), range r and
lidar capabilities:

I = f (r, Rλ(θ)). (11)

Including intensity values into the presented modelling approach requires a lidar measurement
campaign with defined test targets, that includes the collection of intensity values and allows to relate
the intensity values to range and reflectance.

Figure 20. Cumulative lidar point cloud collected with an Ouster OS-1 lidar with 64 layers [24]
on a highway junction near Graz, Austria. The colour scale depicts low (red), medium (yellow),
high (green) and very high (blue) received intensity.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Automated driving
ADAS Advanced driver assistance system
LΩ,λ spectral radiance
NPS non photosynthetic
OSI Open simulation interface
PS photosynthetic
Rλ spectral reflectance
RL reflectance limits
TOF time-of-flight

References

1. Watzenig, D.; Horn, M. Automated Driving: Safer and More Efficient Future Driving; Springer: Berlin, Germany,
2016; doi:10.1007/978-3-319-31895-0. [CrossRef]

2. Hecht, J. Lidar for self-driving cars. Opt. Photonics News 2018, 29, 26–33. [CrossRef]
3. Thakur, R. Scanning LIDAR in Advanced Driver Assistance Systems and Beyond: Building a road map for

next-generation LIDAR technology. IEEE Consum. Electron. Mag. 2016, 5, 48–54. [CrossRef]
4. Warren, M.E. Automotive LIDAR Technology. In Proceedings of the IEEE Symposium on VLSI Circuits,

Kyoto, Japan, 9–14 June 2019; pp. C254–C255.
5. Druml, N.; Maksymova, I.; Thurner, T.; van Lierop, D.; Hennecke, M.; Foroutan, A. 1D MEMS

Micro-Scanning LiDAR. In Proceedings of the Conference on Sensor Device Technologies and Applications
(SENSORDEVICES), Venice, Italy, 16–20 September 2018; Volume 9.

6. Stephan, H.; Markus, K. Kapitel 8 Virtuelle Integration. In Handbuch Fahrerassistenzsysteme—2015, Grundlagen,
Komponenten und Systeme fuer aktive Sicherheit und Komfort; Winner, H., Hakuli, S., Lotz, F., Singer, C., Eds.;
Springer: Berlin, Germany, 2015. (In German)

7. VIRES Simulationstechnologie GmbH. VTD—VIRES Virtual Test Drive. Available online: https://vires.
com/vtd-vires-virtual-test-drive/ (accessed on 2 October 2019).

8. IPG Automotive GmbH ‘CarMaker: Virtual Testing of Automobiles and Light-Duty Vehicles’. Available
online: https://ipg-automotive.com/products-services/simulation-software/carmaker/ (accessed on
2 October 2019).

9. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator.
In Proceedings of the 1st Annual Conference on Robot Learning, Mountain View, CA, USA, 13–15 November
2017; pp. 1–16.

10. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous
Vehicles; Springer: Cham, Switzerland, 2018.

11. Hanke, T.; Hirsenkorn, N.; van-Driesten, C.; Garcia-Ramos, P.; Schiementz, M.; Schneider, S.; Biebl, E. Open
Simulation Interface—A Generic Interface for the Environment Perception of Automated Driving Functions
in Virtual Scenarios’ Research Report. 2017. Available online: https://www.hot.ei.tum.de/forschung/
automotive-veroeffentlichungen/ (accessed on 9 June 2020).

12. Hanke, T.; Hirsenkorn, N.; Dehlink, B.; Rauch, A.; Rasshofer, R.; Biebl, E. Generic Architecture for Simulation
of ADAS Sensors. In Proceedings of the International Radar Symposium, Dresden, Germany, 24–26 June 2015.

13. Michael, S.; Georg, N. Fast Generic Sensor Models for Testing Highly Automated Vehicles in Simulation.
Elektrotechnik Inf. 2018, 135, 365–369. [CrossRef]

14. Muckenhuber, S.; Holzer, H.; Rübsam, J.; Stettinger, G. Object-based sensor model for virtual testing of
ADAS/AD functions. In Proceedings of the IEEE ICCVE (International Conference on Connected Vehicles
and Expo), Graz, Austria, 4–8 November 2019.

15. Hanke, T.; Schaermann, A.; Geiger, M.; Weiler, K.; Hirsenkorn, N.; Rauch, A.; Schneider, S.A.; Biebl, E.
Generation and Validation of Virtual Point Cloud Data for Automated Driving Systems. In Proceedings
of the IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan,
16–19 October 2017.

http://dx.doi.org/10.1007/978-3-319-31895-0
http://dx.doi.org/10.1364/OPN.29.1.000026
http://dx.doi.org/10.1109/MCE.2016.2556878
https://vires.com/vtd- vires-virtual-test-drive/
https://vires.com/vtd- vires-virtual-test-drive/
https://ipg-automotive.com/products-services/simulation-software/carmaker/
https://www.hot.ei.tum.de/forschung/automotive-veroeffentlichungen/
https://www.hot.ei.tum.de/forschung/automotive-veroeffentlichungen/
http://dx.doi.org/10.1007/s00502-018-0629-0


Sensors 2020, 20, 3309 25 of 25

16. Goodin, C.; Carruth, D.; Doude, M.; Hudson, C. Predicting the Influence of Rain on LIDAR in ADAS.
Electronics 2019, 8, 89. [CrossRef]

17. Rasshofer, R.H.; Spies, M.; Spies, H. Influences of weather phenomena on automotive laser radar systems.
Adv. Radio Sci. 2011, 9, 49–60. [CrossRef]

18. Basistyy, R.; Genoud, A.; Thomas, B. Backscattering properties of topographic targets in the visible, shortwave
infrared, and mid-infrared spectral ranges for hard-target lidars. Appl. Opt. 2018, 57, 6990–6997. [CrossRef]
[PubMed]

19. Nicodemus, F.E. Directional Reflectance and Emissivity of an Opaque Surface. Appl. Opt. 1965, 4, 767–775.
[CrossRef]

20. Ibeo. Ibeo LUX 4L/ibeo LUX 8L/ibeo LUX HD Datasheet. Ibeo Lux Data Sheet. Available online: https:
//autonomoustuff.com/wp-content/uploads/2019/05/ibeo_LUX_datasheet_whitelabel.pdf (accessed on
14 April 2020).

21. Leica ‘Leica ScanStation P30/P40’ Leica P30/P40 Data Sheet. Available online: https://leica-
geosystems.com/-/media/files/leicageosystems/products/datasheets/scan/leica%20scanstation%
20p30-p40%20ds%20832252%200119%20en%20arch%20bui%20bim%20lr.ashx?la=de-at&hash=
FE9B9FD3A500B5D6332AF0439D725BD8 (accessed on 14 April 2020).

22. Leica ‘Leica ScanStation P50’ Leica P50 Data Sheet. Available online: https://leica-geosystems.com/-/
media/files/leicageosystems/products/datasheets/scan/leica%20scanstation%20p50%20ds%20869145%
200119%20en%20lr.ashx?la=de-at&hash=9ABF78CC529268400306349359BE769A (accessed on 14 April 2020).

23. Ouster ‘OS0 Ultra-Wide View High-Resolution Imaging Lidar’, Ouster OS-0 Data Sheet. Available online:
http://data.ouster.io/downloads/OS0-lidar-sensor-datasheet.pdf (accessed on 14 April 2020).

24. Ouster ‘OS1 Mid-Range High resolution Imaging Lidar’, Ouster OS-1 Data Sheet. Available online: http:
//data.ouster.io/downloads/OS1-lidar-sensor-datasheet.pdf (accessed on 14 April 2020).

25. Ouster ‘OS2 Long-Range High-Resolution Imaging Lidar’, Ouster OS-2 Data Sheet. Available online:
http://data.ouster.io/downloads/OS2-lidar-sensor-datasheet.pdf (accessed on 14 April 2020).

26. Velodyne ‘Velodyne Lidar Alpha Prime’ Velodyne Alpha Prime Data Sheet. Available online:
https://autonomoustuff.com/wp-content/uploads/2019/11/VelodyneLidar_AlphaPrime_Datasheet_
ASbranded.pdf (accessed on 14 April 2020).

27. SphereOptics GmbH ‘Zenith Lite Targets’, Data Sheet. August 2015. Available online: https://sphereoptics.
de/en/wp-content/uploads/sites/3/2014/03/Zenith-Lite-Targets-E.pdf (accessed on 13 February 2020).

28. ‘Gener8 Monstar/Maxx Camera Manual’ User Manual. Available online: https://www.fusionsens.com/
static/media/MaxxMonstarManuel.15caab67.pdf (accessed on 27 March 2020).

29. Plank, H.; Egger, T.; Steffan, C.; Steger, C.; Holweg, G.; Druml, N. High-performance indoor positioning
and pose estimation with time-of-flight 3D imaging. In Proceedings of the 2017 International Conference on
Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; pp. 1–8. [CrossRef]

30. Möller, T.; Kraft, H.; Frey, J.; Albrecht, M.; Lange, R. Robust 3D Measurement with PMD Sensors.
In Proceedings of the 1st Range Imaging Research Day at ETH, PMDTec; ETH Zurich: Zurich, Switzerland, 2005.

31. Jet Propulsion Laboratory, California Institute of Technology. ECOSTRESS Spectral Library—Version 1.0.
Available online: https://speclib.jpl.nasa.gov (accessed on 16 January 2020).

32. Meerdink Susan, K.; Hook Simon, J.; Roberts Dar, A.; Abbott Elsa, A. The ECOSTRESS spectral library
version 1.0. Remote Sens. Environ. 2019, 230, 1–8. [CrossRef]

33. Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER Spectral Library Version 2.0.
Remote Sens. Environ. 2009, 113, 711–715 [CrossRef]

34. Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4,
273–288. [CrossRef]

35. Riegl ‘RIEGL VZ-6000 3D Ultra Long Range Terrestrial Laser Scanner with Online Waveform Processing’
Riegl VZ-6000 Data Sheet. Available online: http://www.riegl.co.at/uploads/tx_pxpriegldownloads/
RIEGL_VZ-6000_Datasheet_2019-09-02.pdf (accessed on 17 April 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/electronics8010089
http://dx.doi.org/10.5194/ars-9-49-2011
http://dx.doi.org/10.1364/AO.57.006990
http://www.ncbi.nlm.nih.gov/pubmed/30129588
http://dx.doi.org/10.1364/AO.4.000767
https://autonomoustuff.com/wp-content/uploads/2019/05/ibeo_LUX_datasheet_whitelabel.pdf
https://autonomoustuff.com/wp-content/uploads/2019/05/ibeo_LUX_datasheet_whitelabel.pdf
https://leica-geosystems.com/-/media/files/leicageosystems/products/datasheets/scan/leica%20scanstation%20p30-p40%20ds%20832252%200119%20en%20arch%20bui%20bim%20lr.ashx?la=de-at&hash=FE9B9FD3A500B5D6332AF0439D725BD8
https://leica-geosystems.com/-/media/files/leicageosystems/products/datasheets/scan/leica%20scanstation%20p30-p40%20ds%20832252%200119%20en%20arch%20bui%20bim%20lr.ashx?la=de-at&hash=FE9B9FD3A500B5D6332AF0439D725BD8
https://leica-geosystems.com/-/media/files/leicageosystems/products/datasheets/scan/leica%20scanstation%20p30-p40%20ds%20832252%200119%20en%20arch%20bui%20bim%20lr.ashx?la=de-at&hash=FE9B9FD3A500B5D6332AF0439D725BD8
https://leica-geosystems.com/-/media/files/leicageosystems/products/datasheets/scan/leica%20scanstation%20p30-p40%20ds%20832252%200119%20en%20arch%20bui%20bim%20lr.ashx?la=de-at&hash=FE9B9FD3A500B5D6332AF0439D725BD8
https://leica-geosystems.com/-/media/files/leicageosystems/products/datasheets/scan/leica%20scanstation%20p50%20ds%20869145%200119%20en%20lr.ashx?la=de-at&hash=9ABF78CC529268400306349359BE769A
https://leica-geosystems.com/-/media/files/leicageosystems/products/datasheets/scan/leica%20scanstation%20p50%20ds%20869145%200119%20en%20lr.ashx?la=de-at&hash=9ABF78CC529268400306349359BE769A
https://leica-geosystems.com/-/media/files/leicageosystems/products/datasheets/scan/leica%20scanstation%20p50%20ds%20869145%200119%20en%20lr.ashx?la=de-at&hash=9ABF78CC529268400306349359BE769A
http://data.ouster.io/downloads/OS0-lidar-sensor-datasheet.pdf
http://data.ouster.io/downloads/OS1-lidar-sensor-datasheet.pdf
http://data.ouster.io/downloads/OS1-lidar-sensor-datasheet.pdf
http://data.ouster.io/downloads/OS2-lidar-sensor-datasheet.pdf
https://autonomoustuff.com/wp-content/uploads/2019/11/VelodyneLidar_AlphaPrime_Datasheet_ASbranded.pdf
https://autonomoustuff.com/wp-content/uploads/2019/11/VelodyneLidar_AlphaPrime_Datasheet_ASbranded.pdf
https://sphereoptics.de/en/wp-content/uploads/sites/3/2014/03/Zenith-Lite-Targets-E.pdf
https://sphereoptics.de/en/wp-content/uploads/sites/3/2014/03/Zenith-Lite-Targets-E.pdf
https://www.fusionsens.com/static/media/MaxxMonstarManuel.15caab67.pdf
https://www.fusionsens.com/static/media/MaxxMonstarManuel.15caab67.pdf
http://dx.doi.org/10.1109/IPIN.2017.8115878
https://speclib.jpl.nasa.gov
http://dx.doi.org/10.1016/j.rse.2019.05.015
http://dx.doi.org/10.1016/j.rse.2008.11.007
http://dx.doi.org/10.1080/01431168308948546
http://www.riegl.co.at/uploads/tx_pxpriegldownloads/RIEGL_VZ-6000_Datasheet_2019-09-02.pdf
http://www.riegl.co.at/uploads/tx_pxpriegldownloads/RIEGL_VZ-6000_Datasheet_2019-09-02.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Material Properties
	Lidar Capabilities
	Lidar Modelling Approach
	Material Classification
	TOF Camera Measurements
	Evaluation of TOF Camera Measurements
	Lidar Parametrisation
	Infineon Lidar Prototype Measurements
	Lidar Specification Sheets

	Conclusions and Outlook
	References

