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Abstract: Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices,
applications, and communication networks are becoming increasingly connected and integrated.
When attacks on IoT networks go undetected for longer periods, it affects availability of critical
systems for end users, increases the number of data breaches and identity theft, drives up the costs
and impacts the revenue. It is imperative to detect attacks on IoT systems in near real time to
provide effective security and defense. In this paper, we develop an intelligent intrusion-detection
system tailored to the IoT environment. Specifically, we use a deep-learning algorithm to detect
malicious traffic in IoT networks. The detection solution provides security as a service and facilitates
interoperability between various network communication protocols used in IoT. We evaluate our
proposed detection framework using both real-network traces for providing a proof of concept,
and using simulation for providing evidence of its scalability. Our experimental results confirm that
the proposed intrusion-detection system can detect real-world intrusions effectively.

Keywords: Internet of Things (IoT); Intrusion-Detection System (IDS); security; deep learning;
machine learning

1. Introduction

The Internet of Things (IoT) has emerged as the next big technological revolution in computing in
recent years with the potential to transform every sphere of human life. With an expanding network of
interconnected Internet-enabled devices, IoT devices are used in a range of applications from connected
cars, smart homes, healthcare, smart retail, and supply-chain management [1,2]. Juniper research
predicts that nearly 38 billion devices will be connected to the Internet by the year 2020 [3].

The rise of this transformative technology is however deeply mired with security and privacy
concerns [4–7]. The massive influx of connected devices introduces new vulnerabilities and opens new
avenues for security attacks. To make things worse, IoT devices are often manufactured with little
regard for security and/or shipped without adequate security controls in place. Research shows that a
large percentage of current IoT devices on the market have serious security flaws and vulnerabilities [8].
Simple IoT devices can be turned into attack vectors if not properly secured. Recent evidence of this
was observed in October 2016 where hacked IoT devices (cameras and DVRs) targeted Dyn, the largest
DNS provider, resulting in massive Internet outage, disrupting the availability of popular websites
such as Twitter, Amazon, and Netflix [9]. More recently, researchers have been able to cause a car crash
in the autopilot mode [10], demonstrating the vulnerabilities of connected vehicles. New trends in
cyber-attacks (ransomware, malware) increasingly target connected medical IoT devices resulting in
attacks on healthcare institutions, compromised electronic health record systems, or in the worst-case
scenario, even loss of life [11].

Even with some security measures in place, IoT networks are still vulnerable to multiple attacks
due to their large attack surface. It is hence essential to be able to design defense mechanisms capable
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of detecting attacks. Security defense measures such as intrusion-detection systems (IDS) are critical
to vulnerable IoT environments. Due to intrinsic resource and computational constraints, traditional
security methods cannot be directly applied to secure IoT systems. Existing research on intrusion
detection for the IoT is largely focused on rule-based detection techniques [12–14]. For efficient
detection of zero-day threats, anomaly-based detection techniques are essential especially in emerging
IoT environments. Also, in an IoT ecosystem, where many devices are constantly generating tons of
data, machine-learning algorithms can be useful to perform automated data analysis and provide
meaningful interpretations and predictions about the system. Use of machine learning for IoT security
is especially very promising to detect any outliers to normal activity in the system. To that end,
we explore an anomaly-based IDS that leverages the use of machine-learning techniques, to detect any
known or unknown attacks on IoT devices in real time.

Our goal is to develop a secure, portable, and ready-to-deploy security system that provides a
practical and effective solution for securing future large-scale IoT networks. In this article, we present
an Integrated Intrusion-Detection (IID) system that works independent of IoT protocols and network
structure, and requires no prior knowledge of security threats. We develop an artificially intelligent
IDS to provide security as a service to IoT networks. We provide an overview of the initial design
framework of the proposed system in our earlier research [15]. In this article, we significantly expand
the framework to incorporate a deep-learning algorithm to adapt to the changing threat landscape
and network topology for anomaly detection. Our approach requires no prior knowledge of captured
network payload binaries, traffic signatures, or compromised node address. The proposed IDS
categorizes the network traffic into sessions and investigates anomalous characteristics of network
activity. The main contributions of this research are:

• Development of an anomaly-based intrusion-detection model using deep learning for
IoT networks.

• Implementation and evaluation of the model for efficiency.

The outline of the article is as follows. Section 2 discusses the literature review and the related
work. Section 3 describes the proposed methodology and implementation of our IDS, including
network monitoring algorithm and anomaly-detection algorithm, and describes how the IID dispatches
a mitigation response. Section 4 provides implementation details of the IDS developed to demonstrate
a proof of concept. Section 5 shows the results for evaluation of this system on real-time network
traffic. Section 6 presents the conclusion and future work.

2. Related Work

While the IoT has gained popularity, security, privacy and reliability challenges pose a significant
barrier to widespread adoption and deployment of these devices [16–19]. The security vulnerabilities
introduced by heterogeneity and interconnectivity of IoT devices and applications makes them a prime
target for cyber-criminals to exploit. The increasing number of attacks and information leaks from
the IoT has resulted in a surge of research addressing security and privacy in this domain [5,7,20,21].
Despite several preventive measures in place, IoT systems continue to be targeted by malicious actors.
It has become more pertinent than ever to emphasize early detection of intrusions to minimize the
negative impact on these systems.

Kasinathan et al. proposed a signature-based IDS for 6LoWPAN-based IoT networks [12]. The goal
of this system was to detect DoS attacks with a lower false positives rate. This system was later extended
to monitor larger networks [22]. Danda et al. proposed a host-based IDS for IoT that also depends on
rule-based detection [23]. Both solutions rely on signature and rule-based detection systems that are
not capable of detecting new and unknown attacks in IoT. These solutions also face the challenge of
frequently updating the signature database.

Le et al. proposed a specification-based IDS, where a human expert manually defines the
rules for each specification, to address RPL attacks such as rank-attack, local repair attack, and
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the resource-depletion attack [24]. Surendar et al. developed a specification IDS using behavioral rules
to detect sinkhole attacks on 6LoWPAN networks [25]. The specification-based systems discussed
above are limited in that they are only as effective as the expertise level of the expert system. Incorrect
specifications can result in false detections and might jeopardize the network security. Intrusion
detection based on protocol model are developed to detect anomalies associated with specific IoT
protocols [25–28]. Raza et al. proposed a hybrid signature and anomaly-based IDS, known as SVELTE,
for IoT networks based on 6LoWPAN protocol [28]. This system is however based on a centralized IDS
and cannot monitor traffic between local nodes in the network and is specifically targeted only towards
detecting routing protocol attacks in IoT. Bostani et al. proposed a hybrid specification IDS for detecting
RPL-based protocol attacks [26]. The specification-based anomaly module was used to analyze the
behavior of the host nodes while the anomaly-based agent employed the unsupervised optimum-path
forest algorithm for projecting clustering models. While this method presented promising results,
performance of the proposed framework can be improved by incorporating data mining techniques
and machine-learning methods.

Machine-learning techniques have been used to improve the effectiveness of intrusion detection
in traditional networks. With the advent of smart attacks on IoT, along with their resource and
computation constraints, it is necessary to explore the use of machine learning for securing IoT
systems. Liu et al. used machine learning and signature-based model to detect new attacks in IoT [29].
This approach uses artificial immune system for self-adaptation and self-learning to detect new
attacks. Even with machine learning, this approach still suffers from the setbacks of a signature-based
detection. Krimmling et al. proposed machine learning for anomaly and signature-based intrusion
detection for securing IoT networks using the Constrained Application Protocol (CoAP) [13] for
transport applications. The authors demonstrated using their own evaluation framework that the
attack detection techniques failed when used individually but presented improved performance
when signature and anomaly-detection approaches were combined. Arrignton et al. proposed a
host-based IDS that uses machine learning for anomaly-based intrusion detection [30]. The behavioral
model proposed in this system uses artificial immune systems that increases in complexity with the
growth of IoT network, eventually becoming resource-consuming, and degrading system performance.
Liu et al. developed an IDS using suppressed fuzzy clustering and PCA algorithms [31]. This approach
combined machine learning and data mining techniques and demonstrated better detection efficiency
as compared to Bayesian and neural-network algorithms. However, with increase in data volume,
efficiency and accuracy of the IDS decreases. The authors also note that new features of IoT will be
necessary to improve their detection model.

It is evident from the recent research that machine learning for intrusion detection in the IoT is
rapidly growing. However, conventional machine-learning algorithms often present low accuracy
and/or less scalability for attack detection on large-scale IoT networks. Despite the existing research
efforts, machine learning for anomaly detection is still in its initial stages. This article aims to
further this research by specifically investigating deep-learning models for intrusion detection in
an IoT environment.

3. Intrusion-Detection Framework

To effectively detect emerging cyber-attacks on the IoT, we develop an independent IID system
aided by deep-learning algorithms. In this section, we discuss the system architecture and components
of the proposed IDS framework.

3.1. System Architecture

Figure 1 shows the IoT network in consideration. IoT devices in the network are portable
and geographically distributed within a range defined by the network and the edge router acts as
the hub or the coordinator. Devices communicate using wireless communication protocols such as
Wi-Fi, Bluetooth BLE, ZigBee, or a proprietary communication protocols such as CoAP or Thread.
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The proposed IDS is a standalone device that can be easily integrated into the IoT network. The IID
works in promiscuous mode, monitoring and analyzing the network traffic, and uses network
virtualization to connect to router or other IoT devices.

Figure 1. Intrusion Detection System Overview.

Below, we briefly outline the different components of our proposed IDS. More details about the
IDS framework and its components can be found in our earlier paper [15].

3.2. Components of Detection System

The proposed IDS functions primarily in three phases, namely the Network Connection Phase,
Anomaly-Detection Phase, and the Mitigation Phase as shown in Figure 2.
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Figure 2. IDS Detection Process.
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3.2.1. Network Connection Phase

During the Network Connection Phase, the proposed IDS attempts to determine and deploy
appropriate network channel for facilitating translation of sniffed network traffic. The IDS works in
transport layer and monitors traffic using two modules in this phase, namely the connection prober
module and the virtual network client module.

(i) Connection Prober: The connection prober module is responsible for sending probe-signals
and broadcast beacons to all the devices within the host IoT personal area network. The module
is executed periodically and on-line, as the communication links are constructed dynamically
within an IoT network. Connection Prober module maintains a list of all the active
communications protocols that are being used in the network. It uses this list to maintain active
network interfaces which can be used to intercept different wireless communication signals,
transmitted in the surrounding environment. Consequently, it attempts to intercept broadcast
beacons, handshake messages, or session requests to learn the communication protocols that
are being used by IoT devices. On receiving a handshake or a session request, the connection
prober module translates the data-packet into appropriate network packet format. Typically,
the connection prober module is designed to use a secondary storage location as a default
cache location that is simultaneously replicated in the physical memory using a cache-handle.
After fetching the bit stream, it uses the known communication protocols to bisect the bit
stream into different networks packets and then feeds these packets into cache and the data
collection and transformation module (discussed in the next subsection).

If the connection prober fails at intercepting the broadcast beacons, or handshake messages,
it attempts to deduce the connection protocol by apprehending the data packets transmitted
during regular data communication of surrounding IoT devices. This is made possible because
CoAP communication cycle involves at least 4 successful messages and when connection
prober fails to intercept a communication, it attempts to gather information from successive
messages, resulting in CP’s probability of success, P(S) = 3

4 . The number of messages in
an IoT communication cycle increases as bare IoT communication is loaded with payload.
With increase in number of messages, probability of successful interception increases, resulting
in P(S) > 3

4 , approaching towards unity. In worst-case scenario, if CP misses the entire IoT
communication cycle, the IDS uses pre-trained neural networks to estimate the network
behavior in the current period. Subsequently, with further training the IDS can be trained to
respond to a new protocol.

(ii) Virtual Network Client (VNC): The VNC module is a client-based network emulator
responsible for establishing compatible network channels with various IoT devices after
gathering information about their network protocols. VNC module transforms the packets
from different network channels and switches the network protocol according to a specific
IoT device.

(iii) Controller: The Controller module is responsible for controlling and interfacing the exchange
of data packets or commands between the data collection & transformation module and the
VNC module. All the modules other than connection prober and VNC module are autonomous
and not governed by the Controller module.

3.2.2. Anomaly-Detection Phase

In this phase, data packets are assembled and transformed before feeding into the machine-learning
module. Instead of requiring a dedicated host or specialized hardware, this module performs
highly optimized data collection and transformation thereby enabling IIDs to be implemented on
resource-constrained networks. The components of this phase are described below.
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(i) Data Collection and Transformation (DCT): DCT module is responsible for stripping the data
packets, extracting the header tags as features, populating the cached database, and feeding
these tuples into machine-learning-based anomaly-detection module. The features extracted
in this work is listed in Table 1. Algorithm 1 details the process where each input network
packet is sliced into distinct layers of the TCP/IP stack, and thereafter, respective header tags
are extracted for each layer in string format. Each non-empty layer is then designated a label
for future reference. Consequently, the extracted header tags are added to a list under the label
of their respective layer, thereby removing any repetition of header tags. The data collection
and transformation module also pipelines these lists back to the cache.

Table 1. Extracted Feature Set.

transmission rate reception rate

transmission to reception ratio activity duration

transmission mode source IP

destination IP datavalue in f ormation

Algorithm 1 Extracting tags from the sniffed network packets.

Require: T - List of all header tags from all packets in network interface queue.
function PACKETHANDLER(pkt) /*where pkt - captured network packet*/

Extract TagString /*Get tagstring from the packet*/
Divide the TagString for each Layer
for every Layer in Packet do

Get LayerName
if Layer 6= Empty then

Split the Tags
end if
for every Tag do

Add the Tag to a list
end for
Assign the List to Layer /*assign list to layer*/

end for
end function

(ii) Machine-learning-based anomaly-detection (MLAD): This module is the principal
machine-learning engine of the proposed IDS, responsible for classifying benign network
traffic from malicious network traffic. It employs a perceptual learning model for performing
anomaly detection. This module is activated when the IDS enters the Anomaly-Detection phase,
which consists of two phases, i.e., the training phase and the detection phase. The training
phase is performed across long intervals of time, and performed off-line. The perceptual
model is trained using supervised learning over the tuples of features generated during the
data-preprocessing. Before feeding the tuple into the perceptual learning model, each tuple is
manually augmented with a binary-classification label representing malicious or benign nature
of network packet. The perceptual learning model uses information gain at each perceptual
layer to filter out the preferred features, before feeding to the next perceptual layer. We discuss
the MLAD module in detail in Section 4.

(iii) Trainer: This module is invoked when MLAD is required to train for an unknown tuple and it
requires human intervention.
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3.2.3. Mitigation Phase

This phase is responsible for mitigating the attack and initiating a proper response. The system
uses two modules for facilitating mitigation response, i.e., the Actuator module and the Handler
module. The Handler component in this module is responsible for executing the mitigation response if
flagged by the Actuator module.

(i) Actuator Module
The Actuator module is responsible for identifying the most suitable mitigation response in
the event of an attack within the IoT network. The mitigation response can either send an
alarm signal or shut down the communication in the network. When the Actuator module is
aware of an appropriate mitigation response, it would activate the Handler module to execute
the response or generate an alarm for the end-user.

(ii) Handler Module
The Handler module is primarily a set of mitigation procedures hard-coded within IID
program to execute a mitigation procedure as a proof of concept. A mitigation procedure
is invoked by the Actuator module in response to an intrusion, and is further executed by
the Handler module. Once the mitigation response is executed successfully by the Handler
module, it logs the type of attack and the mitigation response provided. If the Handler module
is required to raise an alarm for the user, it flags the discovered intrusion for ’requiring user
attention’ and logs this information in the log file.

4. Detection Using Deep Learning

In this section, we discuss the detection algorithm in detail. Specifically, we use deep learning,
which is a subset of machine learning with increased flexibility and accuracy over classical learning
algorithms. We choose deep-learning technique, as it outperforms other solutions in multiple domains
that are highly unstructured and form heterogeneous patterns. They also have an advantage over
other machine-learning algorithms due to their ability to incrementally learn and extrapolate new
features from a limited set of training data. Additionally, the thin and layered structure of sequential
deep neural-network models makes them the best fit for being deployed over a low-powered
and resource-constrained portable IoT device, still facilitating real-time anomaly detection. Below,
we discuss the feature extraction, training, and the traffic classification used in our detection algorithm.

4.1. Feature Set

IDSs use behavioral categorization and response to classify malicious and benign communication.
No single message, or feature on a communication cycle can determine the behavior or the nature
of the communication. Both the qualitative and quantitative features of a communication cycle are
required to be observed over a period of time to yield its behavioral characteristics. We propose the
features presented in Table 1 to characterize these qualitative and quantitative aspects of wireless
communication messages intercepted by the detection module in IoT systems.

In a typical communication cycle between a distinct pair of sender and receiver nodes, the transmission
and reception rates are expected to be similar. These values are however different when the system
is under an attack such as denial-of-service or sinkhole attack. Similarly, transmission-to-reception
ratio is a reasonable indicator of spoofing and masquerading attacks when used in conjunction
with activity duration. Transmission mode determines the state and protocol of the communication.
Based on the pre-trained behavior, IDS can distinguish if the message headers in a communication
cycle have a known vulnerable transmission mode, an unintended sender or receiver (through IP
addresses), a malicious payload, or all of these. To classify malicious and benign traffic, the proposed
IDS thus gathers above features such as transmission-rate, reception-rate, transmission-to-reception
ratio, duration, transmission mode, source-IP, destination-IP, and the data-value information from
the network traffic. These features are selected in consideration of the computational capability,
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and the processing to performance ratio of portable low-powered, resource-constrained IoT devices.
Our system caches these features and generates meta-features by preprocessing the data. During data
preprocessing, IID calculates the probability distribution of the extracted meta-features as shown in
Equation (1).

fp = {P(B0), P(B1), ...., P(B7)} (1)

where P(Bi) is the probability of each Byte “1” observed in the ith Byte position, and

f = L( f0), (2)

where the function L : R8 7→ R8 in Equation (2) is the logical mapping, i.e., if P(Bi) is greater than a
half, the probability is mapped to 1, or else, 0.

The set of features represents a tuple of input data for the machine-learning algorithm. Each tuple
is represented as a data-vector dv reduced from f , before feeding data into the neural network.
Consequently, each meta-feature set can be represented as a feature vector fv at a time instance n,
generated as,

fv(n) = dv(n)⊕ dv(n− 1), (3)

where ⊕ is an exclusive-or operator applied to each position of bits in the vector.

Feature Extraction

The proposed IDS uses perceptual learning model for both data collection and feature extraction,
as well as for anomaly detection. As described earlier, during the Network Connection phase,
network traffic is intercepted, and raw features are extracted from the network packets. The data
collection and transformation module then produces secondary features, also known as meta-features,
by preprocessing the cached primary features. Consequently, the data collection and transformation
module concatenates the set of primary features with the set of secondary features to create a tuple.
Essentially, each tuple is a set of raw features and the meta-features of a data-packet. Thereafter,
the data collection and transformation module feeds the tuple into the perceptual learning model
for training.

4.2. Deep-Learning-Based Anomaly Detection

We use a Deep Belief Network (DBN) to fabricate the feed-forward Deep Neural Network (DNN)
as the perceptual learning model. A DBN is a model of un-directed connections between different
layers, where each layer comprises n-number of neural nodes, while a DNN is a type of feed-forward
neural network with many layers. Although a DNN can be fabricated in different ways, an advantage
of developing a DNN model from a DBN model is that the DBN layers can be initially trained
using unsupervised learning algorithm. DNN can thus be created from a model pre-trained using
unsupervised learning which is very fast in comparison to supervised learning. We use the pre-trained
layers of DBN model to create a DNN model. (Figure 3).

As shown in Figure 3, the weights for all the hidden layers of this DBN model, denoted by
wi, are obtained by performing unsupervised training. However, the parameters generated from
this unsupervised training are only used for assigning the initial set of weights. For each network
transaction, a binary-classification layer and label information (a) is added at the top layer of the
DBN model to successfully construct a DNN. Figure 4 shows that the DBN is augmented with
binary-classification layer and label information to transform into a DNN. Now, this DNN model is
trained with a bottom-up supervised learning approach using the label information a. During the
supervised learning process, each node in a DNN layer is assigned with a weight parameter which are
manipulated by using the gradient descent methodology.
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Figure 3. Deep Belief Network Structure Figure 4. Deep Neural Network Structure

The proposed deep-learning model uses supervised training and binary classification for
identifying malicious activities. If the DNN detects an unknown anomaly or a zero-day attack,
it stores the corresponding tuple of the filtered features to the ‘Cache’ as a feedback. This feedback
mechanism is used during retraining of the DNN, which enriches the feature extraction and labeling
functionality of the detection system. However, if the extracted features are not sufficient to classify
the network traffic, feedback is sent to the data collection and transmission module for retraining.

Input layer
(8 inputs)

Hidden layer 1
(14 nodes)

	H idden  l aye r  3
	 ( 2 n o d e s )

	 O u t p u t  l a y e r
	 ( 2  n o d e s )

Hidden layer 2
(10 nodes)

Figure 5. Deep-Learning model for proposed IDS.

As shown in the Figure 5, we developed a 5-layer deep-learning model for this research, containing
1 input layer, 3 hidden perceptual layers, and 1 output layer which is a binary-classifier layer. The input
layer comprises of 56 nodes which represents an exhaustive list of maximum number of network features
that can be fed into the DNN. As mentioned earlier, these input features are represented as a tuple,
formed from a combination of both the primary and secondary features. During the supervised
training process, each tuple and its label information a is fed to the DNN where it passes through
the first hidden encode layer and gets filtered out as the x most significant features. The x features
are then passed into the second encode hidden layer where they get filtered into y features and the
second encode layer feeds them into the third encode hidden layer. The third hidden encode layer
takes the y features as input from the previous layer and filters two outputs. It also acts as a soft-max
layer that fine tunes the results to classify the attack into categories. The result is passed to the output
layer representing the classification as malicious and benign traffic. Output layer does not perform
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any filtration but ingests the output from the third hidden layer and yields the classification result.
Thus, the rest of the hidden layers i.e., the second and third encode layers also use the labeled traffic to
train themselves in the same way as the first encode layer. Each layer of the DNN thus feeds onto this
data, and maps it to a numerical value. The mapped values are normalized to 0 and 1, where benign
network traffic is represented by the value 0 and malign network traffic is represented by the value 1.
The DNN thus develops a binary classifier for anomaly detection.

As shown in Algorithm 2, the objective function of the proposed DNN model, a binary_crossentropy
loss function, tries to minimize the total cost in the model (Equation (5)). We retrofit the DNN model
for training, and testing the predictions. The proposed IDS is trained and tested against the testing
dataset. However, if the predictions from testing do not match the results from the testing dataset,
the system mixes the training dataset with the testing dataset and re-trains itself with cross-validation.

Algorithm 2 Intrusion-Detection using Deep-Learning model

Require: N - List of all header tags from all packets in network interface queue.
function PREDICT(Cache) /*where cachePipe - is the pipe established with cache*/

matrix ← Cache /*translate packets to matrices*/
Extract f eatures from matrix
Define datasettrain & datasettest

Initialize Sequential deep-learning model
if initialized then

Compile binary-crossentropy classifier
m← Sequential deep-learning model

end if
Training: m← datasettrain

if Training is complete then
Prediction: m← datasettest

if Predictions are correct then
Re-Train the model

else
Invoke Mitigation Phase

end if
end if
Store: classi f icationStore← Predictions /*store the classifier model*/

end function

Training Deep Neural Network

Figure 6 details the training mechanism used for the proposed DNN model. At the lowest level,
when the feature vector fv is input into the DNN, it passes through each layer of the DNN. Neural
nodes in each DNN layer calculates an output using an activation function and generates a filtered
result. In this work, we use a rectified linear unit (ReLU) activation function for developing this system.
ReLU function is defined as:

f (x) = max(0, x), (4)

with the input x e.g., a matrix from a convolved image. Here, the negative values in the matrix x are
set to zero while other values remain constant. Each hidden layer links to the next hidden layer by
using linear-combinations of outputs and feeds the filtered output generated by the ReLU activation
function to the next layer. To facilitate supervised learning, we fabricate the training set as a set
of real-number, K, defined as {( f 1

v , a1), ( f 2
v , a2), ..., ( f K

v , aK)} samples where each tuple represents a
feature vector, f i

v and the corresponding binary classification, ai. Each feature vector fv represents the
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probability in the Byte-representation of meta-features generated from a single data-packet, and a is
the binary label information attached to each data-packet. In the training phase, the input feature fv

enters the DNN through the external nodes that are present at the bottom of the DNN. We initialize the
weights attached with each neural node in the DNN using the DBN model. Consequently, these weight
vectors are modified as more data passes through DNN layers with each cycle in supervised training.

Figure 6. Overview of proposed DNN Training.

The machine-learning algorithm assigns a cost function, cumulative cost function, and an
optimization function [32] to manipulate our detection model. We assign a cost function for each
layer of the proposed DNN as formulated in Equation (5), defined as the mean square error function
between the prediction value and the output, as,

C(w, fv, a) = 1/2 ‖ hw( fv)− a ‖2, (5)

where w is the set of weights designated for each connection between simultaneous layers in the
proposed DNN, a is the binary label information, and hw( fv) is the hypothesis function for every
meta-feature vector. The hypothesis function hw( fv) is responsible for manipulating weights w on
every node in each DNN layer as illustrated in Equation (6), the cumulative cost function for a single
set of training data k, is defined as,

C(w) = 1/K ∑
k

C(w, f k
v , ak) + λ/2

5

∑
n

Ml

∑
i

Ml+1

∑
j
(wn

ji)
2, (6)

where the depth of the DNN model is 5 layers, Ml is the number of nodes in the lth layer, and (wn
ji) ∈ w

are the weights attached to the connection between the ith node in the layer n− 1 and the jth node in
the layer n. As mentioned earlier, the ReLU function transforms the weights in the set w to generate
minimum value for the cost function, C(w, f k

v , ak) and the output of this minimized cost function is
assigned to w∗ as,

w∗ =
∣∣∣∣minimize

w
C(w)

∣∣∣∣ , (7)

where w denotes the minimum absolute value of the cumulative cost function.

5. Implementation and Results

In this section, we demonstrate the implementation of the proposed IDS for IoT networks using a
Raspberry Pi. We implement the DNN using Keras, an open-source neural-network library written in
Python and test using the open Cooja network simulator developed in Contiki operating system [33].
We also use the Texas Instruments sensor tags CC2650 to create the IoT network testbed and evaluate
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our results. We use Keras library because of its light-weight, modularity, and easy extensibility, and
create a Sequential Deep-Learning model, constructed as a linear stack of DNN layers. In addition,
Keras library is fast and can process large amounts of data easily. It automatically distributes the work
over different processing threads with the machine, without the need for providing optimization or
distributed processing parameters as in the case of other machine-learning libraries. Hence, Keras
enables implementation of the anomaly-based IDS on a low-powered resource-constrained Raspberry
Pi, with a raw processing speed of approximately 700 MHz and a volatile memory of 512 megabytes.

The implementation consists of three stages: input data collection and preprocessing, creation and
training of DNN classifier, and testing. Input data collection and preprocessing is used to generate an
IoT network-traffic dataset as an input for the anomaly-detection process (ADP). Creation, and training
of the DNN classifier are the core sub-processes in the ADP and the detection process in general.
Training assigns weights to each classifier node to filter a certain type of input and matures the
binary classifier.

5.1. Data Preprocessing

The IoT simulation dataset consists of 5 million network transactions (represented as features)
from the six sensors distributed in a smart home network simulation. We use Scapy, an open-source
network penetration testing framework, to extract these features by stripping down each network
packet. The 5 million network transactions were pruned out by the input data-preprocessing
program to make the input dataset of 59,529 readings. It is important to note that these network
simulations were gathered from two separate simulations, i.e., first simulation with all benign network
transactions, and second simulation with a mix of malicious network transactions. Each network
transaction in the second network simulation was marked as malicious as the entire network was
affected by the malicious activities occurring within the network. In our experimentation, in the
dataset of 59,529 transactions, a total of 31,046 network transactions were malicious while the rest of
28,483 network transactions were benign.

5.2. Deep-Learning Implementation

As mentioned earlier, we used Python-based Keras machine-learning library for the implementation
of the deep-learning algorithm. During classification stage, training dataset are read, stored in a data
frame and converted into a matrix. Furthermore, these datasets are bifurcated into the training and
testing datasets, where the training dataset comprised of 18,989 benign network transactions and
20,697 malicious network transactions, while the testing dataset comprised of 9494 benign network
transactions and 10,349 malicious network transactions. The system was initially tested using the
labeled testing dataset consisting of 19,843 (i.e., 33.333% of input dataset) transactions, wherein each
record constitutes of the 6 values; transmission-rate, reception-rate, transmission-to-reception ratio,
duration, transmission mode, source-IP, destination-IP, the data-value information, and the binary
label information. After the initial training of DNN using labeled training dataset comprising of 39,686
(i.e., 66.667% of input dataset) transactions, it was run against the testing dataset, without any binary
label information. Since, the testing dataset had 39,686 of unlabeled records, the deep-learning model
produces 39,686 predictions in the form of “0” or “1”.

We then create and instantiate a “Sequential” DNN with 3 hidden layers, and equip the processing
units within each layer with ReLU activation function. Thereafter, the deep-learning model is compiled
and fitted with 150 runs, i.e., epochs, and the number of features. Finally, the deep-learning model is
compiled, and the classifier is assigned and saved in the variable “predictions”. Consequently, in every
test, the results of the classifier are normalized to a binary value.
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5.3. Attack Model

We simulate and evaluate the performance of our proposed detection system against various
attacks on IoT networks such as the sinkhole attack, distributed denial-of-service (DDoS) attack,
blackhole attack, opportunistic service attack and wormhole attack.

• Blackhole Attack: In a blackhole attack, the malicious device falsely advertises shortest route to
destination and then silently drops all packets on its path creating a blackhole in the network.

• Opportunistic Service Attack: In an opportunistic service attack, the malicious device increases its
trust value by providing highly dependable services at first and then later resorts to providing
inferior service for its own profit.

• Distributed Denial-of-Service (DDoS) Attack: In a DDoS attack, multiple compromised IoT devices
attack a target server or other network resources resulting in denial of service for users of the
targeted resource.

• Sinkhole Attack: In a sinkhole attack, the malicious node may announce beneficial route or
falsified path to attract all nodes to redirect their packets through it, acting as a sink.

• Wormhole Attack: In a wormhole tunnel attack, pair of attacker devices collude with each other
through a virtual private connection. The network packets received by the victim device is first
forwarded through the wormhole, and replayed later, resulting in non-optimized routes.

5.4. Evaluation Results

We evaluated the detection system by measuring the performance metrics: recall, precision, and
F1 score. Precision (P) and recall (R) are two important metrics used to evaluate detection performance
when there is an imbalanced classification, and P-R curve refers to a curve composed of these two
metrics. Precision also referred to as the positive predictive value, describes how good a model is
at predicting the positive class. Precision can be defined as the ratio of the number of true positives
divided by the sum of the true positives and false positives.

Precision =
TruePositives

TruePositives + FalsePositives
(8)

Recall is calculated as the ratio of the number of true positives divided by the sum of the true positives
and the false negatives.

Recall(TPR) =
TruePositives

TruePositives + FalseNegatives
(9)

F1 score is the weighted harmonic mean of the precision and recall and reflects the balance between P
and R.

F1 =
2 ∗ (precision ∗ recall)
(precision + recall)

(10)

To draw a comparison with existing IDS, we implemented current solution based on inverse weight
clustering technique [34] and compared its performance with our proposed detection system. In the
following evaluation, DL-Sim refers to the simulation results of the proposed deep-learning (DL)-based
IDS, DL Testbed refers to the evaluation results obtained by running deep-learning algorithms on an
experimental testbed of IoT devices and IWC refers to the existing IDS solution based on inverse weight
clustering. We adopted the same attack data to test the intrusion-detection methods and plotted P-R
curves under different attack scenarios. Based on the analysis of P-R curves, we obtain the optimum
thresholds and calculate the performance evaluation metrics in different attack scenarios as shown in
Tables 2–6.
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Table 2. Blackhole Attack Detection.

Method Precision TPR F1 Score

DL-Sim 97.2% 96.4% 0.97
IWC 89% 95% 0.92

Table 3. Opportunistic Attack Detection.

Method Precision TPR F1 Score

DL-Sim 95.7% 98% 0.97
IWC 94% 98% 0.96

Table 4. DDoS Attack Detection.

Method Precision TPR F1 Score

DL 96% 98.7% 0.973
IWC 91% 95% 0.93

Table 5. Sinkhole Attack Detection.

Method Precision TPR F1 Score

DL-Sim 99.5% 99% 0.99
DL-Testbed 98.47% 97% 0.97

IWC 98.37% 91.2% 0.94

Table 6. Wormhole Attack Detection.

Method Precision TPR F1 Score

DL-Sim 96% 98% 0.97
DL-Testbed 93% 91% 0.92

IWC 98.37% 97% 0.97

From analyzing the P-R curve for blackhole attacks in Figure 7, we observe that the proposed
DL-based IDS has an average precision of 97% compared to 89% precision obtained in the related
IWC-based IDS solution. The recall value of our system is however comparable to existing solution.
We also note that the proposed IDS demonstrates a higher F1 score than other schemes consistently.

From Figure 8, we observe that the proposed DL-based IDS demonstrates higher precision (96%)
and recall (98.7%) rate for detecting DDoS attacks in comparison to related work with 91% precision
and 95% recall rates. Our scheme also presents higher F1 score of 0.973.

Figure 9 shows that the precision for opportunistic service attack normalizes to 95% from the
beginning and is slightly lower than the precision value of compared scheme, whereas the recall rates
for the systems are comparable. When methods share similar recall values (as presented through
TPR), F1-score is an important evaluation metric in determining overall performance. In this case,
with comparable TPR values, as F1 score is slightly higher in DL-based IDS, we can conclude that our
method performs better.
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Figure 7. P-R Curves for Blackhole Attack.
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Figure 8. P-R Curves for DDoS Attack.
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Figure 9. P-R Curves for Opportunistic Service Attack.

To establish reliability of the proposed IDS, we further tested the detection system against sinkhole
and wormhole attacks on a testbed implementation of IoT networks. Six IoT devices were created
using sensor tags and Raspberry Pi functioned as the IID device.

Figure 10 demonstrates high precision value of 99.5% for DL-based IDS through network
simulations and a value of 98.47% when implemented on experimental IoT testbed. The recall rate also
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dropped significantly i.e., from 99% using simulations to 97% while using real sensors. This drop can
be attributed to lossy wireless transmission medium in IoT sensor testbed. Despite the drop in recall
rate, the F1 score was comparable in both the simulation and testbed implementation of DL-based IDS
and higher than the compared system. Both simulation and testbed results seemed to outperform the
related scheme in detecting sinkhole attacks.
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Figure 10. P-R Curves for Sinkhole Attack.

Figure 11, presents the precision and recall values for detecting wormhole attacks. We observe
that the related detection technique outperforms DL-based IDS with higher precision in both network
simulations and experimental testbed scenario. The recall rates are however higher in DL simulation
as compared to the IWC detection technique. DL Testbed results show that it does not perform as well
as the other simulation-based methods in detecting wormhole attacks. It is important to note that our
detection system was trained once before these tests and hence, the training time remains the same.
These results validate that the performance of our proposed IDS in real-network setup is comparable
to the simulated network traffic. Thus, we can also conclude that our proposed system can robustly
detect security attacks under varying network attack scenarios.
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Figure 11. P-R Curves for Wormhole Attack.
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6. Conclusions and Future Work

In this paper, we investigated the feasibility of deploying machine-learning-based intrusion
detection for resource-constrained IoT networks. To that end, we developed an intelligent IDS that
tactfully combines network virtualization and DL algorithm to detect anomalous behavior on insecure
IoT networks. We investigated the optimal solution for deep-learning-based IDS by evaluating
the performance of our scheme against five different attack scenarios, including blackhole attack,
opportunistic service attack, DDoS attack, sinkhole, and wormhole attacks. Through analysis of
precision-recall curves, we obtained an average precision rate of 95% and recall rate of 97% for
different attack scenarios. Our experiments also demonstrate higher F1-scores for all attack scenarios
indicating better overall detection performance by the proposed system. Based on the experimentation
results obtained from network simulations and testbed implementations, we can conclude that
it is both practical and feasible to use DL algorithms for effective anomaly detection in the IoT
environment. Future work includes extending the proposed IDS to detect other types of attacks against
the IoT including location dependent attacks such as cloning of device ID, spoofing, and sybil attacks.
RPL specific misappropriation attacks, isolation attacks, neighbor attacks and direct attacks can also be
detected by tracking device IDs and validating journal entries such as in DODAG (Direction-Oriented
Directed Acyclic Graph) table. A more distributed and computationally optimized version of IID may
be also be used towards identifying zero-day attacks.
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