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Abstract: Recently, device-free human activity–monitoring systems using commercial Wi-Fi devices
have demonstrated a great potential to support smart home environments. These systems exploit
Channel State Information (CSI), which represents how human activities–based environmental
changes affect the Wi-Fi signals propagating through physical space. However, given that Wi-Fi
signals either penetrate through an obstacle or are reflected by the obstacle, there is a high chance
that the housing environment would have a great impact on the performance of a CSI-based
activity-recognition system. In this context, this paper examines whether and to what extent housing
environment affects the performance of the CSI-based activity recognition systems. Activities in
daily living (ADL)–recognition systems were implemented in two typical housing environments
representative of the United States and South Korea: a wood-frame apartment (Unit A) and a
reinforced concrete-frame apartment (Unit B), respectively. The experimental results show that
housing environments, combined with various environmental factors (i.e., structural building
materials, surrounding Wi-Fi interference, housing layout, and population density), generate a
significant difference in the accuracy of the applied CSI-based ADL-recognition systems. This outcome
provides insights into how such ADL systems should be configured for various home environments.

Keywords: smart home; occupant activity recognition; channel state information (CSI); Wi-Fi;
housing environment

1. Introduction

In order to advance smart home environments that can deliver elderly healthcare, energy
savings, and home security, systems must first be able to accurately recognize human activity in
daily living (ADL) [1,2]. Traditionally, ADL-recognition systems rely on dedicated sensors such as
cameras, motion sensors, or other special sensors (e.g., inertial measurement units). However, these
device-based ADL-recognition solutions have limitations in their use, especially since these systems
require significant infrastructural installations in the environment—for example, some such systems
require cameras or motion sensors to be attached to walls or doors to detect activity. Problematically,
some of these technologies face inherent limitations—e.g., cameras raise privacy issues and require
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line-of-sight for human movements—which makes installation concerns and considerations more
pressing. Alternatively, wearable, sensor-based approaches that require users to wear the sensors to
detect activities may offset the infrastructural concerns, but these wearable approaches demand users’
diligent applications of the devices, a fact that can challenge the effectiveness of the technology [1–3].
For these reasons, ADL-recognition still represents a puzzle to many smart-environment developers.

In recent years, device-free activity-recognition approaches have been the focus of ADL-recognition
systems [2], with Wi-Fi signal systems presenting an especially attractive option. Due to its ubiquitous
presence in home environments, Wi-Fi signals have already been employed for human-activity
recognition without additional devices. Such Wi-Fi signal-based approaches do not require a dense
placement of sensors to generate detecting areas of interest. These systems consist of a Wi-Fi transmitter
(an Access Point, AP) and one or several Wi-Fi devices (Receivers) located in different places within
the environment. Also, these Wi-Fi signal-based ADL-recognition systems do not require human
activity in the Line-of-Sight (LOS) or face privacy problems [4], making them a reasonable alternative
to device-based ADL-recognition systems.

Wi-Fi signal-based ADL-recognition approaches exploit fine-grained Wi-Fi signal signatures.
Specifically, Wi-Fi signals propagate from a transmitter to receivers, so human activity may affect the
signals’ propagation paths, which in turn cause the signals to be changed at receivers. For example,
Received Signal Strength (RSS) has been used for fingerprint-based localization systems [5–12]; when a
subject is located between the AP and the receiver, the RSS is changed due to signal attenuation.
Exploiting this RSS, coarse human activity (e.g., vacant home, occupied home, human movement,
walking activity) has been detected with an average 90% accuracy [13]. However, the option to exploit
RSS for ADL-recognition is only available for coarse-level activity detection because RSS captures total
power and exhibits signal variance as a single amplitude, rendering the approach ineffective in a static
and/or complex environment [14,15].

Unlike RSS which has a superimposition layer of multipath signals, Channel State Information
(CSI) exploits channel information between the AP and the receiver at the individual subcarrier level.
Specifically, CSI represents a channel response to the physical environmental changes, which depicts
the multipath effects of signals. Consequently, CSI is more stable and robust than RSS, and CSI
data can be captured from commodity Wi-Fi devices using a Linux CSI 802.11n tool [16]. Recently,
CSI-based ADL-recognition approaches have succeeded at detecting human activities at different levels
of granularity ranging from coarse to fine, as evidenced by the detection successes of technologies
such as Wi-Sleep [17], Wi-Chase [15], E-eyes [18], and RT-Fall (Real-Time Fall) [3]. These approaches
can not only measure various daily activities, but also the fine movement of the chest during breathing
in real time.

Despite these advantages, these CSI-based ADL-recognition systems environments still need
further verification in terms of their performance in various real-world housing environments; Most
previous studies [15,19–22] were conducted in controlled laboratory settings and several few attempts
in real-world environments were mainly conducted in a representative housing environment in the
United States [3,18]. The Housing environment greatly varies by its location and housing type, and
the difference of the housing environment may create a significant impact on the performance of
CSI-based ADL-recognition. For example, Wi-Fi signals have different propagation loss as Wi-Fi
signals penetrate different building materials, such as wood, glass, and concrete [23,24]. In addition
to building materials, other factors such as unit layouts and distance to neighbor units would affect
the performance of CSI-based ADL-recognition. However, it has not been investigated whether
and to what extent existing CSI-based ADL recognition systems can be resistant to different housing
environments. To this end, this paper examines the effects of housing environments on the performance
of CSI-based ADL-recognition systems. In particular, this study selected two units that provide a great
difference in their housing environments, including structural and finish materials, and unit density,
and investigated whether such a difference in housing environment creates a noticeable difference in
the performance of CSI-based ADL-recognition, regardless of the algorithms used for ADL recognition.
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2. Related Work

Recently, exploiting Wi-Fi signals for activity detection has risen in popularity due to the
availability and ubiquitous distribution of these wireless networks and their corresponding commercial
devices. Human-body movements cause Wi-Fi signals to change when the signals are reflected from
the body, which results in variations at the Wi-Fi receiver and, consequently, opportunities to estimate
human activities by analyzing the signal variance. This approach further benefits from the fact that
Wi-Fi signal–based ADL-recognition systems do not require LOS for the activities since Wi-Fi signals
propagate through walls. Thus, systems such as Wi-Vi [25] and WiSee [26] have successfully detected
the existence of humans and have differentiated several human gestures—such as punch, kick, and
push—even on the other side of a wall.

While such RSS approaches have been successfully used for gross-level ADL recognition, CSI
manifests even greater sensitivity to fine-activity differentiation. CSI is more stable and robust than
RSS [20], and the approach can be accessed using several off-the-shelf Wi-Fi devices (e.g., Intel Wi-Fi
Link 5300 NICs and Atheros AR9580 NICs). Furthermore, CSI can be successfully extracted from Wi-Fi
signals using a readily available CSI 802.11n tool [16].

To-date, CSI-based ADL-recognition systems have been applied to various activity-detection tasks.
Firstly, CSI has been used for indoor localization. Location detection indoors is required in various
settings, such as in hospitals (patient tracking) and disaster areas (personnel locating). Wu et al. [27]
compared the accuracies between an RSS-based indoor localization solution and a CSI-based indoor
localization solution using probabilistic approaches (which provide more accuracy than deterministic
approaches [28]); deep learning techniques were employed to reduce the location error of the CSI-based
indoor location systems [20]. In order to reduce complexity, time or system processes, Wu et al. [27]
divided their system into two states: an offline process and an online process. The offline process
served as the training stage for database construction, which in turn trained the CSI fingerprinting
function; then, the online process recorded real-time data and tested the CSI-based approach by
exploiting the database. Their results outperformed existing indoor localization systems.

Another CSI-based approach, Wi-Chase [15], recognized coarse activities—such as walking,
running, and moving hands—by exploiting all CSI-subcarrier data. This approach used two
machine-learning algorithms, k-Nearest Neighbor (kNN) and Support Vector Machine (SVM), and
obtained the highest accuracy for hands moving because hands moving has similar repeating patterns
in a fixed position, unlike locomotive activities. The Wi-Chase study also showed that when more
subcarriers were used with multiple AP and receiver links, the performance of the system improved.

For more diverse in-place activities and for walking-direction recognition, Wang et al. [18]
proposed the E-eyes algorithm. Unlike Wi-Chase, E-eyes algorithm selected known activity data
and measured the similarity between the known activity data and the unknown activity data to
recognize the unknown activity. Specifically, the E-eyes algorithm first differentiated between walking
activity and in-place activity using CSI variance, since walking activity causes higher variance in CSI
than in-place activity. Then, in-place activities were estimated based on their similarity with known
activities using Earth Mover’s Distance (EMD), and walking directions were detected by Dynamic
Time Warping (DTW). The results of the Wang et al. [18] study showed that higher packet-transmission
rates yielded higher accuracy in activity recognition.

Building upon these successes, researchers have applied CSI-based ADL-recognition solutions to
various smart home healthcare systems. Wang et al. [3] proposed RT-Fall algorithms to detect falls,
since fall detection is essential for elderly healthcare in a smart home. The process of detecting falls
using CSI requires high packet-transmission rates and small window sizes because falling occurs
in a very short time [3]. In general, the frequencies of fall and fall-like activities lie between 5 and
10 Hz, while in-place activities lie in the lower frequency range, from 0 to 4 Hz. RT-Fall analyzed the
frequency of CSI to recognize fall and fall-like activities such as sitting down and lying down. They
recognized falls in real time with approximately 90% accuracy. Borhani and Pätzold [29] developed
a simulation model for the Wi-Fi-based fall detection system using a stochastic 3D trajectory model.
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In the simulation, human body, such as the head, arms, and legs, are molded as moving scatters, and
fixed scatters represents static objects (e.g., the walls, appliances, or furniture). The simulation model
detects when a fall occurs during random walking by analyzing the time-variant Doppler effect caused
by an occupant’s activity.

In keeping with the healthcare applications, CSI has been exploited to detect vital signs such
as respiration and heartbeat rates. PhaseBeat [30] used CSI phase data to detect vital signs because
phase data are more stable than amplitude and manifest periodicity. In order to detecting heart rates,
the researchers used a directional antenna at the AP to improve the reflected signal power—heart
movements are too weak to cause variance in the reflected signals. Similarly, Liu et al. [17] detected
breathing rates using CSI. In their study, an AP and receiver were placed at two sides of the subject
for better signal quality. They noticed that sleeping positions affected the performance of respiration
detection: If a person is in ‘Fetus,’ ‘Log,’ or ‘Yearner’ sleeping positions, the back of the subject blocks
the Wi-Fi signals’ paths. Thus, the researchers determined that users should change the location of the
AP-Receiver pair to detect chest movement.

CSI-based ADL-recognition systems have also been used in place of human-device interactions.
Various smart home gadgets control such home appliances as TVs, laptops, and mobile phones.
Alternatively, Nandakumar et al. [31] used CSI to control these home appliances by detecting human
gestures; they obtained an average 91% and 89% accuracies when the receiver was located in LOS and
in a bag, respectively. In another study, Ali et al. [4] focused on keystroke recognition using CSI. When
a person types a specific key, his hands and fingers move in a unique pattern; however, the movements
of hands and fingers are micro-movements and some unique patterns for different keys are almost
identical—for example, ‘F’ and ‘G’ keys are closely placed and may easily be confused. In order to
solve such nuance, the researchers extracted features from the shapes of keystroke waveforms instead
of from the CSI values themselves, since the CSI values of many keys have similar features—such as
maximum value, mean value, or root mean square deviation—but have different waveforms, and the
shapes contain both a time and a frequency domain. Their WiKey algorithm obtained an approximately
94% keystroke-recognition accuracy.

These successfully developed and verified CSI-based ADL-recognition systems benefit from
CSI’s stability and accessibility. However, Wi-Fi signals are affected by various environmental factors,
which can in turn have impact on the performance of CSI-based ADL-recognition systems. Thus, in
order to advance the opportunities for applying CSI to human ADL recognition in smart homes,
studies must verify that these systems’ performances will yield consistent accuracy in different
housing environments.

3. Background

As Wi-Fi signals propagate in physical space, the signals reach receivers (Wi-Fi devices) through
various routes, a concept known as multipath. Figure 1 shows the multipath of signal propagation:
The received signal is composed of signals arriving over many different paths, all which can be affected
by environmental factors [3]. The environmental factors therefore combine with scattering, fading,
and power decay over distances, and these environmental effects on the signals can be manifested in
the CSI [18]. For example, while CSI remains stable in a static home environment, if a person performs
activities, Wi-Fi signals scatter in response to the body’s movement, thereby causing bistatic Doppler
shift at the receiver. The bistatic Doppler frequency depends on the occupant’s moving speed, the
Wi-Fi frequency band, and the relative position between the occupant and the Wi-Fi transceivers [32].

Mathematically, the CSI matrix, Hi, is related to the transmitted signal vector Xi and the received
signal vector Yi, as shown in Equation (1) [15].

Yi = HiXi +
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where i is the data packet, i ∈ [1, N]; N is the number of received packets; Yi is the received signal
vector; Hi is the CSI matrix; Xi is the signal vector; and
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Figure 1. Multipath propagation of Wi-Fi signal indoors.

CSI has several subcarriers that are divided by Orthogonal Frequency Division Multiplexing
(OFDM) [2]. Thus, the CSI matrix for a packet, H, has 30 subcarriers, each with three transmission
antennas and three receiver antennas. Hence, the total number of information pathways for a sending
packet is 270 CSI amplitude and another CSI 270 phase. Unlike RSS, which only has one path per
packet, CSI exploits multiple subcarriers that travel along different fading or scattering multipaths [27]
in order to better denote data across dimensions of time and space.

Figure 2 shows the raw CSI amplitude data of 30 subcarriers for a walking activity. The different
colors indicate 30 subcarriers that have different amplitude values but show a similar tendency. When
a subject is standing, the CSI is relatively stable. However, the amplitudes fluctuate as the subject
starts to walk. The black area in Figure 2—which indicates when the walking activity occurred—has
relatively high amplitude variance. CSI-based ADL-recognition approaches exploit such CSI pattern
changes [18] to identify human activity.
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4. Methodology

In order to examine whether and how CSI-based ADL-recognition systems can be resistant to
varying housing environment, two different housing environments were selected: A wood-frame,
low-rise apartment in the United States (Unit A), and a reinforced concrete-frame, high-rise apartment
in South Korea (Unit B). These two housing environments show clear differences in construction
materials and population densities. The exterior walls in Unit A were composed of wood framing
and insulation, and wood sheathing, and its interior walls were also composed of wood framing and
drywalls with painting finishes. Unit B was built with reinforced concrete structure and its interior
walls were masonry and drywall, and wallpapers were used for the interior wall finishing. While Unit
A is also a part of low-rise multi-family housing, the population density of the high-rise apartment
complex that Unit B belongs to is much higher. The layouts of two units present clear differences, as
shown in Figure 3. However, the sizes of two units in terms of floor space are quite similar, a Wi-Fi
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router and a receiver were located similarly in each unit (in living room), and the distance between the
router and the receiver was also quite similar. Because the two units were actual living spaces, there
were miscellaneous household items. The type, number, and location of household items were different
in the two units. Both Unit A and Unit B contains large household items: a refrigerator in the kitchen,
a dining table in the dining room, and a desk in the living room. However, there were more small and
medium sized household items (e.g., furniture, appliances) in Unit B than in Unit A. Four different
activities, including walking, eating, typing, and no-activity, were recognized by the CSI-based systems.
Two algorithms were used in ADL recognition in order to analyze the housing environment effect
independent from algorithms. The ADL-recognition using these algorithms followed the four steps:
(1) Data collection, (2) Data preprocessing, (3) Activity segmentation, and (4) Activity classification.
This section discusses the experimental setup, the two activity detection approaches, and how they
were compared.

4.1. Data Collection

Two subjects were recruited for the experiments at each Unit; Recruiting for the experiment at each
Unit was conducted separately due to the geographical distance. All the four subjects participating
in both Units were male having similar physical characteristics; Their heights ranged from 175 cm
to 180 cm, while their weights range from 68 kg to 70 kg. During the experiments, the subjects were
instructed to perform the identical activities, and tests were performed by one subject at a time. Each
subject walked in ten rounds, as indicated by the arrows, and performed eating and typing in ten
rounds in the dining room and living room, respectively. Each round required 10 s of activity and 20 s
of no-activity. The 20 s interval between activities clearly differentiated the multiple activity rounds.
Figure 3 shows the walking trajectories in the test beds.

During the test, the activities were recorded using a camera and were labelled with time stamps
for the activities to establish the ground truth. As shown in Figure 3, one AP and one receiver were
used for this test: An AC1750 MU-MIMO gigabit router (Linksys, Irvine, CA, USA) was used for the
AP and a Lenovo T400 laptop with Intel 5300 NIC was used for the receiver. The router provided a
3 × 3 multi-input and multi-output (MIMO) system using three built-in antennas. The router was
configured to support the 802.11n AP mode at 5 GHz frequency. Internet control message protocol
(ICMP) packets were transmitted at a sampling rate of 10 Hz (10 packets per second). Then, using a
Linux CSI 802.11n tool [16], the CSI data were captured and extracted for 30 subcarriers for the first
AP-Receiver antenna pair. The CSI amplitude data were then used to perform data processing for
human-activity recognition.
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4.2. Data Preprocessing

The raw CSI data contains high frequency noise, outliers, and artifacts introduced by rate
adaptation rather than by human activities—high frequency noise manifests when the radios are
switched to different modulation and coding schemes. Thus, a second-order, low-pass Butterworth
filter was used to remove high frequency noise from the raw CSI data. The filter was configured to keep
the sampling rate at 10 packets/s, and the cut-off frequency was set at 1 Hz. Although the walking
activity causes higher Doppler shift than 1 Hz, the phase shift caused by occupant’s activity would be
rotated due to hardware imperfection. Thus, the 1 Hz filtered CSI still contained the variation caused
by walking activity. The variation in the filtered CSI was distinguished from other activities [15].
Figure 4 shows the raw and filtered amplitude data of one subcarrier. The filtered data became smooth
after the high-frequency noise reduction.
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4.3. Activity Segmentation

As shown in Figure 2, human activities cause signal changes, and the CSI variance has relatively
high values when activities occur. If the CSI variances are greater than a threshold determined
empirically, the CSI data may be considered to contain certain activities. While this approach somewhat
successfully segments activities, when a human activity has small body movements or when some noise
remains in the data after filtering has occurred, this approach will not always appropriately separate
all activities, and the segmented data may additionally continue to contain unrelated data packets.

As developing high-efficiency activity-segmentation algorithms is beyond the scope of this study,
to increase recognition accuracy, the walking and in-place activities were manually segmented by
referring to ground truth. A total of 400 data samples were segmented.

4.4. Activity Classification

Activity-classification approaches exploit various activity-recognition models to classify the
segmented activity data. In this study, two different algorithms were used for activity classification:
SVM and EMD reconstructed from literature [1–3,15,18,30]. An SVM model requires users to input
features and their labels for training the model. In this case, the labels were extracted from the ground
truth recorded via cameras, and the features were extracted from the input data—i.e., the segmented
activity data. In the segmented activity data, the CSI data of the first data packet was represented as
Ha(s)—with an Sb × 1 dimensional vector—where Sb indicates the 30 subcarriers, and s indicates the
order of the Na successive data packets. The six characteristic features present in all subcarriers of the
CSI amplitudes that were used for learning are: (1) the average of Hk(s), (2) the standard deviation of
Hk(s), (3) the 25th percentile of Hk(s), (4) the 75th percentile of Hk(s), (5) the maximum of Hk(s), and
(6) the median absolute deviation of Hk(s), where ∀k ∈ [1, Sb] and ∀s ∈ [1, Na]. 60 percent of the total
segmented data were used for training, and the remaining 40 percent were used for testing. The SVM
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showed the anticipated labels for the testing data, so the labels resulting from the SVM were compared
to the labels from the ground truth to determine model accuracy.

Unlike an SVM, an EMD finds the minimum cost of matching one distribution into another
and thereby represents to what extent two distributions are similar to each other. Notably, under
EMD, the same activity will have similar distributions across the CSI amplitudes, whereas different
activities will have distinctive distributions. Figure 5 shows a histogram of the CSI distributions across
all 30 amplitude subcarriers; here, “Bin” refers to the range of amplitudes, and “Amplitude Count”
refers to the number of times the corresponding amplitudes appear in each Bin. In order to recognize
activities, a known CSI-amplitude distribution for each activity needs to be selected; in this study, we
selected three known distributions for walking, eating, and typing. Then, the EMD algorithm [33]
was employed to calculate the EMD between the known distribution for the labeled activities and the
unknown distribution for the unlabeled activities. If the EMD of an unknown activity manifested a
minimal distance to one of the three known activity distributions, the unknown activity received a
label for the corresponding activity.
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5. Results

In this study, to determine the impact of environmental factors on the accuracy of two
different CSI-based ADL-recognition systems, two subjects performed a walking activity and two
in-place activities in different housing environments. To recognize activities, the authors used
two different activity-recognizing approaches, an SVM-based model and an EMD-based model.
The activity-recognition accuracy of the SVM-based model was 94.38% for Unit A and 87.50% for
Unit B, whereas the EMD-based model showed 68.75% and 60.25% accuracy levels for Unit A and
Unit B, respectively. Tables 1 and 2 summarize the results from the SVM-based model and the
EMD-based model, respectively. Both of the two ADL-detection algorithms show lower accuracies for
Unit B than Unit A, which implies a mediating effect of environmental factors on the accuracy of the
ADL-recognition systems.
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Table 1. Confusion matrix for Unit A and Unit B using SVM-based model (Data shown here represent
40% of garnered data).

Unit A Unit B

Walking Eating Typing No Activity Walking Eating Typing No Activity

Walking 38 0 0 0 38 0 0 0
Eating 3 35 0 0 0 38 0 0
Typing 2 0 31 0 0 1 30 2

No Activity 4 0 0 47 2 0 15 34

Table 2. Confusion matrix for Unit A and Unit B using EMD-based model.

Unit A Unit B

Walking Eating Typing No Activity Walking Eating Typing No Activity

Walking 96 4 0 0 92 0 0 8
Eating 0 73 2 15 0 28 21 41
Typing 0 21 46 23 0 28 62 0

No Activity 0 26 34 60 0 24 37 59

Under the SVM-based model, features used for activity classification related to the amplitude
of signal variance. Thus, even though an activity signal forms a specific waveform, its amplitude
appeared to be low, so the SVM classifier considered the activity as no activity. The confusion matrix
for Unit B showed 15 ‘no-activity’ data were predicted as examples of ‘typing activity,’ which mainly
reduced the model’s accuracy. ‘Typing activity’ is one of the smallest movements in daily life, since
when people type, they only move their fingers and arms a small amount. Thus, the signal variance of
the ‘typing activity’ has a low amplitude, and if the signal power is reduced by environmental factors,
the ‘typing activity’ signal may be too weak to differentiate from a ‘no activity’ signal. Accordingly, we
expected—and observed—that Unit B environment would have a greater impact on signal propagation
than Unit A environment.

Under the EMD-based model, the distribution of the signals’ amplitudes has more impact on the
activity classification than the amplitudes’ variance within the signal, since the EMD-based model
classifies unknown activities based on the distributions’ similarity to known distributions. As shown in
Figure 5, the amplitude of the ‘walking’ activity is evenly distributed over the bins, but the histograms
of ‘eating’ and ‘typing’ activities show concentrated amplitude distributions in specific bin ranges.
Thus, if the peak point of the amplitude distribution was shifted by changing the overall signal strength,
the ‘eating’ and ‘typing’ activities could have similar amplitude distributions, which would mean that
the EMD-based approach would consider those two different activities as the same activity. As shown
in Table 2, the ‘walking’ activity in both Unit A and Unit B is well recognized, but the EMD-based
approach achieved a low accuracy when predicting ‘eating’ and ‘typing’ activities. Table 2 also shows
that many identified ‘no activity’ data were predicted to be ‘eating’ and ‘typing’ activities because the
‘no activity’ data manifested a stable signal wherein the signal strength was concentrated in a certain
amplitude range. Thus, the histogram of the ‘no activity’ data appeared to be similar to those of ‘eating’
and ‘typing’ activities under the EDM approach.

The results also show that the EMD-based model has lower average accuracies compared to the
SVM-based model. The SVM-based approach exploits 60% of the total 400 activities data to train
the model and classified the remaining 40% activity data—160 samples. On the other hand, the
EMD-based approach does not need training data, and consequently evaluates activity data for the
full 400 samples. Thus, the actual number of recognized activities evaluated by the EMD-based model
is greater than the number recognized by SVM-based model, which means the EMD-based model
has more opportunities to make false predictions than the SVM-based model. Also, the SVM-based
model used 60% of the total data as reference data, whereas the EMD-based model exploits only one
reference datum for each activity to calculate the similarity of the known activity against the unknown
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activity data. Consequently and foreseeably, the EMD-based model does not cope with the variability
of unknown activity data as well as the SVM-based model does.

To investigate the effect of time-dependency or subject-dependency of the result, we split data into
each subject data and classified activities for each subject data; Each subject performed the experiment
in different days. The results in different data segmentation showed that the accuracy of Unit A was
generally higher than Unit B and the accuracy of SVM was higher than EMD, meaning that the time
dependency and subject dependency did not have much impact on this result.

It is important to note that rather than identify effective ADL-recognition methods, this
study compares the effect different environmental factors have on the performance of CSI-based
ADL-recognition systems. Even though the SVM-based model and EMD-based model both show
different accuracy levels for activity recognition, the results clearly indicate that both CSI-based
ADL-recognition systems show less accuracy for the Unit B environment, meaning that the Unit B
environment mediates the accuracy of the CSI-based ADL-recognition systems more than the Unit
A environment does. We further discuss this important finding about the environmental effects
mediating performance of the CSI-based ADL-recognition systems in the next section.

6. Discussion

6.1. Housing Environmental Factors

The results indicate that both of the tested CSI-based ADL-recognition models are quite sensitive
to the difference of housing environment and yield significantly different accuracies between two
units. Here, we mainly discuss the potential factors that affect the performance of the CSI-based
ADL-recognition systems. While these factors may appear to be limitations to the present study, they
serve—in fact—as a further defense of the justification of this study, since smart-home engineers must
mediate these factors when designing tools within different environments.

6.1.1. Building Materials and Household Items

One potential factor contributing the performance of ADL recognition is the difference of building
materials. The main building materials of Unit B were reinforced concrete and concrete masonry,
which is one of the hardest building materials for wireless signals to penetrate [23], while Unit A
was built with predominantly plywood or drywall, which represent building materials that yield less
signal loss. Such Wi-Fi resistant properties of concrete materials could potentially benefit the CSI-based
ADL-recognition systems by blocking interferences from surrounding Wi-Fi networks and noises
created from dynamic object movements outside of the unit, but it could inhibit the performance of
CSI-based ADL-recognition systems, as the amplitude of transmitted signals becomes reduced during
the signals’ travel indoors. This signal loss means that the signal variance caused by activities decreases,
which challenges processes for differentiating noise, specific activities, and no activity. At least in our
experiment, the disadvantage of having Wi-Fi resistant interior walls would have outweighed the
advantage of having Wi-Fi resistant exterior walls and would have potentially contributed to the lower
performance in Unit B.

The household item (e.g., furniture, appliance) is another potential factor for Wi-Fi signal
propagation. Depending on the materials of household items, Wi-Fi signal is reflected from the
object more or a lot of energy is absorbed. Unit B had more small and medium sized household items,
which were not all made of metal, the more reflective objects compared to the wooden or plastic
materials. Thus, the small and medium sized objects absorbed more energy of the Wi-Fi signal in Unit
B than Unit A, which resulted in a reduced amplitude of the CSI. The decreased variation in the CSI,
then, became hard to distinguish from no-activity or other activities in Unit B.
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6.1.2. Population Density with Surrounding Wi-Fi Interference

The other contributing factor is the difference of population densities. Just as people can access
home networks from outside their walls, people outside of a house can affect the Wi-Fi network
environment inside. Thus, neighbors’ activities or outdoor movements will conceivably affect the
performance of CSI-based ADL-recognition systems. Unit B had more nearby units than Unit A.
Significantly, for Unit B, neighboring households shared walls on both sides of the apartment, whereas
Unit A only had neighbors five meters away on one side of the testbed. Also, the elevator located next
to Unit B continuously ran, which influenced the signals within Unit B; Unit A had no elevator. Thus,
more movements unrelated to the test activities took place in proximity to Unit B, which could affect
the received signals used for activity detection. Unit B was in a higher population apartment complex
than Unit A testbed, meaning that there were more Wi-Fi networks around to influence the test. Thus,
the surrounding Wi-Fi signals had a higher chance to interfere with the testing Wi-Fi signals in Unit
B than Unit A. However, as mentioned in the previous section, such interference from surrounding
Wi-Fi signals might have been alleviated by the building materials of Unit B, although Unit B had
many openings.

6.2. Potential Strategies to Address Housing Environmental Factors

In this section, we will discuss possible solutions for coping with the housing environmental
effects influencing the accuracy of the CSI-based ADL-recognition system, including (1) using multiple
receivers; (2) filtering external noise; and (3) using Wi-fi-friendly construction materials.

6.2.1. Using Multiple Receivers

While our experimental setting used only one receiver, using additional receivers would improve
the recognition accuracies of CSI-based systems by augmenting the variance of the received signals.
In larger houses or those with multiple rooms, the strength of the signals arriving at the receivers
becomes weaker, as the signals have to penetrate through multiple walls [10,23,24]. Under such
circumstances, the reduced amplitude of the signal both becomes hard to distinguish from noise [3] and
directly impacts the performance of the CSI-based ADL-recognition systems. For example, a receiver
located in the living room may only capture reduced signal variance if an occupant performs an activity
in the bedroom since the signal affected by the occupant must move through the environment—and
walls—to arrive at the receiver in the living room; if the transmitter is not within the bedroom, the signal
will lose even more energy as it travels from the transmitter to the bedroom and back to the receiver
in the living room. However, if the environment includes an additional receiver in the bedroom, the
affected signal will reach the receiver in the bedroom, thus reducing the additional energy loss. Having
multiple receivers located in different rooms would therefore resolve the reduced-amplitude issue and
improve accuracy.

6.2.2. Filtering External Noise

In order to address the effects resulting from a neighbor’s activity, advanced filtering methods
must be proposed and used. While such filtering would represent a great challenge, developers
may conceivably be able to distinguish the signal changes due to a neighbor’s activities in another
unit, especially as such signals would have to penetrate multiple walls (possibly including exterior
walls) and a neighbor’s activities may manifest different patterns in the frequency domain (e.g.,
different walking patterns). Lee et al. [34] demonstrated this possibility of differentiating simultaneous
activities of multiple occupants using the frequency-domain features. Similarly, other researchers have
successfully identified and removed specific subcarriers that were heavily influenced by a neighbor’s
activities [3,35]. Such opportunities present options for researchers seeking to mitigate the effects of
noise on CSI-based ADL recognition.



Sensors 2019, 19, 983 12 of 14

6.2.3. Using Wi-Fi-Friendly Construction Materials

As smart homes become more popular, Wi-Fi-friendliness will play an important role in the
design and selection of construction materials [36]. The performance of the CSI-based ADL-recognition
systems relies on the magnitude of signal variance at the receiver, so the Wi-Fi-friendliness of building
layout and materials will reasonably drive building designs seeking to harness CSI-based tools.
Already, some options for improving Wi-fi-signal quality exist. For example, the interference from
surrounding Wi-Fi networks could be alleviated by using the anti-Wi-Fi paint—which contains
aluminum-iron oxide for absorbing high-frequency wireless signals [37]—on exterior walls. In addition,
a porous wall that propagates Wi-Fi signals well [38] can be used for interior walls in order to reduce
the attenuation of the signal that occurs as the signal passes through interior walls [38,39]. While such
design choices may render the signal-resiliency goals underpinning CSI-based ADL recognition, there
remains some uncertainty as to whether using such Wi-fi-friendly construction materials will actually
improve performance, since CSI-based ADL recognition relies on the change of signals as the signals
fade and reflect on surrounding walls. Further research will be necessary to examine how the use of
such materials impact the performance of the CSI-based ADL recognition.

6.3. Limitations

As this study intended to examine the effect of actual housing environments of existing homes on
CSI-based ADL-recognition systems, various environmental factors were less controlled, and the results
from such the experimental settings represent the combined effects of all possible environmental factors.
Thus, the effect of each individual environmental factor is still unknown, although the experiment
results confirm the significant effect of housing environment on CSI-based ADL-recognition systems.
In addition, although two representative ADL-recognition algorithms were used in this study, the effect
of housing environment could be largely dependent on algorithms.

7. Conclusions

The two robust CSI-based activity-recognition algorithms yielded lower accuracy in Unit B than
Unit A, a result that speaks to the mediating influence of environment on CSI-based ADL-recognition
systems. This result highlights that the effects of the housing environments should be considered when
designing and implementing CSI-based ADL-recognition systems in various home environments.
However, further research is necessary to analyze the isolated effects of various housing environmental
factors and understand the impact of possible mitigation strategies on such environmental effects.
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