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Abstract: Recently, several red-green-blue near-infrared (RGB-NIR) multispectral filter arrays (MFAs),
which include near infrared (NIR) pixels, have been proposed. For extremely low light scenes, the
RGB-NIR MFA sensor has been extended to receive NIR light, by adding NIR pixels to supplement
for the insufficient visible band light energy. However, the resolution reconstruction of the RGB-NIR
MFA, using demosaicing and color restoration methods, is based on the correlation between the NIR
pixels and the pixels of other colors; this does not improve the RGB channel sensitivity with respect
to the NIR channel sensitivity. In this paper, we propose a color restored image post-processing
method to improve the sensitivity and resolution of an RGB-NIR MFA. Although several linear
regression based color channel reconstruction methods have taken advantage of the high sensitivity
NIR channel, it is difficult to accurately estimate the linear coefficients because of the high level of
noise in the color channels under extremely low light conditions. The proposed method solves this
problem in three steps: guided filtering, based on the linear similarity between the NIR and color
channels, edge preserving smoothing to improve the accuracy of linear coefficient estimation, and
residual compensation for lost spatial resolution information. The results show that the proposed
method is effective, while maintaining the NIR pixel resolution characteristics, and improving the
sensitivity in terms of the signal-to-noise ratio by approximately 13 dB.
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1. Introduction

Recently, several attempts have been made to utilize near infrared (NIR) band information.
Multispectral images observed in various spectrum bands, including both visible and NIR bands,
have been used in remote sensing applications [1,2]. As each spectral band provides a different
type of information, the spectral bands were selectively used in observing the multi-spectral images.
In surveillance [3] and night vision cameras [4], the NIR band is particularly useful under low lighting
or invisible NIR lighting conditions. The NIR band is also used in biometric [5], face matching [6], and
face recognition [7] applications, which have been studied based on the intrinsic reflectivity of the
skin or eyes under NIR illumination. As the NIR reflection is material dependent, it is also used in
material classification [8] and illuminant estimation [9]. NIR images can be used in image enhancement
applications such as image dehazing [10].

Most digital imaging devices use a color filter array (CFA) to reduce equipment cost and size
instead of using three sensors and optical beam splitters. The Bayer CFA, comprising the primary
colors red, green, and blue (R, G, and B), is a widely used CFA [11]. Figure 1a shows the Bayer
CFA. Recently, methods using a new CFA have been studied to overcome the limited sensitivity of
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the Bayer CFA under extremely low light conditions. This is because the amount of absorbed light
decreases on account of the RGB color filters. Thus, sensitivity improvement methods utilizing an
invisible light source have been proposed in recent years [12–19]. Because the wavelength of an
invisible light source is different from that of visible light, the invisible and visible light images can
be captured simultaneously. New CFA patterns [20] and demosaicing methods [21–24], containing
NIR pixels in the pattern have been proposed. Figure 1b shows an example of a red-green-blue NIR
(RGB-NIR) multispectral filter array (MFA). Bennett et al. [12] constructed an imaging system that
can simultaneously capture color and NIR images. For a pair of color and NIR images, the proposed
system outperformed the reconstruction methods reported in [25,26]. Yan et al. [16] preserved the
necessary details and edges of a color image by considering the structural differences between the NIR
and color images. These studies reported good results for enhancing color images of low light scenes.
However, existing methods have an implied restriction, regarding how dark the environment can be.
If the lighting conditions are darker than that assumed in these methods, they will not work well.
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Figure 1. (a) Bayer color filter array [11]; (b) RGB-NIR multispectral filter array [27].

Generally, to utilize the RGB-NIR MFA, two steps are involved (Figure 2): Demosaicing and color
restoration [20,27]. The demosaicing process, also called color interpolation, is a process of converting
sub-sampled R, G, B, and NIR channels into full resolution images. Figure 3 shows an image taken
under extremely low (0.01lx) incandescent light conditions. From Figure 3a,b, it is possible to obtain
high sensitivity color images from the RGB-NIR MFA by incandescent lighting, with a large amount
of NIR energy under extremely low light conditions. However, demosaiced RGB channels contain
the NIR band, as shown in Figure 3a, which is different from typical RGB channel color reproduction.
Therefore, a color restoration process is required to estimate and remove the included NIR band.
Figure 3c shows the results of the color restoration algorithm for the image, shown in Figure 3a [27],
with the brightness similar to that of the NIR channel, a gain of 10 times. The two processes, using the
NIR channel from the images (Figure 3), indicate that the sensitivity of the color image is not improved
with respect to the sensitivity of the NIR channel under extremely low light conditions.
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Various post-processing algorithms have been studied using the NIR band for this problem.
For example, image fusion methods [28] fuse the NIR and RGB channels. Fusion methods focus on
identifying invisible or indistinguishable subjects in the visible band, while maintaining the RGB
color components. Although object discrimination ability improved, the sensitivity remains poor.
Therefore, the local contrast and color are distorted. Another technique involves using a guided
filtering (GF) method [29,30] that considers the linear correlation between the luminance (Y) channel
of the visible band, and the NIR channel, to reflect the sensitivity characteristics of the NIR channel.
This method uses linear regression between the Y and NIR channels to estimate the linear coefficients.
The NIR channel is reconstructed into Y channels by using the coefficients. This method is also used
for reconstructing low illuminance images from a flashing image. However, under extremely low light
conditions, a visible image with a high level of noise makes it difficult to estimate the linear coefficients
accurately. Moreover, the resolution of the Y channel, reconstructed from the linear coefficients, is
not up to that of the NIR channel. To solve this problem, five cost functions, and an algorithm to
minimize them, have been proposed [31]. This algorithm is more stable than the above algorithms
under extremely low light conditions; however, it is difficult to realize NIR channel level sensitivity
because of the trade-off between the five factors in the cost minimization process.

In this paper, we propose a post-processing method that can enhance the spatial resolution,
while improving the brightness and signal-to-noise ratio (SNR) of the RGB channels, by reflecting the
sensitivity of the NIR channel. High sensitivity NIR channels, at very low light levels, have better
spatial resolution and sensitivity than noisy RGB channels. On the other hand, RGB channels contain
color information and local contrasts that represent the colors. Hence, we propose a method to improve
the resolution and SNR of the R, G, and B channels by reconstructing the NIR channel. In particular,
we propose a smoother method to improve the accuracy of linear coefficients of guided filtering in
extremely low light conditions. In addition, we propose residual information compensation to recover
spatial resolution information and texture, lost in the guided filtering process.

This paper proposes an edge preserving smoother based pre-processing algorithm to estimate
the linear coefficients of the guided filter accurately. The edge preserving smoother proposed in [16]
estimates the kernel from the sensitive NIR channel and applies the kernel to the Y channel. The
smoothened Y channel removes the noise and texture components, that interfere with linear coefficient
estimation, along the strong edges of the NIR channel. This procedure allows the guided filter to
estimate the correct coefficient in extremely low light scenes. In addition, this paper proposes a
post-processing algorithm to improve the resulting resolution of the guided filter. Guided filtering is
used to estimate the residual component from the NIR channel and compensate for the insufficient
spatial resolution of the reconstructed Y channel. The residual component is the spatial resolution
information of the missing NIR channel in the guided filtering process. Finally, the proposed algorithm
maintains the color and local contrast of the RGB channel, through guided filtering and outputs the
result with NIR channel level sensitivity and spatial resolution.

The remainder of this paper is organized as follows. In Section 2, the research problem is detailed.
In Section 3, the proposed post-processing method based on guided filtering is described. In Section 4,
we present the results of conducted experiments, and compare the results of the proposed method
with those of other post-processing algorithms. Our conclusions are presented in Section 5.
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2. Problem Statement

The color restoration results of the RGB-NIR MFA under extremely low light conditions include a
high level of spatial and color noise, as shown in Figure 3c. To analyze the characteristics of the noise,
Figure 4 shows the color restoration results with respect to the type of channel. The RGB channels
show a similar level of noise, whereas the noise level in the Y channel is more than that in the NIR
channel. On the other hand, the NIR channel is a high sensitivity image, with low noise and accurate
texture information of the subject. However, it does not have the local brightness or contrast shown in
the visible band. This is because the hat and the head of the subject are not clearly distinguished.
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Figure 4. Color restoration results by channel [27] under extremely low light condition (0.01lx,
incandescent).

In short, the rationale of the proposed post-processing method is that the reconstructed image
has NIR channel level brightness and sensitivity. Moreover, the color image has an NIR channel level
SNR and color reproduction at the color restored RGB result level. Table 1 lists the characteristics of
the color restored RGB result image, obtained using the proposed post-processing algorithm. The
brightness, sensitivity, noise, and spatial resolution characteristics of the image should follow those of
the NIR channel. On the other hand, the hue, saturation, and local contrast must follow those of the
color restored RGB channel to maintain color reproduction.

Table 1. Characteristics of red-green-blue (RGB) and near infrared (NIR) channels. (o means include,
x means not include).

Characteristics RGB NIR

Sensitivity and brightness x o
Noise x o

Resolution x o
Local contrast for color o x

Hue & saturation o x

The proposed post-processing algorithm follows the guided filtering method [29]. The guided
filtering estimates the linear coefficients between the NIR channel and the Y channel by using a linear
regression method. From the estimated linear coefficients, the NIR channel is reconstructed into
associations with local brightness and contrast similar to the Y channel. In addition, a smoothing
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process, such as mean operation, for the linear coefficients can help reduce the influence of noise.
However, it is difficult to estimate the linear coefficients accurately because the noise under extremely
low light conditions occurs, not only in the high frequency band, but also in the low frequency band.
The noise generated up to the low frequency band can be removed using a strong smoothing filter.
However, this will damage both the occlusions of the subject and the strong edge areas, thus reducing
the accuracy of linear coefficient estimation in the strong edge regions and generating artifacts in the
resulting image.

Figure 5 shows the input channels, RGB channels, NIR channel, and guided filtering results.
Figure 5c shows the artifacts due to the error in estimating the linear coefficients during smoothing.
In the background region, noise characteristics, amplified over the NIR channel, can be seen. This
is due to the failure in accurately estimating the linear coefficients in the noise region, as shown
in Figure 5a. In addition, the guided filtering result shows that there is no texture information on
the hat. Therefore, the proposed algorithm performs guided filtering correction, thus establishing a
post-processing algorithm suitable for extremely low light conditions.
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3. Proposed Post-Processing Method Based on Guided Filtering

3.1. Post-Processing Framework

To solve the problem of noise, linear coefficients, and texture information of the NIR channel,
under extremely low light conditions, this paper proposed a post-processing method based on guided
filtering. The proposed algorithm comprises three steps: edge preserving smoothing, guided filtering,
and residual compensation. Figure 6 shows the framework of the proposed post-processing algorithm.

First, the color restored RGB channel, converted into the YUV domain, is divided into luminance
and chrominance channels, and the Y channel is inputted to the edge preserving smoother along with
the NIR channel. The reason for converting to the YUV domain is to separate color components of
RGB, such as saturation and hue, to prevent color change during the algorithm execution. The U
and V channels, except for the luminance component, contain color components and represent color
information and color noise.
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The edge preserving smoother can accurately preserve the strong edges and occlusions of the
object by estimating the edge from the sensitive NIR channel. The smoothing kernel, estimated from
the NIR channel, has little influence on the Y channel in terms of the noise. Thus, it can remove the
low frequency noise and preserve the strong edges. In addition, the color noise, existing in the U and
V channels, is removed through the kernel estimated from the NIR channel, thus maintaining the
correct color at the boundary of the object. In this paper, a cross bilateral filter (CBF) [26] was used as
an edge preserving smoother. The NIR channel passing through the smoothing filter contains local
brightness and local contrast information, and the noise and texture information can be removed. This
can improve the regional distribution similarity between the Y and NIR channels in estimating the
linear coefficients. Moreover, the smoothened Y and NIR channels maintain a strong edge, and the
guided filter can accurately estimate the linear coefficient of change at the boundary of the object.

Guided filtering estimates the linear coefficients through linear regression. The estimated linear
coefficients help reconstruct the NIR channel to create a new Y channel with improved sensitivity. The
proposed algorithm smoothens the estimated linear coefficients by using the CBF kernel estimated
from the NIR channel. This stabilizes the small errors that occur in the estimation process and preserves
the linear coefficients in the occlusion of the object. In addition, the proposed algorithm updates the
reconstructed Y channel, by estimating the texture and high frequency components (the residual
information) that have not yet been compensated via guided filtering.

Finally, the Y channel, reconstructed from the NIR channel, has a local contrast of the input Y
channel and local brightness characteristics. In addition, the reconstructed Y channel has NIR level
sensitivity, noise, and spatial resolution characteristics. Similarly, the smoothened U and V channels
are suppressed from noise in all the frequency bands, and they can maintain local color characteristics.

3.2. Edge Preserving Smoother and Linear Coefficients

The key assumption in the guided filtering is the local linear model between the NIR and Y
channels. The local linear model can be expressed as follows:

YS = aSNS + bS, (1)

where S is the local area of the object in an image, Y and N are the Y, and NIR channels, respectively,
and aS and bS are the linear coefficients. Equation (1) can be expressed as follows for the current
pixel position:

IY(p) = a(p)IN(p) + b(p), ∀p ∈ S, (2)

where IY(p) and IN(p) are the Y and NIR channel pixel values at the pth position, respectively. The
linear coefficients are assumed to be constant in S. To obtain the linear coefficients using a simple
linear regression model, the following equations have been proposed [32]:

aS =
Cov(NS, YS)

Var(NS) + ε
, (3)



Sensors 2019, 19, 1256 7 of 17

bS = Mean(YS)− aS Mean(NS), (4)

where ε is a small constant to prevent division by zero, Cov(NS, YS) is the covariance between the NIR
and Y channels in the region S, Var(NS) is the variance of NIR in the region S, and Mean(YS) is the
mean value of the Y channel in the region S. The following equations can be used to obtain the mean,
variance, and covariance from the NIR and Y channels:

MeanS(N(p)) = ∑
p,q∈S

IN(q)/|S|, (5)

VarS(N(p)) = ∑
p,q∈S

(IN(q))
2/|S| −

(
∑

p,q∈S
IN(q)/|S|

)2

, (6)

CovS(N(p), Y(p)) = ∑
p,q∈S

IN(q) IY(q)/|S| −Mean(N(p))·Mean(Y(p)), (7)

where q is the pixel position in the region S, |S| is the number of pixels in the region S, and Mean(N(p))
is the mean value at the current pixel position p in the NIR channel. Var(N(p)) is the variance value
at the current pixel position p in the NIR channel, and Cov(N(p), Y(p)) is the covariance value at the
current pixel position p between the Y and NIR channels.

The linear coefficients of the guided filter, mentioned in Section 2, show errors because the
covariance is estimated from the noisy Y channel to the NIR channel. In other words, as the noise
level increases, the linearity of the Y channel with the NIR channel decreases, and the accuracy of the
coefficient aS decreases. An inaccurately predicted aS value can lead to an inaccurate prediction of bS
in Equation (4). In conclusion, it is necessary to improve the accuracy of Cov(NS, YS) correlated with
the Y channel.

A Gaussian filter is incorporated in the guided filtering method [29] to improve the accuracy
of linear coefficient estimation. However, when the noise level is high, the strong edges are blurred.
Therefore, this paper proposes an edge preserving smoother by pre-processing the guided filter.
Figure 7 compares the various Gaussian function based smoothing filter results for the NIR and Y
channels. The filter characteristics are as follows: Gaussian filter with no edge preservation, a bilateral
filter with edge preserving, and a cross bilateral filter to estimate the kernel from the guide image. As
described above, the Gaussian filter result (Figure 7b) shows that although the influence of the noise
is reduced, the occlusion of the object is significantly blurred. In the bilateral filter results, shown in
Figure 7c, the noise removal of the Y channel is limited. This is the limitation of the kernel estimated
from the Y channel, which contains significant noise under extremely low light conditions, even for the
edge preserving smoother. The cross bilateral filter results (Figure 7d) show that the noise is effectively
removed from the Y channel, and the strong edge and occlusion regions are preserved in both the NIR
and Y channels. Moreover, the texture information is effectively removed from the NIR channel. Hence,
we used the CBF as a pre-processing step in the guide filtering to take advantage of the highly sensitive
NIR channel characteristics; the CBF replaces the mean operation. The existing mean operation is a
uniform blur method and is replaced with an edge preserving smoother. The CBF can be expressed
as follows:

MeanCBF
N,S (Y(p)) =

1
WCBF

N,S (p) ∑
p,q∈S

Gσs(||p− q||)Gσr (|IN(p)− IN(q)|)IY(q), (8)

WCBF
N,S (p) = ∑

p,q∈S
Gσs(||p− q||)Gσr (|IN(p)− IN(q)|), (9)

where MeanCBF
N,S (Y(p)) is the CBF result of the Y channel at the pth pixel, obtained by applying a

bilateral filter kernel estimated from the NIR channel, Gσs and Gσr are the Gaussian functions for the
spatial and range kernels, respectively, σs and σr are the smoothing parameters, and WCBF

N,S (p) is the
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normalized factor at the pth pixel. For smoother results in Figure 7, for a 48 (16 + 16 + 16) bit color input
image, the parameter settings for filters are Gaussian filter σ = 300, bilateral filter σs = 300, bilateral
filter σr = 5000, cross bilateral filter σs = 300, and bilateral filter σr = 5000. The filter kernel size (S) is
31 × 31. The variance and covariance values estimated using the proposed CBF are as follows:

VarCBF
N,S (N(p)) = 1

WCBF
N,S,Var(p)

∑
p,q∈S

(Gσs(||p− q||)Gσr (|IN(p)− IN(q)|)IN(q))
2−MeanCBF

N (N(p))2, (10)

WCBF
N,S,Var(p) = ∑

p,q∈S
Gσs(||p− q||)2Gσr (|IN(p)− IN(q)|)2, (11)

CovCBF
N,S (N(p), Y(p)) = 1

WCBF
N,S,Var(p)

∑
p,q∈S

Gσs(||p− q||)2Gσr (|IN(p)− IN(q)|)2 IN(q)IY(q)−MeanCBF
N (N(p))·MeanCBF

N (Y(p)), (12)

where VarCBF
N,S (N(p)) is the variance value of the smoothing filtered NIR channel at the pth pixel,

obtained by applying a bilateral filter kernel estimated from the NIR channel, CovCBF
N,S (N(p), Y(p)) is

the variance value of the smoothing filtered Y channel at the pth pixel, obtained by applying a bilateral
filter kernel estimated from the NIR channel, and WCBF

N,S,Var(p) is the normalized factor for the variance
at the pth pixel. For conditions similar to the smoothed Y channels with texture information and noise
removed, the NIR channel also needs to pass through the same bilateral filter kernel. This process
minimizes the effect of texture on the covariance estimate and improves the accuracy of estimating the
correlation between the local brightness of the objects on each channel. The linear coefficients aCBF

s
and bCBF

s associated with the CBF can be expressed as follows:

aCBF
S =

CovCBF
N,S (N(p), Y(p))

VarCBF
N,S (N(p)) + ε

, (13)

bCBF
S = MeanCBF

N,S (Y)− aS MeanCBF
N,S (N). (14)Sensors 2019, 19, 1256 9 of 17 
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The linear coefficients estimated from the smoothed image, are more accurate than the original
values, but pass through the estimated bilateral filter kernel from the NIR channel to eliminate some
possible estimation errors. The linear coefficients passing through the CBF kernel are expressed
as follows:

âS(p) = MeanCBF
N,S (aS(p)), (15)
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b̂S(p) = MeanCBF
N,S (bS(p)), (16)

IŶN
(p) = â(p)IN(p) + b̂(p), (17)

where âS and b̂S are the smoothed linear coefficients, ŶN is the Y channel reconstructed from the NIR
channel by using the linear coefficients âS and b̂S.

Figure 8c,d show the guided filtering results, and proposed CBF + guided filtering results,
respectively. The accuracy of linear coefficient estimation is improved with the use of CBF, showing
stable results in the background. Figure 8d shows that the texture components on the cap are more
effectively restored, compared to the guided filtering results. However, Figure 9d shows that the
texture on the foot of the doll is not well restored. Figure 10d shows that the texture is not well
reconstructed in the resolution chart area at the bottom of the color chart. To solve this problem, we
perform post-processing of the guided filter.
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Figure 10. Comparison of step-by-step results of the proposed post-processing; (a) input RGB; (b) input
NIR; (c) guided filter (GF) result; (d) the result of using cross bilateral filter (CBF) as the post processing
of guided filtering; (e) compensation of residual (RC) information to (d).

3.3. Compensation with Residual Information of NIR

The texture information, in the channel reconstruction results of the guided filter, is lacking.
Because of the area wise computation of the linear coefficients, it is difficult to reconstruct the texture.
To obtain spatial resolution at the NIR channel level, this paper proposes a residual information
compensation process. The residual information is defined as the information lost in the NIR channel
among the textures resulting from guided filtering. To estimate the residual information, the NIR
channel is reconstructed using the Y channel. This process traces the loss process through the channel
other than the NIR channel to estimate the texture information lost during guided filtering. The process
of reconstructing the NIR channel, by using the linear coefficients estimated in the previous sub section
is as follows:

IN̂Y
(p) =

IY(p)− b̂(p)
â(p) + ε

, (18)

where N̂Y is the NIR channel reconstructed from the Y channel. Equation (18) is a transformed version
of Equation (17). The residual information is estimated as follows:

RN−N̂Y
= N− N̂Y, (19)

where RN−N̂Y
is the residual information and the difference between the NIR channel and the channel

N̂Y reconstructed from the Y channel. The process of compensating for the residual information is
as follows:

Yout = N̂N + RN−N̂Y
, (20)

where Yout is the proposed result of the luminance channel. The results of the chrominance channels
are expressed as:

Uout = MeanCBF
N,S (U), (21)

Vout = MeanCBF
N,S (V), (22)

where Uout and Vout are the resulting chrominance channels of the proposed algorithm, and U and V
are the chrominance channels of the input image.

Figure 8e, Figure 9e, and Figure 10e show the GF + CBF results in compensating for the residual
(residual compensation, RC) information. Figure 8e shows that the white line artifact, shown in
Figure 8d, is suppressed, and the texture becomes richer. Figures 9e and 10e show that the missing
texture information is well compensated from Figures 9d and 10d.
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4. Experimental Results

To verify the performance of the proposed algorithm under extremely low light conditions, we
used directly captured images. The image, shown in Figure 3a, was taken in 0.01 lx incandescent light
under extremely low light conditions. We measured the R, G, B, and NIR channels with full resolution
by using a multi-spectral filter wheel with a single sensor. The resolution of the image used in the
experiment was 1600 × 1200, and it was photographed with 16 bits per pixel of one channel. By using
the color restoration algorithm proposed in [27], we obtained the RGB image, shown in Figure 3c, with
a gain of 10 times gain. The proposed post-processing uses the RGB color image (Figure 3c) and the
NIR gray image (Figure 3b) as the input image.

In this section, we compare various conventional methods (CM) to verify the performance of the
proposed algorithm. First, we compared the core process guided filtering (CM1) [29]. This algorithm
is widely used as a sensitivity enhancement algorithm that utilizes the NIR channel under general
illumination conditions rather than under extremely low light conditions. Second, it was compared
with the image fusion method (CM2) [28]. This method helps improve the information amount by
fusing the visible and invisible bands to facilitate the material classification using the NIR channel.
Finally, it is compared with the cost minimization method (CM3) [31]. This method proposes five cost
functions that compensate the sensitivity characteristics of the NIR channel while maintaining the
color characteristics of the RGB channel under extremely low light conditions and obtain the results
through a minimization process. The experimental environment used to measure the computing time
included C++ code on Intel i7-6700k CPU 4 Ghz, Windows 10, and Visual Studio 2015. The algorithm
execution times for CM1, CM2, CM3, and the proposed method are 0.880 s, 1.213 s, 4.520 s, and 1.107
s, respectively. The proposed method is faster than the other algorithms except CM1, which has fast
computation time because it has guided filtering included in the proposed method.

Figure 11 shows the input image, results of the three conventional methods, and the full image
obtained using the proposed algorithm. In Section 2, the results of CM1 obtained using guided filtering,
were poor because the linear coefficients could not be accurately determined under extremely low light
conditions. The results of CM2 show that the noise characteristics of the NIR are generally followed.
However, based on the local contrast and brightness of the NIR, the color reproduction of the RGB
channel can’t be followed. The result of CM3 follows the color reproduction of RGB; however, the
low frequency noise that occurs under extremely low light conditions is not removed, and the noise
characteristic of the NIR level is not exhibited. The proposed method (PM) results follow the RGB
color reproduction and show NIR level noise level at the same time. Thus, the proposed algorithm
shows better noise suppression, and color reproduction ability, than conventional methods.

Figure 12 shows the image of the color chart and text area shown in Figure 11. First, the proposed
algorithm for the writing area shows the expressive power of the NIR level, and no noise is amplified
in the background. This was achieved by compensating for the residual information. In the color
patch, only CM2 and PM are effectively expressed without the influence of noise. However, as CM2
follows the local brightness of the NIR, the color reproduction power falls short of the PM result. The
good noise characteristics and color reproduction ability of the PM can be attributed to the proposed
edge preserving smoother.

Figure 13 shows the image of the doll’s body area shown in Figure 11. The experimental results
show that CM3 and PM effectively portray the RGB colors in terms of the color reproduction ability.
However, the texture information regarding the doll’s body, and foot reflected by CM2 and PM, are not
up to the mark. As shown in Figure 12, the edge preserving smoothing of the proposed algorithm helps
improve the accuracy of estimating the linear coefficients via guided filtering, and the compensated
residual information helps improve the texture information.
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SNR [33] was used for the numerical comparison of sensitivity improvement in extremely low
light conditions. The equation of SNR is expressed as:

SNRdB = 20log10
µI
σI

, (23)

where SNRdB represents the SNR, and the unit is decibels (dB) in the log scale. In addition, µI is
the average of the measurement region in the image, and σI denotes the standard deviation of the
measurement region in the image.

Figure 14 shows the white flat area and the SNR were measured in this area. The SNR values
of the color images in Figure 14 represent average values measured on the R, G, and B channels,
respectively. The NIR channel is a single SNR value. Figure 14 shows the best noise characteristics of
PM and CM2. The fusion method results reflect the local brightness of the NIR, which improves the
noise characteristics. The proposed algorithm follows the local brightness of RGB and conforms more
closely to the development purpose of following the noise characteristic of NIR. Table 2 shows the
results of Figure 14 in more detail. The average SNR of the input image is 13.76 dB, which means that
the noise is considerably large. The CM1 result has a higher SNR than RGB but the lowest value among
other comparison algorithms. CM2 has a 12.97 dB improvement over RGB and higher SNR than NIR.
This is a result of faithfully reflecting the NIR information. The result of CM3 is lower than that of
fusion but it is 12.66 dB better than that of RGB. It faithfully follows the local brightness of RGB, but it
does not suppress low frequency noise. The proposed method shows the highest SNR and 13.03 dB
improvement over RGB. This is higher than that of the fusion method, but the difference is insignificant.
The high numerical value of the proposed algorithm shows that the sensitivity characteristic of NIR is
reflected in the fusion level.
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Table 2. Comparisons of signal-to-noise ratio (SNR) under extremely low light condition (0.01 lx).

0.01lx Input RGB Input NIR CM1 [29] CM2 [28] CM3 [30] PM

R 14.58 26.46 25.92 26.41 26.41 27.21
G 13.00 - 25.91 27.00 26.42 26.45
B 13.69 - 25.98 26.79 26.43 26.71

Ave. 13.76 26.46 25.94 26.73 26.42 26.79

In addition to incandescent lamps, the same experiment was conducted in an extremely low
illumination environment, including the NIR band such as a sodium lamp. This is to verify
the proposed method in different lighting conditions (color temperature and lighting spectrum).
Fluorescent lamps or LED lamps are excluded from the comparison because they cannot utilize the
NIR band without artificially adding NIR bands. Figure 15 shows the result of improving sensitivity
using the NIR channel with a sodium lamp at 0.01 lx. Figure 15a shows the result of the color
restoration algorithm as an input image. Figure 15b shows that the representation of the black region
is awkward, due to inaccurate linear coefficient estimates, and white line artifacts occur at strong
edges. In Figure 15c, the effect of noise is greatly reduced by NIR, but a color reproduction error occurs.
Figure 15d shows that color reproduction is accurate and there are no artifacts in guided filtering, but
it is not enough to follow the noise characteristics of NIR. Finally, Figure 15e shows that the proposed
algorithm has excellent color reproduction, spatial resolution, and noise characteristics. This is similar
to the comparison of results of incandescent lamps.
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5. Conclusions

We used an RGB-NIR MFA to replace the existing Bayer CFA. However, this method has
limitations in reflecting the sensitivity of the NIR channel through the demosaic and color restoration
algorithms. To solve this problem, post-processing is proposed, and an algorithm is developed to
reflect three characteristics: SNR and color noise suppression at the NIR channel level, improved
resolution at the NIR channel level, and RGB color image level color reproduction. For the three
characteristics, we propose an edge preserving smoother that is most suitable under extremely low
light conditions, by pre-processing a guided filter and estimate the linear coefficient more accurately.
The edge preserving smoother helps detect the quality degradation component of the RGB-NIR MFA,
such as the noise in the RGB channels. Moreover, a CBF kernel estimated from the NIR channel is
applied to the U and V channels to remove color noise. The residual information is compensated by
post-processing the guided filter. The proposed algorithm can estimate and compensate for the missing
texture information of the guided filter result and the information of the erroneously reconstructed
strong edge regions from the NIR channel. The proposed method can estimate the residual information
lost in the guided filtering process by reconstructing the luminance channel into an NIR channel by
using a linear coefficient. The compensation of the residual information helps improve the resolution
of the output image and correct the artifacts in the strong edge areas. The experimental results show
that the proposed algorithm results in a resolution and SNR similar to that of the NIR channel, under
extremely low light conditions, and strictly follows the colors of the RGB channels.
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