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Abstract: Remote monitoring applications in urban vehicular ad-hoc networks (VANETs) enable
authorities to monitor data related to various activities of a moving vehicle from a static infrastructure.
However, urban environment constraints along with various characteristics of remote monitoring
applications give rise to significant hurdles while developing routing solutions in urban VANETs.
Since the urban environment comprises several road intersections, using their geographic information
can greatly assist in achieving efficient and reliable routing. With an aim to leverage this
information, this article presents a receiver-based data forwarding protocol, termed Intersection-based
Link-adaptive Beaconless Forwarding for City scenarios (ILBFC). ILBFC uses the position information
of road intersections to effectively limit the duration for which a relay vehicle can stay as a default
forwarder. In addition, a winner relay management scheme is employed to consider the drastic
speed decay in vehicles. Furthermore, ILBFC is simulated in realistic urban traffic conditions, and
its performance is compared with other existing state-of-the-art routing protocols in terms of packet
delivery ratio, average end-to-end delay and packet redundancy coefficient. In particular, the results
highlight the superior performance of ILBFC, thereby offering an efficient and reliable routing solution
for remote monitoring applications.

Keywords: link duration; remote monitoring; receiver-based; road intersections; vehicular ad-hoc
networks; winner relay management

1. Introduction

Remote monitoring of vehicles moving in urban traffic environment significantly contribute
to various applications in the field of telemedicine, road safety and mobile surveillance. Remote
monitoring applications for road traffic environment generally involve data transfer from a moving
vehicle to a static remote infrastructure. The data to be transferred include still images, signals
from various physiological sensors, audio and video. Vehicular ad-hoc network (VANET) aims
at achieving intelligent transportation system (ITS) and offers an ideal platform to enable remote
monitoring applications in road traffic environment. In such network, all vehicles are equipped with
wireless sensors and onboard units to allow wireless communication between the vehicles and the
infrastructure [1]. Communications in VANET can be broadly classified into four types: in-vehicle,
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and more recently vehicle-to-broadband
cloud (V2B) communication [2]. Wireless access in vehicular environments (WAVE) [3] architecture
comprising the IEEE 802.11p and IEEE 1609.x communication standards is used in VANETs.
IEEE 802.11p is an approved amendment of IEEE 802.11 [4] focusing mainly on the physical and
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medium access control (MAC) sublayers whereas IEEE 1609.x comprises various communication
standards that operate in the middle layers of the protocol stack to support safety applications.

Wireless communication required to facilitate remote monitoring applications in urban traffic
environment faces significant challenges. Specifically, it has to cope with general vehicular environment
constraints such as mobility and density variations [5–7]. In addition, urban traffic environment
has its own constraints such as drastic speed decays, presence of road intersections and traffic
signals [8,9]. Apart from this, wireless communication also needs to support different data rate
requirements for various data types such as images, physiological signals, audio and video that need
to be transferred in remote monitoring applications. The above mentioned constraints give rise to
significant hurdles while developing routing solutions in urban VANETs. Routing protocols that use
geographic information and make routing decisions on the fly are well suited for VANET environment.
One of such routing techniques is the receiver-based data forwarding, where the intermediate vehicles
upon data reception, decide whether or not to forward the data packet. The decision is usually based
on certain characteristics of intermediate vehicle, previous relay vehicle and destination, with the
most commonly used characteristic being geographic information. Receiver-based data forwarding
techniques mainly comprise two key features: forwarding zone and waiting time criteria. Forwarding
zone criterion limits the number of vehicles eligible for data forwarding based on their presence in
the forwarding zone. Eligible vehicles then contend for the forwarding rights by setting their timers
based on a certain waiting time criterion. A vehicle with the shortest waiting time wins the contention
and forwards the data packet, while other contending vehicles cancel their timer and discard the data
packet upon reception of duplicate data packet.

Although receiver-based schemes are well suited for dynamic environments, they result in
significant end-to-end (ETE) delay [5]. This is due to their waiting time criterion, where the relay
vehicles are required to wait for certain time for each data packet before forwarding it further. The work
in [10,11] minimize this issue by allowing a relay vehicle that wins the contention to directly forward
any incoming data packet without any waiting time for certain duration. This duration is usually
based on the position and speed information of the vehicles. This helps in reducing the ETE delay, as
relay vehicles do not have to perform relay selection for every incoming data packet. However, if the
duration for which relay vehicle acts as a default forwarder is too long, the chances of a relay vehicle
moving out of the forwarding zone will be high and may lead to multiple relay vehicles forwarding
redundant data packets at the same hop level. In addition, the urban traffic environment comprises
several road intersections leading to roads with different directions, and a relay vehicle acting as
default forwarder for long time can lead to data packets being forwarded in the wrong direction, hence
resulting in either packet drops or longer routes to destination. Therefore, assigning an appropriate
duration for the relay vehicles to stay in a default forwarding state is vital and using the geographic
information of road intersections present in urban VANETs can greatly contribute towards solving
the issue.

This article proposes a receiver-based data forwarding protocol that uses geographic information
of road intersections to assign a duration for which a relay vehicle stays in default forwarding state.
The key contributions of the article are as follows:

• A novel receiver-based data forwarding protocol called intersection-based link-adaptive
beaconless forwarding for city scenarios (ILBFC) is proposed. ILBFC exploits geographic
information of road intersections in limiting the duration for which a relay vehicle stays as
a default forwarder. Also, the maximum duration for which a relay vehicle can be a default
forwarder is fixed based on the maximum road length between the two road intersections.

• An urban road traffic adaptive winner relay management scheme is employed, where the relay
vehicle when acting as default forwarder decides on every data packet reception whether or not
to continue as default forwarder. The decision is based on the relative geographic progress of
current and previous relay vehicles towards destination. This is done with the aim to take into
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account the drastic decay in the speed of vehicles due to the road intersections and traffic signals
encountered in urban VANETs.

• The proposed ILBFC is then simulated in realistic traffic conditions and its performance is
compared with other existing state-of-the-art routing protocols. The comparison is done in terms
of three performance metrics: packet delivery ratio (PDR), average ETE delay, and a new metric
called packet redundancy coefficient (PRC), where PRC gives a measure of routing protocol’s
ability to disseminate the data packet in unicast fashion.

The rest of the article is organized as follows. Section 2 gives the background information
highlighting various remote monitoring applications, characteristics of remote monitoring in urban
environment, different aspects of routing, and an overview of receiver-based data forwarding in
VANETs. Section 3 explains all the features of the proposed ILBFC protocol in detail. Section 4 analyzes
the performance of ILBFC in comparison to routing protocols from existing state-of-the-art. Specifically,
this section details the scenario setup, the performance metrics, and the routing protocols used in
the comparisons, and provides an in-depth discussion of the simulation results. Finally, Section 5
concludes the paper.

2. Background

In this section, background information is provided. Firstly, an overview of remote monitoring in
urban VANETs is given followed by a review of some important characteristics and design challenges
of the routing solutions for VANETs.

2.1. Remote Monitoring Applications in VANETs

Remote monitoring applications in VANETs can be broadly categorized into emergency
telemedicine, commercial driver safety, and mobile surveillance. The scope of these applications
in vehicular networks is briefly explained next.

2.1.1. Emergency Telemedicine

Emergency telemedicine makes use of emerging wireless communication and information
technologies to provide health-care expertise such as medical diagnosis, treatment and patient care, in
remote sites [12]. Early medical diagnosis and treatment could be vital in patient’s recovery or even
saving patient’s life. In addition, transmission of patient’s medical data from ambulance to the hospital
allows the doctors to make necessary arrangements for the incoming patient. The medical data sent
includes still images of patient such as X-ray report, medical video of the patient and various signals
from physiological sensors such as electrocardiogram (ECG), electroencephalogram (EEG), heart rate
(HR) and blood pressure.

Telemedicine projects in [13–15] aimed at developing an emergency telemedicine device to
transmit important medical data such as still images and various signals from physiological sensors
from a remote site to an emergency health-care center to enable prehospital assistance from doctors.
Apart from this, a telestroke ambulance prototype was developed in [16] to enable realtime audio-video
communication between the ambulance and the hospital site using cellular technology. The use of
video technology enables doctors to perform more accurate diagnosis by visualizing different features
of the patients such as colouring, rapid breathing, muscle stiffness, and state-of-shock evidence [17].
The work in [18] highlights a detailed explanation on various emergency telemedicine applications.

2.1.2. Commercial Driver Safety

In [19], it was reported that commercial drivers often involve in more road accidents as compared
to those who drive their personal vehicles. According to the studies by the social security organization
(SOCSO), there were at least 2 work-related driving deaths in 2011. Also, there is a rise of almost
49% in work-related driving accidents from 17,682 accidents in 2007 to 26,262 in 2012 [20]. In [21],
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as part of Shell exploration and production hearts and minds research programme, four operating
companies across Holland, Nigeria, Thailand and Sultanate of Oman took part in a study analyzing
the commercial drivers’ attitudes in oil and gas industry that lead to risk-taking behaviour. Also, it was
further reported that 50% of all fatalities in Shell’s exploration and production were related to driving.

Commercial drivers often involve in risk-taking behaviours as they are not monitored [21,22].
Additionally, since the drivers do not own the vehicle, they do not bear any financial burden in case
of vehicle crash, which results in less responsible and more risky driving [23–25]. According to [26],
half of the workers involved in vehicle crashes in the United States of America were either not using
safety belts or were in ejected state from the vehicle. Fatigue could be defined as a risk factor between
sleepiness and reduced vigilance among drivers, and it has been reported in [27] that commercial
drivers are more involved in sleepiness as compared to drivers using their personal vehicles. This is
because most of the commercial drivers tend to perform odd jobs at night while also driving at daytime
and, hence, do not have enough sleep. In Malaysia, for instance, most of the fatigue-related fatal
crashes were caused by heavy-vehicle drivers [28].

Video monitoring of commercial drivers while driving can contribute to improving road safety
and can be used to caution the drivers and other vehicles on the road should there be any occurrence
of unusual behaviour. According to the study carried out in [22], the use of driver monitoring resulted
in an estimated average of 20% accident reduction. Moreover, drivers when aware of being monitored
tend to change their attitude. Video monitoring can also assist in fatigue detection [29–31] by observing
drivers’ various physiological features such as eye blinking, yawning and other movements.

2.1.3. Mobile Surveillance

Remote monitoring in VANETs also has scope in mobile surveillance applications. Cameras can be
mounted on top of buses, police vehicles and other government vehicles to collect the video surveillance
data and transfer it to a monitoring center such as a police headquarter [32]. An embedded wireless
video surveillance system for vehicles was created in [33] using 802.11-based WLANs and CDMA
connectivity solutions. The video surveillance data was then accessible through the Internet. In [34],
the performance of IEEE 802.11p vehicular video surveillance system was analyzed, and a mechanism
for adaptive target video bit rate selection was proposed.

2.2. Specific Characteristics of Remote Monitoring in Urban VANETs

Wireless communication for the remote monitoring applications in an urban environment has
unique characteristics. Some of the characteristics specific to remote monitoring in urban VANETs are
explained next.

2.2.1. Urban Environment Constraints

In general, the vehicular environment has unique characteristics that pose considerable challenge
for efficient communication [5–7]. This environment consists of both stationary roadside units (RSUs)
and mobile vehicles, and the mobility in this environment can vary. The mobility tends to be high in
the case of fast moving vehicles and slow when the vehicles are moving at low speed. Both extreme
cases of mobility have their own challenges. For high mobility scenarios, the wireless communication
among vehicles has to circumvent issues such as frequent link failures, Doppler effect, large ETE delay,
etc. For the low mobility scenarios, issues such as high packet collision, channel fading, interference,
etc., become considerable. Apart from this, there exist significant density variations in vehicular
environment, with high density being observed usually during peak hours or in case of traffic jams and
low density when few vehicles are moving around. Density variation may pose various constraints for
efficient communication among vehicles. High density scenarios face the issue of duplicate packet
reception due to redundant messages sent by multiple vehicles. In contrast, low density scenarios
face the issue of packet drop due to the unavailability of vehicles for further forwarding the message.
Another characteristics of the vehicular environment is the constrained movement of vehicles due to
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the predefined paths (roads). Thus, location information of the paths can be used to further improve
the efficiency of the wireless communication in this context. In addition to the general constraints
of the vehicular environment, the urban environment has its own unique characteristics. The work
in [8] demonstrated various parameters that have a significant impact on network performance in an
urban environment. Vehicles in this environment face drastic speed decay due to the presence of road
intersections and traffic signals. Therefore, the average velocity of a vehicle has minimum impact on
the network performance as it does not reflect the actual velocity in urban traffic [8,9].

2.2.2. Data Rate Requirement

As highlighted in Section 2.1, the type of data monitored for remote monitoring applications
includes images, various signals from physiological sensors, audio, video, etc. To enable remote
monitoring of these data through communication networks, different data rates are required. Table 1
highlights the data rate requirements of various sensors used by remote monitoring applications.

Table 1. Data rate requirements to enable remote monitoring applications for different sensors.

Sensor Signal Data Rate

Physiological [35,36]

ECG 24–288 kbps
EEG 43.2 kbps
EMG 320 kbps
EOG 1.2 kbps
EDA 1.2 kbps

Heart Rate 2–5 kbps
Blood Pressure 2–5 kbps

Respiration 800 bps

Audio [35] Voice 4–25 kbps
Sound Diagnostic 32–256 kbps

Camera
Images [37] 200 kbps

Video Telephony [38] 32 kbps
Video Streaming [39–41] 100–500 kbps

2.3. Routing in VANETs

The routing protocol in VANETs uses intermediate vehicles as relays to transmit the data packets
from a source vehicle to the destination.

2.3.1. Classification

In [5], the routing protocols are categorized as topology-based and geographic protocols.
In topology-based routing, a route is established between the source and the destination prior to
data transmission. This is achieved by maintaining routing tables comprising of link information
shared among vehicles through the exchange of control packets. Topology-based routing protocols
are further classified into proactive, reactive and hybrid. In contrast, geographic routing protocols
neither maintain routing tables nor establish routes prior to data transmission. Instead, data packet
is forwarded to the next best hop, which is selected based on the information available in a vehicle’s
vicinity. These protocols are further classified into sender-based and receiver-based forwarding.
The former approach enables the vehicle that sends the data packet to select the next best forwarding
vehicle towards destination, while in the latter approach, the sending vehicle broadcasts the data
packet and the receiving vehicle decides whether or not to forward the packet.

2.3.2. Challenges

Efficient and robust routing is still a key challenge in VANETs. This is because the developers of
the routing protocols have to consider various technical challenges encountered in VANETs [5,6,42–44].
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Scalability is one of the characteristics of VANETs and poses a significant hurdle to efficient routing,
as the protocol needs to adapt to a varying number of vehicles in the network. To cope with the
scalability issue, a routing protocol should make routing decisions solely based on information
available in its vicinity. Performing localized operations will eliminate the need for a routing protocol to
know the topology of the entire network hence resulting in considerably less overhead. Apart from this,
due to the dynamic nature of VANETs, most of the topology-based routing protocols result in degraded
network performance [42]. Geographic protocols are more suitable for vehicular networks because
of their ability to make routing decisions on the fly. Also, these protocols leverage the constrained
movement pattern of vehicles on road by using the location information to further optimize the routing
decisions. However, sender-based forwarding requires periodic exchange of information among
neighboring vehicles in order to enable the sending vehicle to select the next best vehicle to forward
the data packet towards destination. This may result in significant overhead. A better alternative is to
use receiver-based forwarding schemes where the receiving vehicle decides whether or not to forward
the data packet based on the information available in the header of data packet. The approach offers
low overhead since there is no need for periodic information sharing among vehicles [45]. However,
minimizing duplicate packet transmissions and reducing transmission delay are the key challenges in
receiver-based forwarding schemes.

2.4. Receiver-Based Data Forwarding

This section discusses the basic idea of receiver-based scheme while also highlighting some of the
existing receiver-based routing protocols in VANETs.

2.4.1. Basic Idea

Figure 1 illustrates the general receiver-based scheme in VANETs. It consists of mainly
two features: forwarding zone and waiting time criteria. The forwarding zone, which is highlighted by
the yellow region in Figure 1, is the eligibility criterion that every contender checks before forwarding
the data packet. If the vehicle is not located within the forwarding zone, as in the case of vehicle B,
it discards the data packet. Vehicles located in the forwarding zone contend for the contention right
by setting the waiting time based on certain criteria. A vehicle in which the waiting time expires first
wins the contention right and broadcasts the data packet further. Other contending vehicles, as in the
case of vehicle C, upon hearing the redundant data packet reception discards the data packet.

A

B

C

D

E

R     R

Destination

Data packet discarded since the 
vehicle is not present in the zone

R     R

Data packet discarded after 
losing the contention right

Data packet forwarded after 
winning contention right

Data packet flow towards 
the destination

Intermediate vehicle Source vehicle

Figure 1. Illustration of a receiver-based forwarding scheme in VANETs.

The purpose of forwarding zone criterion is to minimize the unwanted multiple path formation
which occurs when two or more contending vehicles are not located in wireless range of each other [46].
The key to reduce the unnecessary multipath formation is to set the forwarding zone such that all
vehicles in the zone are in wireless range of each other.
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2.4.2. Related Work

The beacon-less routing (BLR) proposed in [47] is a receiver-based scheme, where the vehicle on
reception of data packet uses location information to decide whether or not to participate in the data
forwarding process. Three forwarding zones, i.e., circle, sector, and reuleaux triangle, were tested for
this protocol. For the waiting time criteria, each contending vehicle assigns a dynamic forwarding
delay based on its geographic progress towards destination.

The work in [10] presented another receiver-based routing protocol called video reactive
tracking-based unicast (VIRTUS) which is developed to support video streaming in vehicular
environment. The forwarding zone is calculated using a forwarding angle θ, and the waiting time
criteria is based on the geographic progress towards destination and link stability of the contending
vehicle. The link stability is computed based on the current and future location of vehicles. Here, the
future locations are predicted using Bayesian state estimation approach. However, VIRTUS requires the
source and destination vehicles to periodically exchange information to update their current location
coordinates to each other.

Location-aware multipath video streaming (LIAITHON) [45] is a multipath receiver-based routing
protocol developed to fulfil video streaming requirements over VANET by distributing the loads over
two paths. The two paths are ensured to have the minimum route coupling effect and are selected
based on the degree of closeness, geographic progress and link stability. The route coupling between
the two paths is avoided by keeping them at least two times of their transmission range apart. Here,
multiple paths are used to support high data rate requirements of video streaming. However, multiple
paths also lead to redundant data packets flowing throughout the network, which may cause network
congestion and packet collision.

The work in [48] further enhanced LIAITHON to LIAITHON+ by increasing the number of
multiple paths to three. Although having a greater number of paths may improve load distribution
and support higher data rate, but it may also result in increased path length and the route coupling
effect. Also, at a higher data rate, too many redundant packets may flow in the network resulting in an
increased number of packet collisions.

Besides, the distributed beaconless dissemination (DBD) [11] is a beaconless routing protocol
which uses backbone-based approach to maintain robust and high quality routes, thereby enabling live
video flows on multimedia highway VANETs for V2V scenarios. DBD does not use forwarding zone
criterion as the transmission range of vehicles is greater than the width of the highway roads, which
allows the vehicles to hear each other’s data packet transmissions. Also, the vehicles that are traveling
in opposite direction with respect to the vehicle broadcasting the data packet do not participate in the
contention process. Another feature of DBD is the use of the link-adaptive approach. Specifically, once
the contending vehicle wins the contention right, it stays in the “winner” state for a specific duration
where it forwards any incoming data packet without setting any waiting time. The duration for which
the relaying vehicle stays in the “winner” state is computed based on the location information of the
previous and current relaying vehicles, and the wireless range of the vehicles.

3. Intersection-Based Link-Adaptive Beaconless Forwarding for City Scenarios

Intersection-based link-adaptive beaconless forwarding for city scenarios (ILBFC) protocol
exploits geographic information of road intersections in limiting the duration for which a relay vehicle
stays as a default forwarder. Also, an urban road traffic adaptive winner relay management scheme
is employed where the relay vehicle when acting as default forwarder decides on every data packet
reception whether or not to continue as default forwarder. The details of ILBFC are discussed next.

3.1. VANET Model

The vehicles are assumed to be moving in four different directions (east, west, north and south) in
an urban environment. The WAVE architecture comprises of IEEE 802.11p and IEEE 1609 standards to
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support the lower two (PHY and MAC) and higher layers, respectively, is used as the communication
model. Here, V2V communication is used to forward the data packet from a source vehicle until
the last-hop vehicle, whereas V2I communication is used to forward the packet from the last-hop
vehicle to destination (static infrastructure). Each vehicle is assumed to be equipped with GPS and
digital maps. The GPS feature enables the vehicle to know its location information, and digital maps
further reveal the location information of the destination and the intersections. Apart from this, each
vehicle receiving the data packet knows the position information of the previous relay vehicle, which
is stored in the header of data packet. Also, for all simulation scenarios, during data transmission, it is
assumed that there exists at least one data packet that has reached destination traversing more than
one hop. Finally, for the forwarding angle calculations, the line connecting the relaying vehicle and the
destination is considered as x-axis. Also, the terms vehicle and node will be used interchangeably and
carry the same meaning.

3.2. Routing Protocol Design

In ILBFC, the data forwarding process is totally beaconless and all the necessary information
required for the relay selection process is stored in the header of data packet. The protocol uses the
two-way data-ACK packet exchange instead of the four-way RTS-CTS-data-ACK exchange (RTS,
Request To Send; CTS, Clear To Send). Here, only the destination node after receiving the data packet
sends the acknowledgement (ACK) packet to the last hop node. Specifically, the header contains
the following information: sequence number, source address, destination address, previous relaying
vehicle address, location and velocity information of previous relaying vehicle. After transmission of
the data packet, the node sets the timer for retransmission timeout (γout). If the node does not receive
any confirmation before γout, it will retransmit the data packet. The confirmation for the source and
all the intermediate relay nodes, except the last hop, is the reception of the same data packet. For the
last-hop relay node, the confirmation is the reception of an ACK packet from the destination. Also,
the maximum number of retransmissions for each data packet is fixed to 3, after which the data packet
is discarded. The key features of ILBFC are explained next.

3.2.1. Redundant Packet Elimination

One of the drawbacks of simple data dissemination techniques such as flooding [49] is that the
intermediate relay nodes forward duplicate data packets, resulting in redundant data packets flowing
throughout the network. This degrades the network performance, especially in dense scenarios due
to the high chances of packet collision and network congestion. Flooding also leads to significant
overhead and high bandwidth consumption [42]. To minimize this issue in ILBFC, each node upon
reception of a new data packet, records the sequence number. This allows a node to distinguish
between a new data packet and a duplicate one, thereby discarding the duplicate data packets.

3.2.2. Forwarding Zone

With the intention to further minimize the flow of redundant data packets in ILBFC, a forwarding
zone is set such that all nodes located in the zone are in wireless range of each other. To achieve this, a
forwarding zone of sector shape with an angle of 60◦ towards destination is set. A fixed forwarding
angle of 60◦ limits the maximum distance within the forwarding zone to the wireless range of the
node. This will enable the nodes in the forwarding zone to hear each other’s packet transmission,
thereby allowing only one node in the forwarding zone to relay the data packet. A node is located in
the forwarding zone when it satisfies the following condition:

2× arccos

∣∣∣∣∣∣ ~NS · ~DS∣∣∣ ~NS
∣∣∣× ∣∣∣ ~DS

∣∣∣
∣∣∣∣∣∣ ≤ 60◦, (1)
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where ~NS is the position vector from the contending node to the previous relay node, and ~DS is the
position vector from the previous relay node to the destination. Nodes that do not satisfy this condition
do not proceed with the contention process and discard the data packet.

3.2.3. Waiting Time Criteria

Once the node satisfies the forwarding zone criterion, ILBFC determines the suitability of the
node to be a relay by setting the waiting time, which is based on the geographic progress towards the
destination (γgeo) and the link stability of the node (γstab). γgeo for a node is calculated as follows:

γgeo = 1−

∣∣∣ ~DS
∣∣∣− ∣∣∣ ~DN

∣∣∣
r

, (2)

where r is the transmission range of the node, and ~DN is the position vector from destination to
contending node. γstab is computed using link duration (δlink), which is the minimum duration for
which a contending node is in the communication range of the previous relay node. Furthermore,
γstab is made to be more adaptive to the urban environment by taking into account the road intersections
to limit δlink. Firstly, δlink is calculated using Equation (3). The sub-variables for Equation (3) are given
in the expressions (4)–(8):

δlink =
1
V
×
[
−(a× vrx + b× vry)±

√
V × r2 − (a× vry − b× vrx)2

]
, (3)

where
V = vrx

2 + vry
2, (4)

vrx = vcx − vpx, (5)

vry = vcy − vpy, (6)

a = xc − xp, (7)

b = yc − yp, (8)

with (xc, yc) and (xp, yp) denoting the position coordinates of the contending node and the previous
relay node, respectively, and (vcx, vcy) and (vpx, vpy) being the velocity coordinates of the contending
node and the previous relay node, respectively. However, nodes with almost the same relative
velocities will have a large link duration values, which is unrealistic in city scenarios. This is because
city scenarios consist of many road intersections such as traffic junctions and other irregular turns
and the direction and speed of the vehicles may change, rendering the previously calculated δlink
inaccurate. Therefore, in ILBFC, the maximum value of δlink for a vehicle is limited based on the road
intersection towards which the vehicle is moving. Specifically, the minimum duration for the vehicle
to reach the next road intersection (δint) is calculated as follows:

δint =

√
(xi − xc)2 + (yi − yc)2

vmax
, (9)

where (xi, yi) are the position coordinates of the next intersection, and vmax is maximum speed of the
vehicle. The effective link duration (δe f f ) incorporating the road intersection information is calculated
as follows:

δe f f =

{
δlink, if δlink ≤ δint

δint, otherwise.
(10)
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Once δe f f is known, γstab can then be computed as follows:

γstab = 1−
δe f f

Λ
, (11)

where Λ is the maximum reservation time and is computed as follows:

Λ =
dmax

vmax
. (12)

Here, dmax is the maximum distance of the road between two road intersections. Finally, the
waiting time (γ) as mentioned in [10] is calculated as follows:

γ = [α× γgeo + (1− α)× γstab]× Γ, (13)

where α is the weighing factor and Γ is the maximum waiting time. Apart from this, nodes also wait
for an additional random delay (β) to avoid situations where multiple nodes get a very similar γ.

3.2.4. Winner Relay Management

Another issue with the most of receiver-based scheme is the high ETE delay, which is due to
the waiting time required for the relay selection procedure for every data packet. In ILBFC, once the
relay node wins the contention right, it changes its state to “winner”. The relay node in this state does
not participate in forwarding zone and waiting time criteria, and directly forwards all incoming data
packets for a duration of δe f f s. In addition, the relay node stays in this state as long as its distance
to the destination (dc) is less than the distance between the previous relay node and the destination
(dp). However, if dc ≥ dp, the relay node leaves its “winner” state and discards the data packet.
This condition improves the routing efficiency, especially in the city scenarios where the speed and
direction changes in a vehicle are relatively high when compared to highway scenarios.

3.2.5. Loop Protection

In urban environment, especially in the presence of streets with loop formation (circular roads),
there is chance of having multiple relay nodes in winner states. The proposed ILBFC uses hop-count
information to minimize this issue. A relay node in winner state upon reception of a duplicate
packet which it is still processing, checks the hop-count information in the packet header before
discarding it. If the hop-count of the packet (Hnew) is much greater than the one (H) it is still processing
(i.e., Hnew ≥ H + η), it implies that there is another relay node that has already forwarded the very
same packet. Here, η is a constant greater than zero. Hence, the current relay node leaves its “winner”
state and discards the packet. Apart from this, ILBFC sets a maximum hop limit (Hmax) that a data
packet can traverse and after which it is discarded by the node.

Figure 2 illustrates the ILBFC architecture and some of its important steps which are as follows:
(i) when the source node has a data packet to transmit, ILBFC adds relevant information such as
node’s location and mobility information, sequence number, etc., to the header of data packet before
broadcasting the packet; (ii) upon reception of the data packet, ILBFC determines the suitability of the
relay node by checking the above mentioned conditions in order to schedule the packet for further
forwarding; (iii) after waiting timer expiration or during default forwarding in case the relay node is in
“winner” state, it updates the header of data packet adding relevant information and then broadcasts
the data packet; (iv) upon data packet reception at the destination node, an ACK packet is transmitted
to enable the last hop relay node to cancel its timer.
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Figure 2. ILBFC architecture.

4. Performance Analysis

In this section, the performance of ILBFC is compared with other existing state-of-the-art
routing protocols. The details of scenario setup, performance metrics used, and simulations tests are
discussed next.

4.1. Scenario Setup and Performance Metrics

With an aim to replicate urban environment, a city scenario in the form of Manhattan grid is
created using a software called simulation of urban mobility (SUMO) [50]. Figure 3 shows an illustration
of a scenario highlighting the position coordinates of road intersections and destination.

As depicted in the figure, the roads are bidirectional with each direction consisting of two lanes.
In addition, to make the scenario more realistic, traffic signals were installed at some of the road
intersections. Mobility traces generated from SUMO are then imported in QualNet 8.1 network
simulator [51] through mobility model generator for vehicular networks (MOVE) [52] tool for
performance analysis.
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Figure 3. Illustration of the scenario.

Also, in order to simulate a realistic vehicular wireless channel, the path loss must be beyond basic
path loss estimation models such as free-space path loss [53] as the radio propagation needs to take
into account the different sources of interference. One such path loss model is the two-ray interference
model [54] which considers the constructive/destructive self-interference while taking into account the
transmitter (ht) and receiver (hr) antenna heights over the ground and the relative permittivity (εr) of
the ground surface. The path loss (Lt) for two-ray interference model mentioned in [54,55] is calculated
using Equation (14). The sub-variables for Equation (14) are given in the expressions (15)–(21):

Lt = 20× log(4× π × d
λ
× |1 + (Υ⊥ × ej×ϕ)|−1), (14)

ϕ = 2× π ×
dre f − dlos

λ
, (15)

Υ⊥ =
sin θi −

√
εr − cos2 θi

sin θi +
√

εr − cos2 θi
, (16)

εr = εr − (j× 60× µ× λ), (17)

dlos =
√

d2 + (ht − hr)2, (18)

dre f =
√

d2 + (ht + hr)2, (19)

sin θi =
ht + hr

dre f
, (20)
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cos θi =
d

dre f
, (21)

where d is the distance between the transmitting and receiving antennas, λ is the wavelength, Υ⊥ is the
reflection coefficient, and ϕ is the phase difference. dlos and dre f are the distances covered by direct and
reflected rays, respectively. j represents the complex number (

√
−1) and θi is the angle of incidence for

reflected ray, where subscript i indicates “incidence". As mentioned in [55], the material generally used
for road surface is asphalt and has a relative permittivity value (εr) of 5 and a conductivity value (µ)
of 0. Although two-ray interference model offers increased level of realism compared to the free-space
model for unobstructed scenarios, it does not consider the shadowing effect due to obstructions such as
buildings, trees, etc. Therefore, in the proposed scenario, the total path loss (L) is computed as follows:

L = Lt + Lsys + Xσ, (22)

where Xσ is a zero mean Gaussian distributed random variable with σ being the standard deviation.
The Gaussian distribution is used to take into account the random effects of shadowing that a moving
vehicle may face from the surrounding obstructions. Lsys represents the system loss that occurs during
the data transmission at the sender side and the data reception at the receiver side, and is computed
as follows:

Lsys = Ae f f + Amismatch + Aconnection, (23)

where Ae f f is the loss due to antenna efficiency, Amismatch is the antenna mismatch loss, and Aconnection
is the antenna connection loss. Here, all the variables of Equations (22) and (23) are given in dB.

The key simulation parameters used for evaluating the results are highlighted in Table 2. Although
the duration of entire simulation is 300 s, there is no data packet exchange between the nodes for the
first 200 s and the only event during this time is node movement, followed by 100 s of data packet
exchange between the nodes. This is done to avoid cold start issues in the results.

Table 2. Simulation parameters.

Parameter Value

Area 1200 m × 1200 m
Simulation time 300 s

Number of simulation runs 30
Transmission range 450 m
Transmission power 29.3 dBm
Channel frequency 5.9 GHz

MAC, PHY parameters IEEE 802.11p
Data traffic CBR

Data packet size 512 B
Buffer size 51.2 kB

Nominal bandwidth 27 Mbps
Antenna type Omnidirectional

Antenna height 1.895 m
Ae f f 0.9691 dB

Amismatch 0.3 dB
Aconnection 0.2 dB

Pathloss model Two ray interference
Shadowing effect, σ 4 dB
Receiver sensitivity −71.65 dBm

For evaluating the network performance, three performance metrics are considered. The PDR is
the ratio between the number of packets received at the destination and the total number of packets
sent by the source node. The average ETE delay refers to the average time taken for a data packet to
be transmitted across a network from source node to destination. In addition to PDR and average
ETE delay, the PRC is proposed to give a measure of unicast capability of a receiver-based routing
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scheme. Most of the receiver-based schemes try to minimize multiple relay nodes at single hop level
by discarding duplicate packets, by using forwarding zone and assigning waiting time. However,
in some situations such as when the waiting time of multiple nodes is similar, there are chances of
having multiple relay nodes, thereby leading to multiple path formation in the network. By accounting
for PRC, the ability of a routing protocol to suppress unnecessary multiple relay nodes at single hop
level can be determined. PRC is calculated as follows:

PRC =
∑n

i=1 Ni f d

(Have − 1)× Nrec
− 1, (24)

where Ni f d is the the total number of data packets forwarded by intermediate relay node i,
and ∑n

i=1 Ni f d refers to the summation of total number of data packets forwarded by all n intermediate
relay nodes. Have is the average number of hops that a data packet traverses before reaching destination
and Nrec is the total number of data packets received at destination. Here, single hop communication
involving only source and destination is excluded while calculating Have and Nrec. A PRC value of 0
implies a perfect unicast operation while any value greater than 0 represents the presence of multiple
relay nodes at single hop level. Figure 4 illustrates two different scenarios of data packet transmission
for a better understanding of the PRC metric.
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3 3 3

3 3

3 3
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D
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Destination

Intermediate relay node
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Figure 4. Illustration of data packet transmission scenario: (a) perfect unicast transmission and (b) data
packet transmission with multiple relay nodes at single hop level.

Figure 4a shows the perfect unicast transmission case. Here, each node is in the wireless range
of two nodes at maximum (one node forward and one node backward). As depicted in the figure,
the source node broadcasts 3 data packets which are then forwarded by the intermediate relay nodes
(A and B), resulting in a total of 6 data packets being relayed by the intermediate nodes. These data
packets are then received at the destination after traversing an average of 3 hops. Upon computing
PRC for this scenario using Equation (24), a PRC value of 0 is obtained. On the other hand, for the
data packet transmission scenario shown in Figure 4b, two intermediate nodes (A and B) at the same
hop level relay the data packet, thereby resulting in 3 redundant data packets being forwarded to
node C. Although assuming that node C discards the redundant data packets, it still leads to a total
of 9 data packets being forwarded by the intermediate relay nodes, resulting in a PRC value of 0.5.
A greater PRC value implies formation of more multiple relay nodes at single hop level referring to the
inefficient unicast operation of the routing protocol.
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4.2. Protocol Specification

Table 3 highlights various protocol parameters of ILBFC. The performance of ILBFC is
compared with other existing state-of-the-art routing protocols. The specification of these protocols is
described next.

Table 3. ILBFC protocol parameters.

Parameter Value Parameter Value

Γ 50 ms η 3
γout 50 ms Hmax 6

α 0.5 β 10 ms

4.2.1. Link-Adaptive Beaconless Forwarding

Link-adaptive beaconless forwarding (LBF) protocol is a modified version of ILBFC, and it
does not contain road adaptive features present in ILBFC. Here, δe f f = δlink and is computed using
Equation (3) with maximum reservation time (Λ) value set to 100 s which represents the maximum
duration for the data packet exchange among nodes in the simulated scenario. Also, the relay node
stays in the “winner” state and forwards all the incoming data packet for an entire duration of δlink s
since there is no winner relay management condition (dc ≥ dp) as present in ILBFC. The rest of the
features (redundant packet elimination, forwarding zone and loop protection) of LBF are similar to
ILBFC. The performance of LBF is compared with ILBFC to analyze the impact of location information
of road intersections and urban road traffic adaptive winner relay management on the overall routing
and network performance.

4.2.2. Distributed Beaconless Dissemination

Distributed beaconless dissemination (DBD) protocol performs receiver-based dissemination and
is specifically built to transfer video data in highway scenarios [11]. The scheme does not have a
forwarding zone criterion, since the transmission range of vehicles is usually greater than the width of
the highway roads and, hence, they are able to notify their data packet transmission to other vehicles.
However, the vehicles that are traveling in opposite direction with respect to the sender discard the
received data packet and do not take part in the contention. For the waiting time criterion, a node
after receiving data packet sets the waiting time solely based on its geographic progress towards the
destination, which is as follows:

γ = γgeo × Γ, (25)

where γgeo is calculated according to Equation (2) and Γ is set to 50 ms which is the same value as
used in ILBFC and is indicated in Table 3. For the winner relay management, the relay node stays in
the “winner” state until its distance from the sender (d) is such that 0.75 × r ≤ d ≤ r. The rest of the
features (redundant packet elimination and loop protection) are similar to ILBFC. Performance of DBD
is analyzed to test the compatibility of a receiver-based routing scheme developed for highways in an
urban scenario.

4.2.3. Beacon-Less Routing

The beacon-less routing (BLR) protocol [47] is a simple receiver-based scheme where the nodes
on reception of data packet, based on their presence in forwarding zone decide whether or not to
contend for the forwarding right of the data packet. Here, the forwarding zone set is the same as
that of ILBFC. Furthermore, all the eligible nodes then assign a waiting time solely based on their
geographic progress towards destination. Apart from this, an additional β similar to ILBFC is set
to avoid redundant data packet forwarding by multiple relay nodes with similar γ. However, BLR
does not contain any winner relay management feature, and the intermediate nodes perform relay
selection process (forwarding zone and waiting time criteria) for every data packet received. For the
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loop protection, only the maximum hop limit (Hmax) feature is considered in BLR. Since BLR performs
relay selection for every received data packet, it will be interesting to compare its performance with
ILBFC, LBF and DBD. The latter routing techniques after the contention phase, allows the selected relay
node to forward all the incoming data packets for a specific time based on their link duration value.

4.3. Simulation Results

The simulations are carried out by varying source transmission rate, node density, and maximum
node velocity. The simulation results for these three cases are discussed next.

4.3.1. Source Transmission Rate Variation

This section shows the impact of source transmission rate on the performance of the protocols in
terms of PDR, average ETE delay and PRC. The transmission rate of a source node (Rsrc) is defined
as follows:

Rsrc = Sbits/Tintarr, (26)

where Sbits is the data packet size in bits and Tintarr is the inter-arrival time of the data packets.
Figure 5 highlights the impact of source transmission rate variation on the performance of different
routing protocols.

Specifically, Rsrc is varied from 100 kbps to 500 kbps with an incremental step of 100 kbps. Also, for
this scenario, the maximum speed of the node is set to 50 km/hr, and the number of nodes (one static
destination and the rest are mobile nodes) is fixed to 40.

Figure 5a shows the PDR performance of the protocols with respect to varying Rsrc. BLR protocol
at Rsrc equals 100 kbps yields the lowest PDR of all. This is because every received data packet that
satisfies the forwarding zone condition has to wait a certain duration depending upon the waiting
time criteria before it can further forward the packet. This results in a large number of data packets
being queued in buffer and may further lead to data packet being dropped once the buffer is full.
Therefore, with increasing Rsrc more data packets are dropped, thus resulting in decreased PDR.
The DBD protocol, on the other hand, although it performs better than BLR protocol at Rsrc equals
100 kbps, its performance drops drastically with increasing Rsrc. The major reason for this is due to its
stringent winner relay management conditions. Unlike highways, where the relative velocity among
the vehicles is quite stable, in an urban environment there exist high relative velocity fluctuations
among vehicles. Hence, it will be difficult for relay nodes to satisfy the winner relay management
condition (0.75× r ≤ d ≤ r). Therefore, for most of the received data packets, the operation of DBD will
be similar to BLR but without forwarding zone, which will further increase packet collision, thereby
degrading the PDR performance. Also, ignoring the nodes moving in opposite direction for contention
process may reduce the number of suitable contenders for forwarding the data packets. ILBFC and
LBF show relatively high PDR performance due to their winner relay management condition which
is based on the link duration among vehicles, thereby more data packets are forwarded in “winner”
state resulting in fewer data packets being dropped due to buffer overflow. However, LBF at high
source transmission rate (Rsrc equals 500 kbps) performs worse than ILBFC because of its lack of
road adaptive features. Inaccurate δlink can lead to relay node staying in “winner” state for too long.
This increases the chances of relay node moving out of the forwarding zone, thereby resulting in
multiple relay nodes forwarding redundant data packet throughout the network, hence leading to
higher chances of packet collision. Also, another drawback of relay node in the “winner” state moving
out of the forwarding zone is the fact that it may travel in a direction where there are either none or
very few suitable contending nodes available to further forward the data packet towards destination.
In contrast, ILBFC limits δlink based on the next nearest intersection to more accurate δe f f while also
checking the relative position of relay node in the “winner” state with respect to previous sender.
This ensures that “winner” relay node does not move in the wrong direction, while also reducing the
chances of the “winner” relay node moving out of the forwarding zone, hence resulting in superior
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PDR performance when compared to rest. For this scenario, the average PDR performance gains of
ILBFC over LBF, DBD and BLR are 0.2%, 13.2% and 10.5%, respectively.
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Figure 5. Performance comparison of ILBFC with LBF, DBD and BLR versus source transmission rate
while keeping the maximum speed of the node equals 50 km/hr and the number of nodes equals 40.
(a) PDR versus source transmission rate; (b) Average ETE delay versus source transmission rate; (c) PRC
versus source transmission rate.

Figure 5b depicts the average ETE delay of the data packets received at the destination. For most
of the source transmission rate variation cases (100 kbps ≤ Rsrc ≤ 400 kbps), both ILBFC and LBF
yield better performance when compared to DBD and BLR. This is due to their better winner relay
management based on the link duration, thereby minimizing the delay caused by the relay selection
process. Specifically, for the source transmission rate variation cases (100 kbps ≤ Rsrc ≤ 400 kbps),
the mean values of the average ETE delay of ILBFC, LBF, DBD, and BLR are 17.3 ms, 17.1 ms, 20.5 ms
and 20.4 ms, respectively. At higher source transmission rate (Rsrc = 500 kbps), the low average ETE
delay of DBD and BLR is simply because of their degraded PDR performance highlighted in Figure 5a,
as an increase in Rsrc results in more data packets being dropped due to buffer overflow. As far as
LBF and ILBFC are concerned, LBF at Rsrc = 500 kbps results in relatively high average ETE delay
when compared to ILBFC, which is due to multiple relay nodes forwarding the same data packet
at single hop level leading to redundant data packets flowing throughout the network and causing
packet collision and network congestion. This happens because of the relay nodes moving out of the
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forwarding zone while still being in the “winner” state. Also, these relay nodes may further travel in a
direction where there are either none or very few suitable relay node contenders to further forward
the packet, thereby resulting in longer routes to destination causing high average ETE delay. ILBFC,
on the other hand, performs better than LBF while also offering better PDR performance due to its
accurate δe f f estimation which is based on the location information of road intersections. This results
in less longer routes to destination. Also, at single hop level, the chances of more than one relay node
being selected to forward the data packet is reduced, hence yielding lower average ETE delay.

Figure 5c shows the PRC performance of protocols accentuating their efficiency in terms
of forwarding the data packet in unicast way with respect to varying source transmission rate.
With an average PRC value of 8.9, DBD results in the highest PRC indicating low unicast efficiency.
The major reason for this is its lack of forwarding zone criteria, which leads to multiple relay nodes
being formed at single hop level. The decrease in PRC for DBD with increasing Rsrc is simply because
of the increase in the number of packets being dropped by the intermediate relay nodes due to packet
collision. In contrast, with an average PRC value of 1.5, BLR yields the lowest PRC, implying high
unicast efficiency. One of the main reasons is that unlike others, BLR performs relay selection for every
data packet received, thereby minimizing the multiple relay nodes at single hop level. Another reason
is the high packet drops encountered at intermediate relay nodes due to buffer overflow. This further
results in less data packets being forwarded and hence contributes towards low PRC. The impact of
using the road intersection information in correctly estimating link duration on PRC performance
can be clearly seen when comparing LBF and ILBFC. Due to its accurate δe f f estimation, the ILBFC
protocol which has an average PRC value of 5.4, ensures relatively less multiple relay node formation
at single hop level when compared to LBF which has an average PRC value of 7.7, thereby resulting in
lower PRC.

4.3.2. Node Density Variation

This section demonstrates the influence of node density variation on the performance of the
routing protocols in terms of PDR, average ETE delay and PRC as shown in Figure 6. Node density is
considered high when a large number of nodes are in proximity of one another within a particular area
and vice versa for low node density scenarios. Here, five scenarios obtained by varying the number of
nodes from 10 to 50 with an incremental step of 10 have been tested with a fixed simulation area of
1200 m × 1200 m as indicated in Table 2. In all network density scenarios, except one static destination,
all nodes are mobile. Also, for these scenarios, the maximum speed of the node is set to 50 km/hr and
Rsrc is fixed to 400 kbps.

Figure 6a depicts the PDR performance of the protocols with respect to varying node density.
It can be seen that PDR for all the protocols is increasing until the number of node reaches 30, after
which it remains almost stable. The major reason for the packet drops in low density scenarios is the
lack of availability of suitable relay nodes to forward the data packet towards destination. DBD has the
lowest PDR performance due to its lack of forwarding zone criteria which may lead to packet collision
and its strict winner relay management condition which rarely allows the relay node to be in “winner”
state. This further results in packet drops due to buffer overflow, which is one of the drawbacks of
frequent relay selection process and is also witnessed in the BLR’s PDR performance. ILBFC yields
superior PDR performance compared to other protocols due to its better winner relay management
based on δe f f which enables the relay nodes to stay in “winner” state but not for too long as in the case
of LBF, possibly reducing packet collision. The average PDR performance gains of ILBFC over LBF,
DBD and BLR for the case when the number of nodes is varied from 30 nodes to 50 nodes are 1.5%,
14.7% and 9.4%, respectively.

The average ETE delay performance of the data packets received at the destination for all the
protocols with respect to varying node density is shown in Figure 6b. All protocols result in high
average ETE delay when the node density is the lowest (10 nodes). The reason for this is the scarcity of
suitable relay nodes leading to data packets being sent to destination through longer routes causing
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high average ETE delay. ILBFC, due to its better winner relay management, has the lowest average
ETE delay when compared to the rest. Specifically, for this scenario, the mean values of the average
ETE delay of ILBFC, LBF, DBD, and BLR are 21 ms, 24 ms, 23.7 ms and 21.9 ms, respectively. Another
noticeable aspect of the analysis is the LBF’s large average ETE delay at high node density (50 nodes),
which is because of the network congestion caused by the redundant packets flowing throughout the
network. This in turn is due to selection of more that one relay node at the single hop level which is
one of the drawbacks of “winner” relay node moving out of the forwarding zone.
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Figure 6. Performance comparison of ILBFC with LBF, DBD and BLR versus number of nodes, while
keeping the maximum speed of the node equals 50 km/hr and the source transmission rate equals
400 kbps. (a) PDR versus number of nodes; (b) Average ETE delay versus number of nodes; (c) PRC
versus number of nodes.

Figure 6c shows the effect of node density variation on the PRC performance. It can be seen
that there is an overall increase in PRC, which corresponds to decreasing unicast efficiency, for all
the protocols with rising node density. This is expected since the upsurge in the number of nodes
increases the chances of having multiple relay nodes at single hop level. BLR with an average PRC
value of 1.1, minimizes the selection of multiple relay nodes at the single hop level and is due to its
relay selection process for every received data packet. Here, DBD with an average PRC value of 4,
does not have the highest PRC compared with the rest of all node densities. This is because of the
high packet collision and packet drops due to buffer overflow at intermediate relay nodes resulting in
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fewer data packets being forwarded by intermediate relay nodes. This further reduces the chances of
formation of multiple relay nodes at single hop level leading to low PRC. Again, the significance of
road intersection information in enhancing the unicast efficiency can be seen when comparing LBF
and ILBFC performance. ILBFC which has an average PRC value of 2.9, with its better winner relay
management based on δe f f , results in relatively lower PRC with rising node density as compared to
LBF which has an average PRC value of 4.6.

4.3.3. Maximum Node Velocity Variation

This section discusses the performance of routing protocols at different maximum node velocities.
Unlike highway and rural scenarios, the maximum speed of the node does not have a direct impact on
the performance of routing protocols in an urban environment. This is because of the traffic signals
located at various intersections due to which there is a chance that a node with high maximum node
velocity may end up having less overall movement during the entire simulation when compared to
node having relatively lower maximum node velocity. Hence, to analyze the network performance,
instead of using line plots (used in Sections 4.3.1 and 4.3.2), individual box plots highlighting the
performance of all routing protocols are plotted for different maximum node velocity conditions as
shown in Figure 7.

Specifically, six maximum node velocity conditions varying from 40 km/hr to 90 km/hr with an
incremental step of 10 km/hr are tested. Also in all the conditions, the source node starts moving from
the same location. Apart from this, Rsrc and node density for all the conditions are fixed to 400 kbps
and 40, respectively.

Figure 7a shows the PDR performance of all routing protocols at different maximum node velocity
conditions. ILBFC due to its accurate δe f f and better relay management conditions gives the highest
PDR performance followed by LBF. DBD due to its lack of forwarding zone and strict winner relay
management conditions results in both packet drops and packet collision leading to low PDR. For this
scenario, the average PDR performance gains of ILBFC over LBF, DBD and BLR are 1.2%, 15.2% and
9.2%, respectively. Figure 7b depicts the average ETE delay of the received data packets at destination
for different maximum node velocity conditions. It can be seen that ILBFC offers superior performance
having the lowest ETE delay. The mean values of average ETE delay at all maximum node velocities
for ILBFC, LBF, DBD and BLR are 18.2 ms, 21.8 ms, 20.8 ms and 20 ms, respectively. The larger ETE
delays for LBF in some cases is due to its δlink which lets its relay node stay in the “winner” state for
too long. This results in packets being forwarded in wrong direction leading to an increase in average
ETE delay of received data packets. DBD and BLR performs worse than ILBFC while also offering
poor PDR performance. Figure 7c highlights the unicasting efficiency of all routing protocols in terms
of PRC for different maximum velocity conditions. BLR with an average PRC value of 1.8, due to its
relay selection process for every data packet received, ensures the lowest PRC implying high unicast
efficiency. However, this comes at the expense of poor PDR and average ETE delay performance.
ILBFC with an average PRC value of 7.5, results in relatively lower PRC when compared to DBD
(average PRC value of 8.8) and LBF (average PRC value of 11.4) while also having superior PDR
and average ETE delay performance than the rest. The impact of incorporating knowledge of road
intersections during δe f f computation and better winner relay management on unicasting efficiency
can be clearly observed when comparing the PRC performance of ILBFC and LBF. LBF due to its
lack of road intersection knowledge and ineffective winner relay management results in higher PRC
inferring lower unicast efficiency.
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Figure 7. Performance comparison of ILBFC with LBF, DBD and BLR versus maximum node velocity
while keeping the source transmission rate equals 400 kbps and the number of nodes equals 40 (cont.).
(a) PDR versus maximum node velocity; (b) Average ETE delay versus maximum node velocity;
(c) PRC versus maximum node velocity.

5. Conclusions

Receiver-based data forwarding protocols are well suited to enable remote monitoring applications
in urban VANETs. However, they often result in high ETE delay due to frequent relay selection process
performed for every data packet. Although the existing work has focused on alleviating this issue
by allowing the relay vehicle to stay as a default forwarder for certain duration, the latter duration is
not accurate enough since it does not consider various aspects of urban traffic such as the presence
of road intersections and drastic speed decay in vehicles. This article proposes a receiver-based data
forwarding protocol called ILBFC that makes use of geographic information of road intersections to
effectively decide the duration for which a relay vehicle will stay as a default forwarder. Additionally,
a winner relay management scheme is used to check the validity of relay vehicle acting as a default
forwarder on every data packet reception. This is based on the relative geographic progress of current
and previous relay vehicles towards destination. The performance of ILBFC has been compared with
LBF, DBD and BLR, in terms of PDR, average ETE delay and PRC for three different scenarios.

The simulation results highlight the performance improvement of ILBFC over LBF, DBD and BLR
in terms of PDR, average ETE delay and PRC. This is due to the effective link duration computation of
ILBFC which is based on the position coordinates of the upcoming road intersection. Also, ILBFC is
equipped with a better winner relay management scheme that reduces the frequency of relay selection
process while also taking into account the drastic speed decay in vehicles. In case of PRC performance,
BLR offers highest unicast efficiency (implying low PRC) as it performs relay selection process on
every data packet reception. However, this comes at the expense of poor PDR performance, which is
one of the drawbacks of frequent relay selection and is caused due to buffer overflow. Specifically, the
range of PDR performance losses in BLR when compared to ILBFC is between 9–11% for all the three
cases. On the other hand, ILBFC offers relatively lower PRC (implying higher unicast efficiency) when
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compare to LBF and DBD while also giving superior PDR and average ETE delay performance than
the rest. Overall, ILBFC provides an efficient and reliable routing solution to enable remote monitoring
applications over urban VANETs.

In future work, further simulations under several complex urban scenarios will be carried out
to analyze the performance of ILBFC. Also, ILBFC will be extended to provide routing solutions to
applications involving mobile destination in urban VANETs. This would require periodic updates
from destination vehicle informing other vehicles about its current location. In addition, this may also
need the source and other relay vehicles to make use of tracking mechanism to estimate the latest
location of the destination vehicle. Apart from this, various physical characteristics of the wireless
environment such as signal strength and interference will be incorporated in the relay selection process
of ILBFC and their impact will be thoroughly analyzed.
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