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Abstract: Gaofen-3 is a Chinese remote sensing satellite with multiple working modes, among which
the scanning synthetic aperture radar (ScanSAR) mode is used for wide-swath imaging. synthetic
aperture radar (SAR) interferometry in the ScanSAR mode provides the most rapid way to obtain a
global digital elevation model (DEM), which can also be realized by Gaofen-3. Gaofen-3 ScanSAR
interferometry works in the repeat-pass mode, and image pair non-synchronizations can influence
its performance. Non-synchronizations can include differences of burst central times, satellite
velocities, and burst durations. Therefore, it is necessary to analyze their influences and improve
the interferometric coherence. Meanwhile, interferometric phase compensation and rapid DEM
geolocation also need to be considered in interferometric processing. In this paper, interferometric
coherence was analyzed in detail, followed by an iterative filtering method, which helped to improve
the interferometric performance. Further, a phase compensation method for Gaofen-3 was proposed
to compensate for the phase error caused by the unsynchronized azimuth time offset of image pair,
and a closed-form solution of DEM geolocation with ground control point (GCP) information was
derived. Application of our methods to a pair of Gaofen-3 interferometric images showed that these
methods were able to process the images with good accuracy and efficiency. Notably, these analysis
and processing methods can also be applied to other SAR satellites in the ScanSAR mode to obtain
DEMs with high quality.

Keywords: Gaofen-3 satellite; ScanSAR; interferometry; interferometric coherence; phase
compensation; DEM geolocation

1. Introduction

Launched on 10 August 2016, Gaofen-3 is a Chinese high-resolution remote-sensing satellite with
a C-band multi-polarization synthetic aperture radar (SAR) payload [1]. Since then, it has been widely
used in ocean surveillance, land management, ship detection, disaster reduction, and so on [2–8]. It can
also be used with the SAR interferometry technique to extract a digital elevation model (DEM) of the
Earth. SAR interferometry utilizes image phases, which contain topographic information, to obtain
three-dimensional coordinates of the Earth’s surface. Because of its outstanding performance, it has
become an important DEM mapping technique.

Gaofen-3 works in a sun-synchronous orbit, and its altitude is about 755 km. The revisiting period
of Gaofen-3 is 29 days. Gaofen-3 can work in many working modes with different resolutions and
swath characteristics, such as stripmap mode, spotlight mode, and scanning synthetic aperture radar
(ScanSAR) mode. In the spotlight mode, the resolution is 1 m and the swath is 10 km × 100 km. In the
ultra-fine stripmap mode, the resolution is 3 m and the swath is 30 km. In the standard stripmap mode,
the resolution is 25 m and the swath is 130 km. In the narrow ScanSAR mode, the resolution is 50 m
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and the swath is 300 km. In the wide ScanSAR mode, the resolution is 100 m and the swath is 500 km.
Among these modes, the ScanSAR mode is important as it can achieve wide-swath SAR images. SAR
interferometry in ScanSAR mode can be used for wide-area topographic mapping because of this
capability. This technique is worthy of in-depth research as a rapid global DEM-mapping method. In
SAR interferometry, at least two images are needed, and this paper only considered two. The two SAR
images used for Gaofen-3 interferometry are achieved in a repeat-pass mode.

For spaceborne remote sensing toward the Earth, the ScanSAR mode was first used in Spaceborne
Imaging Radar-C (SIR-C) to acquire several experimental data. The SIR-C system was installed on a
space shuttle and the mission was carried out in 1994 [9]. The Canadian satellite RADARSAT launched
in 1995 was the first spaceborne SAR system with an operational ScanSAR mode [9]. Subsequently, SAR
interferometry in ScanSAR mode has been deeply studied and widely used. The concept of ScanSAR
interferometry was proposed in 1995 by Guarnieri [10]. He detailed ScanSAR interferometry and
verified the interferometric method using simulated ERS-1 SAR data [11]. Bamler presented a ScanSAR
interferogram using real RADARSAT data for the first time in 1999 [12], and in 2002, a complete
description of RADARSAT ScanSAR interferometry was published [13]. In 2000, the Shuttle Radar
Topography mission (SRTM) was carried out to map the world’s landmass. This project demonstrated
the rapid mapping ability of ScanSAR interferometry, which was able to map the landmass of the Earth
in 10 days [14]. SAR interferometry in ScanSAR mode has also been used in other satellites, such as
ENVISAT [15,16], ALOS [17], ALOS-2 [18], and TerraSAR-X [19]. The Gaofen-3 satellite can also work
in ScanSAR mode, and it is necessary to study its interferometry. In the above studies, the master and
slave images used the same observing parameters. However, in Gaofen-3 ScanSAR interferometry,
the images are unsynchronized and may have different pulse repetition frequencies (PRFs), velocities,
and burst durations. These differences, together with the burst central time difference, influence the
interferometric coherence. It is necessary to analyze these influences and present a corresponding
filtering method to improve the interferometric coherence. Between the master and slave images, the
unsynchronized azimuth time offset causes a phase error when there is no phase adjustment during
imaging; thus, interferometric phase compensation is needed. This compensation is a problem that has
not yet been studied. From the compensated interferometric phase, we can determine the DEM. In
DEM geolocation integrated with the absolute phase calculation and calibration, the most efficient
method is to determine a closed-form solution. It is necessary to derive a closed-form solution for
DEM geolocation combined with absolute phase calculation and phase error compensation.

This paper discusses several questions in Gaofen-3 ScanSAR interferometry, and is divided into
seven sections. Section 2 analyzes the interferometric performance of Gaofen-3 in ScanSAR mode.
Section 3 presents the iterative filtering method to improve interferometric performance. Section 4
proposes a compensation for the interferometric phase in Gaofen-3 ScanSAR interferometry. Section 5
derives a closed-form solution of DEM geolocation with ground control point (GCP) information.
Processing experiments with Gaofen-3 interferometric images in ScanSAR mode were made to verify
the analyses and methods in Section 6. Conclusions are drawn in Section 7.

2. Interferometric Model and Performance of Gaofen-3

The ScanSAR mode is a SAR mode with a width swath. By beam scanning, ScanSAR can observe
several sub-swathes simultaneously. These sub-swathes are located at different points along the
range direction. Together, they can cover a whole wide swath. Because only a single beam is used
in ScanSAR, the observing time must be separated and allocated to different sub-swathes. Thus, for
a single sub-swath, the observing signals are in the burst mode. During bursts, signal pulses are
transmitted to the sub-swath, but no signal pulses are used between bursts. In burst mode, the azimuth
resolution is decreased. ScanSAR can cover a width swath but with low resolution. Thus, ScanSAR is
suitable for rapid mapping, but not suitable for subtle measurement. ScanSAR interferometry is based
on the ScanSAR mode, so it has similar characteristics.
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The ScanSAR interferometry of Gaofen-3 works in a repeat-pass mode. The two images achieved
from the two passes may be unsynchronized. In this paper, we used a pair of Gaofen-3 interferometric
images over Kunlun Mountain. These images were achieved in ScanSAR mode for wide-swath remote
sensing. The main parameters are listed as Table 1.

Table 1. Main parameters of the Gaofen-3 interferometric images. PRF: pulse repetition frequency.

Parameters Master Image Slave Image

Central frequency (GHz) 5.4 5.4
Center look angle (◦) 34.7 34.7

PRF (Hz) 1185.637085 1190.421753
Satellite velocity (km/s) 7.5674 7.5679

Band width (MHz) 30 30
Pulse width (µs) 45 45

Pulse number 100 100

In the parameters, the PRFs and velocities are different. Burst durations are decided by PRFs and
pulse numbers, so they were also different. Because there was no burst synchronization between the
two images, a burst central time difference also existed. These unsynchronized characteristics influence
interferometric performance.

From the ScanSAR principle, the ScanSAR mode observes the Earth’s surface only in bursts. It is
different from the normal stripmap mode, which uses continuous observation. Thus, the interferometric
performance of the ScanSAR mode needs to consider these burst characteristics in the signal model.
The burst characteristics also include the above-mentioned unsynchronizations. This paper analyzed
the interferometric performance of the ScanSAR signal model [20]:

s(t, τ) =
N∑

n=0
rect

( t−Tc−nTd
Tb

)
·
s

D Vd(rp, tp)W(t− tp − tx) exp
[
− j 4π

λ R(rp, t− tp)
]

·a
[
τ−

2R(rp,t−tp)
c

]
· exp

{
jπk

[
τ−

2R(rp,t−tp)
c

]2
}

drpdtp

(1)

where

R(rp, t− tp) =

√
r2

p +
[
vr(t− tp)

]2
(2)

where t is the slow time, τ is the fast time, Vd is the scattering coefficient, W(·) stands for azimuth
envelope, a(·) stands for pulse envelope, rect(·) stands for rectangular function, rp is the vertical
distance from the orbit to target p, tp is the moment when the vertical sight line passing target p, tx is
the time offset caused by squint, vr is the equivalent velocity, Tc is the burst central time, Td is the burst
cycle time, Tb is the burst duration, and k is the pulse modulation rate.

The ScanSAR signal can be processed by the extended chirp scaling (ECS) algorithm [20–22]. In
this algorithm, the signal is first translated into the range-Doppler domain and processed along the
range dimension, and then processed by azimuth scaling and focusing. The range processing includes
chirp scaling, bulk range cell migration correction (RCMC), range compressing, and second-range
compressing. After range processing, we retrieve the processed signal in the range-Doppler domain.
Considering a single burst, the processed signal can be expressed as follows [20–22]:

S( ft, τ) =
s

D Vd(rp, tp)A exp(− j2π fttp)sinc
[
kTr

(
τ−

2rp

cD( ftre f )

)]
·Wa( ft − ftx)Wb( ft − ftc) exp

(
− j

4πrp f0D( ft)
c

)
drpdtp

(3)

where
sinc(x) = sin(πx)/(πx) (4)
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D( ft) =
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where ft is the azimuth frequency, A is a constant coefficient, Tr is the pulse duration of the transmitted
signal, and f0 is the central frequency of the chirp signal.

By azimuth scaling processing, the second phase term of the range processed signal can be
transformed as follows:

exp
(
− j

4πrp f0D( ft)
c

)
azimuth scaling
−−−−−−−−−−−−−−−−−→

exp
(
− j

4πrp f0
c

)
exp

(
j
πrpre f c

2v2
r f0

f 2
t

)
(7)

where rpre f is the referenced range distance.
In order to focus the signal along the azimuth dimension, the signal can be processed by the

spectral analysis (SPECAN) algorithm [20,23]. According to the algorithm, the signal needs to be
transformed into the time domain. In this domain, the signal can be dechirped by multiplying
exp( jπkat2). The dechirped signal is expressed as [20,23]:
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)]
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(8)

where
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r f0
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(9)

The signal can then be transformed by Fourier-transform (FT) along the azimuth dimension. The
transformed signal is [20,23]:

S(t′, τ) =
s
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[
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By multiplying exp( jπkat′2), the azimuth phase of the signal can be compensated. This is the last
step of the SPECAN algorithm. At this stage, we can acquire the focused image, the expression of
which can be approximated by the following equation [20,23]:

S(t′, τ) =
s

D Vd(rp, tp)A′sinc
[
kTr

(
τ−

2rp

cD( ftre f )

)]
W

(
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2
]

exp
[
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(
t′ − tp

)]
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(11)

In ScanSAR interferometry, the interferometric image pair can also be expressed as Equation (11)
with slow time ti, fast time τi, target time tpi, target range rpi, burst central time Tci, Doppler modulation
rate kai, burst duration Tbi and equivalent velocity vri instead of t′, τ, tp, rp, Tc, ka, Tb, and vr, where
the subscript “∗i” means the image index. “i = 1” indicates the master image and “i = 2” means the
slave image.
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After image co-registration, the slave image can be expressed as:

S2p(t1, τ1) =
s
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[
kTr

(
τ1 −
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Then we substitute Equations (11) and (12) into the expression of interferometric coherence [24,25]:
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where γb is the coherence caused by the baseline and γa is the coherence caused by burst central time
difference. γb is the same as the corresponding coherence in stripmap mode, and γa can be simplified
as follows:

γa(t1, τ1) =


min(Tb1, T′b2)/

√
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1
√

Tb1T′b2

[
min(Tb1, T′b2) −

(
|Tc1 − T′c2| −

|Tb1−T′b2|
2

)]
, Tb1+T′b2
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2

0, |Tc1 − T′c2| ≥
Tb1+T′b2

2
(17)

where T′c2 = vr2Tc2/vr1 and T′b2 = vr2Tb2/vr1.
From Equation (17), we can see that the interferometric coherence is influenced by the burst central

time difference |∆T| =
∣∣∣Tc1 − T′c2

∣∣∣. The difference needs to be kept low relative to the burst duration.
The interferometric coherence is also influenced by the burst duration difference as a secondary
factor. The velocity difference and PRF difference relate to the burst central time difference and burst
duration difference.

3. Increasing the Interferometric Coherence by Iterative Filtering

From the analysis of ScanSAR interferometry above, when the burst central time difference is
non-negligible, the reduction of coherence should be considered. In this situation, the interferometric
coherence can be increased by signal filtering.

In this method, the focused images should be transformed to the signal forms expressed in
Equation (8). After that, the echoes from each target in the corresponding signal possess the same
azimuth range, which facilitates the application of the filtering method. This filter can be expressed as:

f (t) = rect
[

1
min(Tb1, T′b2) − |∆T|+ |Tb1 − T′b2|/2

(
t−

Tc1 + T′c2

2
±
|Tb1 − T′b2|

4

)]
(18)
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where the sign ‘±’ is determined by the property of Tc1 − T′c2 and Tb1 − T′b2 to be positive or negative.
When using this filter, the azimuth time array of the slave image should be calibrated as the time array
of the master image.

Multiplying the transformed signals by this filter, the burst central times of the master and slave
images become equal, leading to an increased coefficient γa.

In most cases, we do not actually know the burst central time difference, and so the filter is not
precise. In this situation, iterative searches are required to find an accurate filter. The steps are shown
in the following diagram (Figure 1).

Sensors 2019, 19, x 6 of 19 

 

secondary factor. The velocity difference and PRF difference relate to the burst central time difference 
and burst duration difference. 

3. Increasing the Interferometric Coherence by Iterative Filtering 

From the analysis of ScanSAR interferometry above, when the burst central time difference is 
non-negligible, the reduction of coherence should be considered. In this situation, the interferometric 
coherence can be increased by signal filtering. 

In this method, the focused images should be transformed to the signal forms expressed in 
Equation (8). After that, the echoes from each target in the corresponding signal possess the same 
azimuth range , which facilitates the application of the filtering method. This filter can be expressed 
as: 

1 21 2

1 2 1 2

1( )
min( , ) / 2 2 4

b bc c

b b b b

T TT Tf t rect t
T T T T T

 ′ − ′+= − ±  ′ ′− Δ + −   
 (18) 

where the sign ‘±’ is determined by the property of 1 2c cT T ′−  and 1 2b bT T ′−  to be positive or negative. 
When using this filter, the azimuth time array of the slave image should be calibrated as the time 
array of the master image. 

Multiplying the transformed signals by this filter, the burst central times of the master and slave 
images become equal, leading to an increased coefficient 𝛾௔. 

In most cases, we do not actually know the burst central time difference, and so the filter is not 
precise. In this situation, iterative searches are required to find an accurate filter. The steps are shown 
in the following diagram (Figure 1). 

 
Figure 1. The iterative filtering method diagram. Figure 1. The iterative filtering method diagram.

In these steps, the master and slave images are first inversely processed to the signals in Equation
(8). The signals can then be filtered to remove the signal parts irrelevant to interferometry. The selection
of filters depends on the coherence value. We should choose the filter with the best coherence. After
signal filtering, we can continue interferometric processing. The interferometric phase can then be
obtained with better coherence.

During the ScanSAR signal processing, some other windows can also increase interferometric
coherence (such as the Hanning window). Thus, in the iterative filtering method, a combined filter
fc(t) = f (t)·hanning(t) can be used to get better interferometric performance. In the combined filter,
f (t) is the above-mentioned rectangular window, and hanning(t) is a Hanning window.

4. Phase Compensation of Gaofen-3 Interferometry

It was stated in Section 2 that a compensation phase exp( jπkat′2) is required in the standard steps
of ScanSAR imaging for interferometry. However, this step is not carried out because the Gaofen-3
ScanSAR images are used mainly with their amplitude information [26]. Thus, the phase exp( jπkat′2)
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is not important in this situation. However, these images can still be used for interferometry if further
corresponding processing is done. In this section, we analyzed the influence of this characteristic and
designed a phase compensation method for the images.

In practical images, there is an unsynchronized azimuth time offset ∆t between the master and
slave images. After range processing and azimuth scaling for a ScanSAR echo, considering ∆t, the
signal in the time domain can be expressed as follows:

S(t, τ) =
s

D Vd(rp, tp)Asinc
[
kTr

(
τ−

2rp

cD( ftre f )

)]
W
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)]
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(
− j

4πrp f0
c

)
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[
− jπka(t− tp − ∆t)2

]
drpdtp

(19)

Multiplied by exp( jπkat2) and transformed by FT, the focused image is:

S(t′, τ) =
s

D Vd(rp, tp)A′sinc
[
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)]
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(
Tc − tp − tx
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ka
)
]
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[
kaTb

(
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)]
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(20)

If the image is compensated by a multiplying factor exp( jπkat′2), we can describe the image as:

S(t′, τ) =
s

D Vd(rp, tp)A′sinc
[
kTr

(
τ−

2rp

cD( ftre f )

)]
W

(
Tc − tp − tx

)
exp

(
− j

4πrp f0
c

)
exp

[
jπka(t′ − tp − ∆t)2

]
exp

[
− j2πka(t′ − tp − ∆t)(− ftc

ka
)
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sinc

[
kaTb

(
t′ − tp − ∆t

)]
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(21)

From this equation, we can see that the azimuth time offset ∆t can be handled by azimuth shifting,
and the interferometric phase will not be influenced.

However, if the phase term is not compensated, the interferometric image S1(t1, τ1) · S∗2p(t1, τ1)

will have an uncompensated phase term:

P(t1) = exp
(
j2πka1t1∆t− jπka1∆t2

)
= exp( j2πka1t1∆t) · exp

(
− jπka1∆t2

)
(22)

This phase term is useless and will influence the interferometric phase. It can be divided into two
terms: exp(− jπka1∆t2) is a constant term, and only the linear phase term exp( j2πka1t1∆t) is needed
for compensation.

However, this compensation is not sufficient, because the velocities and PRFs are different in
Gaofen-3 interferometric images. In this situation, ∆t is a variant along the azimuth direction. Without
considering high orders, variant ∆t can be approximated as ∆t = ∆t0 + ktt1. The main term of P(t1)

then becomes exp( j2πka1t1∆t0) · exp( j2πka1ktt2
1). In the main term, exp( j2πka1t1∆t0) is compensated in

the above-mentioned step as a linear phase term, so the second-order sub-term exp( j2πka1ktt2
1) should

be compensated along the azimuth direction sequentially.

5. DEM Geolocation of Gaofen-3 Interferometry

The above sections discussed the coherence of Gaofen-3 ScanSAR interferometry, and proposed
several methods to solve unsynchronized problems. Together with these discussions, the interferometric
processing steps can be expressed as Figure 2.
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In the processing, the interferometric images are iteratively filtered to increase their coherence.
After co-registration and interferometry, an interferometric phase image can then be achieved. The
phase image should be processed by flat Earth removal, phase denoising, and phase unwrapping in
sequence. After phase compensation and DEM geolocation, a Gaofen-3 DEM can then be retrieved.

DEM geolocation is the last step of interferometric processing. Using the compensated unwrapped
phase together with the system geometric parameters and the payload parameters, the DEM of the
Earth’s surface can be extracted. This processing is based on three equations [27,28]:

v · (T− S) = λ fdcrs/2 (23)

|T− S| = rs (24)

|T− Sb| = rs + λφ/4π (25)

where v =
(
vx, vy, vz

)
is the velocity of the satellite, T =

(
Tx, Ty, Tz

)
is the position of the target,

S =
(
Sx, Sy, Sz

)
is the position of the satellite in the first pass, and Sb =

(
Sbx, Sby, Sbz

)
is the position of

the satellite in the second pass. These four vectors are defined in Earth-centered fixed coordinates.
λ is the wave length, fdc is the Doppler central frequency, rs is the range distance, and φ is the
interferometric phase.

By solving Equations (23)–(25), the target coordinates T can be obtained. One of the calculation
methods able to solve the equations involves using the Newton iteration method, but this method
remains time intensive. In a Gaofen-3 interferometric situation, another calculation method requires a
closed-form solution to be acquired [28,29]. Because this kind of method does not use iteration, its
calculation efficiency is better. According to the Gaofen-3 parameter settings, we can describe the
closed-form solution as follows:

T = (c1xTz + c0x, c1yTz + c0y, Tz), Tz = (−cb ±

√
c2

b − 4cacb)/(2ca) (26)

where the sign “±” is determined by the satellite’s looking direction. In Equation (26), the parameters
can be expressed as [28]:

ca = c2
1x + c2

1y + 1, cb = 2c1xc0x + 2c1yc0y − 2Sxc1x − 2Syc1y − 2Sz,

cc = c2
0x + c2

0y − r2
s − 2Sxc0x − 2Syc0y + S · S

(27)
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The parameters c0i and c1i (i = x, y) in the above equations are expressed as:

c0i = m0ir1 + m1ir2, c1i = −m0ivz −m1i(Sz − Sbz) (28)

where

M =

[
m0x m1x
m0y m1y

]
=

[
vx vy

Sx − Sbx Sy − Sby

]−1

(29)

r1 = λ fdcrs/2 + v · S, r2 =
{
S · S− Sb · Sb + [λφ/(4π)]2 + λφrs/(2π)

}
/2 (30)

During processing, the absolute interferometric phase φ is required. However, from the
compensated unwrapped phase, only the relative phase can be achieved. A system phase φ0

should be compensated to the relative phase. We use GCPs to determine the phase φ0. The point
heights can be derived from known DEM data, such as SRTM DEM. The height of a GCP can be
expressed as:

|T| = h (31)

Combining and solving Equations (23), (24), and (31), we can find coordinates T of a GCP. The
closed-form solution of the equations is the same as Equation (26), except that some parameters should
be replaced:

M =

[
m0x m1x
m0y m1y

]
=

[
vx vy

Sx Sy

]−1

(32)

r2 = (S · S + h2
− r2

s )/2 (33)

Substituting the GCP coordinates into Equation (25), we can find the absolute interferometric
phase φ of a GCP. Subtracting the relative interferometric phase from φ, phase φ0 can be obtained.
Phases φ0 from multiple GCPs can be then averaged. We can then acquire the absolute interferometric
phase image of all the points by compensating the average phase φ0.

In the above method, system errors are not considered. In presence of some system errors, the
system phase φ0 varies along the range and azimuth directions, and it can be expressed as φe(t1, r1).
From the system phases of GCPs, some system errors can be estimated and then compensated for,
including the azimuth phase error discussed in Section 4. Thus, the phase compensation discussed in
Section 4 can be combined with the DEM geolocation processing.

The system phase φe(t1, r1) can be expressed as:

φe(t1, r1) = φ0 + kae1t1 + kae2t2
1 + kre1r1 + kc1t1r1 + kc2t2

1r1

kae1 = 2πka1∆t0 + kab1, kae2 = 2πka1kt + kab2
(34)

where kre1, kab1, kab2, kc1, and kc2 are phase error coefficients caused by baseline error.
If we obtain the system phase values of multiple GCPs, we can estimate the compensation

coefficients using the least square method:

K = (P
′

P)
−1

P
′

Φe (35)

K = (φ0, kae1, kae2, kre1, kc1, kc2)
′, Φe = (φe1, · · · ,φei, · · · ,φeN)

′ (36)

P =


1 t11 t2

11 r11 t11r11 t2
11r11

· · · · · · · · · · · · · · · · · ·

1 t1i t2
1i r1i t1ir1i t2

1ir1i
· · · · · · · · · · · · · · · · · ·

1 t1N t2
1N r1N t1Nr1N t2

1Nr1N


(37)

where the subscript “*i ” means the GCP index, and “N” is the number of GCPs.
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With the estimated compensation coefficients, we can calculate the system phase φe of each
master image pixel according to Equation (34). The compensated phase image can then be acquired by
compensating phase φe; at the same time the influence of azimuth phase error and baseline error can
be weakened.

Based on the above discussions, GCPs are used to acquire absolute phase and compensate phase
error. Because the GCP data are their three-dimensional coordinates in the geodetic coordinates
system, we still need to find the positions of the GCPs in the phase image before the above geolocation
processing. First, the GCP coordinates should be transformed from the geodetic coordinates to
Earth-centered fixed coordinates. Then, for each GCP, its azimuth time tp and range distance rs need to
be calculated. These two parameters can determine the position of each GCP in the phase image.

In the calculation of a GCP’s tp and rs, the corresponding satellite position can be approximated as
S = S0 + v0tp, where S0 and v0 are the satellite position and velocity at the reference time t0. Thus, we
can calculate the azimuth time tp as follows:

tp = (−pb ±

√
p2

b − 4papc)/(2pa) (38)

pa = |v0|
2
− 4|v0|

4/(λ2 f 2
dc), pb = −2 · v0 · (Tp − S0) + 8|v0|

2
· v0 · (Tp − S0)/(λ2 f 2

dc),

pc =
∣∣∣Tp − S0

∣∣∣2 − 4 · [v0 · (Tp − S0)]
2/(λ2 f 2

dc)
(39)

where the sign “±” is determined by the squint angle of a GCP and Tp is the coordinates of the GCP.
The approximation “S = S0 + v0tp” does not consider the velocity variation. In order to decrease

this influence, we must make a new approximation as S = S02 + v02tp2, where S02 and v02 are the
actual satellite position and velocity at the reference time t0 + tp. We repeat the calculation as Equations
(38) and (39), and a new azimuth time tp2 can thus be obtained. With the same method, we can acquire
a third new azimuth time tp3. Thus, the final azimuth time “tp f = tp + tp2 + tp3”, which refers to t0, can
be determined. Range distance rs at the azimuth time tp f can be calculated with Equation (24). Thus,
the GCP can be located in the phase image. From the GCP coordinates, we can obtain the approximate
height of the nearest grid point. The above geolocation and compensation can then be carried out.

6. Results and Discussion

The above sections analyzed the coherence of ScanSAR interferometry and studied several
problems in Gaofen-3 processing. In this section, we carried out a simulation and practical
interferometric processing to explain the analysis and processing methods. For interferometric
processing, we used the above-mentioned Gaofen-3 interferometric images over Kunlun Mountain.
From the interferometric processing, the iterative filtering method, phase compensation, and DEM
geolocation were verified.

6.1. Iterative Filtering Method

In Section 2, we discussed the interferometric performance related to the burst central time
difference and burst duration difference. The relationship between the burst central time, burst
duration difference, and the coherence is shown in Figure 3.
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Figure 3. The relationship between the ratio of burst central time difference to shorter burst duration
and coherence.

In Figure 3, “k” is a coefficient and k = T′b2/Tb1, which means the ratio of burst durations. We
express the ratio of burst central time difference to shorter burst duration as “kc”. Considering k = 1,
the coherence is only influenced by the burst central time difference. In this situation, if kc = 0, the
coherence is not influenced. With an increase of kc, the coherence decreases linearly. When kc exceeds
1—that is to say, when the burst central time difference exceeds the burst duration—the coherence
is reduced to 0. The interferometric processing will fail in this decorrelation situation. Considering
k = 1.2, the coherence will be influenced by burst duration difference. In this situation, when kc is
within 0–0.1, the coherence value is 0.91 and is mostly lower than that in “k = 1” situation. When kc is
from 0.1 to 1.1, the coherence decreases linearly, but it is better than that in the k = 1 situation. When
kc exceeds 1.1, the coherence reduces to 0. For the images in this paper, k was near 1.004. Thus, the
coherence of these images was mainly influenced by the burst central time difference.

In Gaofen-3 interferometric images, it is difficult to maintain a zero burst central time difference.
As a consequence, interferometric coherence will be more or less influenced. When the burst central
time difference is relatively large, the iterative filtering method described in Section 3 can be used to
alleviate the influence.

Two interferometric images, shown in Figure 4, were used to verify the filtering method. These
two interferometric images were cut from the Kunlun Mountain images with a relatively big burst
central time difference.



Sensors 2019, 19, 4689 12 of 19

Sensors 2019, 19, x 12 of 19 

 

(a) (b) 

Figure 4. Gaofen-3 SAR images. (a) The master image; (b) the slave image. 

Filtering the two images with different burst central time differences |∆𝑇|, we found different 
coherence values after interferometry. This coherence was estimated from the interferometric images. |∆𝑇| versus coherence is shown in Figure 5. 

 
(a) 

Figure 4. Gaofen-3 SAR images. (a) The master image; (b) the slave image.

Filtering the two images with different burst central time differences |∆T|, we found different
coherence values after interferometry. This coherence was estimated from the interferometric images.
|∆T| versus coherence is shown in Figure 5.

Sensors 2019, 19, x 12 of 19 

 

(a) (b) 

Figure 4. Gaofen-3 SAR images. (a) The master image; (b) the slave image. 

Filtering the two images with different burst central time differences |∆𝑇|, we found different 
coherence values after interferometry. This coherence was estimated from the interferometric images. |∆𝑇| versus coherence is shown in Figure 5. 

 
(a) 

Figure 5. Cont.



Sensors 2019, 19, 4689 13 of 19Sensors 2019, 19, x 13 of 19 

 

 
(b) 

Figure 5. |∆𝑇| versus coherence processed from the two images shown in Figure 4. (a) Results when 
using rectangular filters; (b) results when using combined filters. 

From Figure 5, when we used the rectangular filters, and |∆𝑇| used in the filters reached 70 
pixels, the interferometric coherence increased by 0.05. When we used the combined filters, and |∆𝑇| 
used in the filters reached 70 pixels, the interferometric coherence increased by 0.02. With these two 
kinds of filters, the best |∆𝑇| values were all 70 pixels. With the rectangular filters, the decorrelation 
caused by the burst central difference was 70/582 = 0.12, and the coherence caused by other factors 
was 0.55, where 582 was the azimuth band sample. Thus, the coherence increases by  0.12 × 0.55 = 0.066 theoretically, and the experiment result of 0.05 was close to the theoretical value. 
From Figure 5b, when the burst central time difference used in the combined filters was 0 pixels, the 
coherence was better than that of the value shown in Figure 5a. This is because the Hanning window 
decreased the amplitude of the unsynchronized signal part. When the burst central time difference 
used in the combined filters was 70 pixels, the coherence was better than that of the value shown in 
Figure 5a. This means that the Hanning window increased the coherence. Thus, it was suitable to use 
combined filters in the iterative filtering method. 

6.2. Phase Compensation 

In Gaofen-3 ScanSAR interferometry, as discussed in Section 4, a linear phase term and a second-
order phase term should be compensated along the azimuth direction. By first applying this 
compensation method with a linear phase term on a pair of Gaofen-3 interferometric images  
(Figure 6a,b), we can get a compensated interferometric phase, as shown in Figure 6. These images 
were also cut from the Kunlun Mountain images. 
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From Figure 5, when we used the rectangular filters, and |∆T| used in the filters reached 70 pixels,
the interferometric coherence increased by 0.05. When we used the combined filters, and |∆T| used in
the filters reached 70 pixels, the interferometric coherence increased by 0.02. With these two kinds of
filters, the best |∆T| values were all 70 pixels. With the rectangular filters, the decorrelation caused by
the burst central difference was 70/582 = 0.12, and the coherence caused by other factors was 0.55, where
582 was the azimuth band sample. Thus, the coherence increases by 0.12× 0.55 = 0.066 theoretically,
and the experiment result of 0.05 was close to the theoretical value. From Figure 5b, when the burst
central time difference used in the combined filters was 0 pixels, the coherence was better than that
of the value shown in Figure 5a. This is because the Hanning window decreased the amplitude of
the unsynchronized signal part. When the burst central time difference used in the combined filters
was 70 pixels, the coherence was better than that of the value shown in Figure 5a. This means that the
Hanning window increased the coherence. Thus, it was suitable to use combined filters in the iterative
filtering method.

6.2. Phase Compensation

In Gaofen-3 ScanSAR interferometry, as discussed in Section 4, a linear phase term and a
second-order phase term should be compensated along the azimuth direction. By first applying
this compensation method with a linear phase term on a pair of Gaofen-3 interferometric images
(Figure 6a,b), we can get a compensated interferometric phase, as shown in Figure 6. These images
were also cut from the Kunlun Mountain images.
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Figure 6. The linear compensation results. (a) The master image; (b) the slave image; (c) the original
denoised interferometric phase (rad); (d) the compensated denoised interferometric phase (rad); (e) the
original unwrapped phase after flat Earth removal along the range direction (rad); (f) the compensated
unwrapped phase after flat Earth removal along the range direction (rad).
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After interferometry, the original denoised interferometric phase is shown in Figure 6c. Figure 6d
shows the compensated denoised interferometric phase, Figure 6e shows the original unwrapped phase
after flat Earth removal along the range direction, and Figure 6f shows the corresponding compensated
phase. From these figures, we can see that the compensation solved the phase’s linear slope along
azimuth direction.

In the above figures, the velocity of the master image was 7.5674 km/s and its PRF was 1185.6 Hz,
while the velocity of the slave image was 7.5679 km/s and its PRF was 1190.4 Hz. As discussed in
Section 4, these differences resulted in a second-order term along the azimuth direction. Compensating
the Gaofen-3 interferometric phase with a second-order term, we obtained the following results.

In these figures, Figure 7a shows the second-order compensated denoised interferometric phase,
and Figure 7b shows the second-order compensated unwrapped phase after flat Earth removal along
the range direction. From the results, second-order compensation was able to solve the phase curving
effect along the azimuth direction.
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In the interferometric phase, we found periodic lines. These lines were located at the areas where
different bursts intersected. The burst central time difference in these areas neared the burst cycle
time. Thus, based on the discussion in Section 2, the coherence in these areas was 0 and normal
interferometric phase stripes could not be formed. This influence can be overcome by bursts aligned
between the master and slave images before ScanSAR burst splicing. This aligning method is the
best method. However, if we cannot obtain the interferometric images before burst splicing, the
interpolation method can be used to fill in the invalid areas.

6.3. DEM Geolocation

From the above processing, a compensated unwrapped interferometric phase image was achieved.
Subsequently, the satellite position and velocity during the observing time, as well as the Doppler
central frequency and the target range distance were obtained from the Gaofen-3 information file.
We then chose several GCPs in the master image. GCP height information can be obtained from a
known DEM. According to the method in Section 5, we obtained the DEM of the tested Earth’s surface
as follows.
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In Figure 8, Figure 8a shows the Gaofen-3 DEM, with imaging coordinates covering a 9 km (range)
× 20 km (azimuth) area, and Figure 8b shows the top view of the Gaofen-3 DEM. The geographical
characteristics of the DEM were coincident with those of the master image. Compared with the SRTM
data of the same area (Figure 9), the achieved DEM matched the SRTM DEM (a 30 m × 30 m grid) [30].
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In order to evaluate the Gaofen-3 DEM quantitatively, we chose 10 check points from the SRTM
DEM, marked with “+” in Figure 9. The height comparisons of the Gaofen-3 DEM and the SRTM DEM
for these check points are listed in Table 2.

Table 2. Height comparisons of the Gaofen-3 DEM and the SRTM DEM for check points.

Index 1 2 3 4 5 6 7 8 9 10

Gaofen-3 DEM (m) 4496 4466 4489 4593 4584 5090 5061 4911 4683 4643
SRTM DEM (m) 4472 4454 4533 4630 4597 5050 5029 4923 4657 4633

Height difference (m) 24 12 −44 −37 −13 40 32 −12 26 10

As seen in Figures 8 and 9, the Gaofen-3 DEM was coarser than the SRTM DEM. As shown in
Table 2, the average height precision of the Gaofen-3 DEM was about 25 m, and the maximum height
error of the check points reached 44 m (absolute value). Height errors of the SRTM DEM samples were
lower than 16 m. These results occurred because of the differences between the Gaofen-3 and SRTM
interferometry. The Gaofen-3 DEM was acquired in ScanSAR mode and its grid was about 160 × 160 m,
while the SRTM DEM was acquired in stripmap mode, and its grid was about 30 × 30 m; Gaofen-3 has
a coarser grid. Gaofen-3 features repeat-pass interferometry and SRTM uses single-pass interferometry,
so the coherence of Gaofen-3 should theoretically be lower than that of SRTM. Consequently, the
Gaofen-3 DEM’s quality was in accord with Gaofen-3′s system characteristics. As the geographical
characteristics of these DEMs were consistent, the accuracy of the Gaofen-3 DEM was verified.

By applying the above-mentioned interferometric processing to a wide area, we obtained the
Gaofen-3 DEM as Figure 10.
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The produced DEM was also of Kunlun Mountain, covering a 70 (range) × 35 km (azimuth) area.
ScanSAR interferometry is suitable for this kind of wide-area mapping. Further, wide-area mapping
can be dealt with by block processing and splicing, and the above 70 × 35 km area can be treated as
a block.

7. Conclusions

This paper discussed interferometric analyzing and processing methods for Gaofen-3 images in
ScanSAR mode. The conditions for ScanSAR interferometry are more rigorous than those of normal
stripmap SAR interferometry. We analyzed the coherence in ScanSAR interferometry in detail to
determine these conditions. From the analysis, the burst central time difference between the master
and slave images was shown the coherence. In order to reduce the influence, we presented an iterative
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filtering method able to remove the signal parts irrelevant to interferometry, so as to increase the
coherence. The analysis and the filtering method can also be influenced by burst duration difference
and velocity difference, which should be incorporated in the analysis and filters. In Gaofen-3 ScanSAR
interferometry, the phase error along the azimuth direction is severe. We analyzed the cause of the
phase error, and correspondingly proposed a linear phase compensation and a second-order phase
compensation to determine the right interferometric phase. In the DEM geolocation of Gaofen-3
interferometry, we derived a closed-form solution with GCP information. Without complex iteration in
the method, a closed-form solution was able to efficiently retrieve a DEM of the Earth’s surface. These
methods were applied to Gaofen-3 ScanSAR images and returned good results. These methods could
also help to realize ScanSAR interferometry for other similar satellites.
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