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Abstract: Temporary Immersion Bioreactors (TIBs) are used for increasing plant quality and plant
multiplication rates. These TIBs are actioned by mean of a pneumatic system. A failure in the
pneumatic system could produce severe damages into the TIB. Consequently, the whole biological
process would be aborted, increasing the production cost. Therefore, an important task is to detect
failures on a temporary immersion bioreactor system. In this paper, we propose to approach this
task using a contrast pattern based classifier. We show that our proposal, for detecting pneumatic
failures in a TIB, outperforms other approaches reported in the literature. In addition, we introduce
a feature representation based on the differences among feature values. Additionally, we collected
a new pineapple micropropagation database for detecting four new types of pneumatic failures
on TIBs. Finally, we provide an analysis of our experimental results together with experts in both
biotechnology and pneumatic devices.

Keywords: temporary immersion bioreactor; failure detection; contrast patterns

1. Introduction

Temporary Immersion Bioreactors (TIBs) are used for increasing plant quality and plant
multiplication rates [1–5]. TIBs are quite popular in both industry and academia, because they usually
reduce production costs [4]. Roughly, a TIB works by scaling-out automated micropropagation of
plants under standardized conditions, excluding microbial contamination. There are different types of
TIBs, but the most popular ones [1] use a pneumatic system drive to execute periodic tasks for
guaranteeing both efficiency and efficacy. (Experts in biotechnology take efficacy to mean high plant
growing rate and high quality plants, while efficiency indicates low production cost.) Any problem
in the pneumatic system of a TIB may produce severe damages over the plant micropropagation.
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Consequently, the whole process of micropropagation would be aborted due to the failures during
plant immersion into the nutrient medium [6]. Therefore, failure detection in a TIB is very important
to avoid any problem during plant micropropagation.

The failure detection in a pneumatic system of a TIB often is a class imbalance problem, because
the number of failures is small compared with the number normal immersion process [6]. Failure
detection can be tackled using a one-class classification approach, where the data are labeled as normal
for normal immersion and abnormal for failures.

Contrast pattern-based classifiers have been successfully used in practical problems, such as
structural alerts for computational toxicology [7], gene transfer and microarray concordance
analyses [8], characterization for subtypes of leukemia [9], classification of spatial and image
data [10], classification of lymphomas [11] identification of real objects [12], discovering pattern
in dynamic databases [13], gene expression profiles [14], characterization of click-stream sequences
from e-commerce websites [13], detecting pneumatic failures on TIBs [6], and prediction of heart
diseases [15]. Thus, contrast pattern-based classification is suitable for detecting pneumatic failures in
a TIB, since:

(i) It has reported good classification results for this kind of problem [6].
(ii) It has reported outstanding classification results in class imbalance problems, overcoming other

state-of-the-art classifiers designed for class imbalance problems [16,17].

In addition:

(iii) Contrast patterns are expressed in a language close to that used by human experts in the application
domain [14,18].

(iv) They can be introduced in an easy way into a programmable logic controller (PLC), which is used to
manage a TIB [6,19].

In this paper, we present a classifier based on contrast patterns for detecting pneumatic failures
on TIBs. Preliminary results of this study are reported in a conference paper [6]. We successfully
tested our classifier using eight real-world databases of pineapple plants proposed in [6] and a new
real-world database of pineapple plants collected in our experiments.

The main differences between this paper and the method proposed in [6] are the following: we
include a significantly larger number of classifiers, of different nature; we introduce a new real-world
database of pineapple plants for pneumatic failure detection; we extract new features from the original
dataset; we detect four new types of failures; we include an analysis together with experts in both
biotechnology and pneumatic devices; from this analysis, we have identified the most frequent patterns
describing failures in TIBs; and, finally, we include an explanation about the classification results
obtained by our proposal in a real-world experiment of micropropagation of pineapple plants by
using TIBs.

The main contribution of this paper is a contrast pattern-based classification approach for TIBs
pneumatic failure detection. Our classifier allows creating an explanatory and accurate model that
forewarns expert practitioners about six types of TIB failures. A further contribution of this paper
is to provide an interpretation of the classification results, issued by biologists, regarding the time
intervals for immersing periodically the plants into the nutrient medium in a real-world experiment of
micropropagation of pineapple plants using TIBs.

The rest of the paper has the following structure: Section 2 explains how TIBs work and the
workings of a pneumatic system. Section 3 details the materials and methods used for detecting
pneumatic failures on TIBs where the tested databases are explained. Section 4 presents our results
as well as a detailed discussion, including interpretations issued by pneumatic and biotechnologist
experts. Finally, Section 5 provides conclusions and future work.
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2. Temporary Immersion Bioreactors

Manual labor is the major cost in plant propagation by tissue culture. This is because a biologist
must manipulate each individual shoot, which may yield a high level of contamination. To avoid
this problem, Temporary Immersion Bioreactors (TIBs) were introduced [20]. TIBs work by taking
advantage of the effects of a liquid medium over the culture. They help to attain high quality plants
and high plant growth rates, while reducing production costs. TIBs can be either mechanically agitated
(ma-TIBs), or pneumatically agitated (pa-TIBs) [1,21]. In this paper, we focus on pa-TIBs because we
could not collected data from ma-TIBs for testing our proposal.

TIBs are commonly used because they yield higher multiplication rates than other techniques.
For example, in coffee (Coffea arabica or canephora), the multiplication coefficient, using a semi-solid
medium, ranges from six to seven every three months; however, using a TIB, a similar multiplication
coefficient can be obtained in only five weeks [20]. (The number of total outbreaks per explant
was quantified. The equation for computing the multiplication coefficient is: MC = Number of
total outbreaks/Number of initial outbreaks.) Using TIBs is very attractive, due to the following
reasons [22,23]:

(i) They avoid the continuous immersion of the culture into the liquid medium; otherwise, this would
adversely affect plant growth and morphogenesis.

(ii) They avoid an adequate oxygen transfer and sufficient mixing; otherwise, this would affect the
plant growth.

(iii) They facilitate both automation and changing the liquid medium.
(iv) They minimize human intervention, and so the chances of contamination; otherwise, this would

increase production costs.

At the Centro de Bioplantas (www.bioplantas.cu), there is a pneumatically agitated bioreactor,
which is formed by two transparent glass (or plastic) containers, auto-clavable silicone tubes,
hydrophobic air filters, electric valves, and an air compressor [1]. This TIB (see Figure 1) has one
container for plant growing and another one for liquid medium. Both containers are connected via
silicone tubes where air flow is sterilized as it passes through hydrophobic filters.

Figure 1. Temporary immersion bioreactor diagram.

www.bioplantas.cu
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The immerse stage begins when an air compressor pushes the medium from one container to the
other by mean of air pressure. Then, air flow is reversed to withdraw the medium from the culture
container (see Figure 2). For doing this, three-way solenoid valves (the valve model used is SY7440 from
SMC manufacturer; see the following url for more information: http://www.smcpneumatics.com/
SY7440-5DZ.html) provide on/off operation, where the frequency and length of the immersion period
is controlled using a programmable logic controller (the PLC model used is MASTER-K120S from LG
manufacturer; see the following url for more information: http://foster.pl/en/index.php?id=c05_02)
(PLC) [19] connected with a supervisory control and data acquisition (SCADA) system through the
modbus protocol [24]. This type of TIB has reported high growth rates in different kinds of plants,
e.g., plantain, pineapple, and sugarcane [2–4,25–29]. There are three main phases to carry out inside
TIBs (in vitro): multiplication, elongation, and rooting. After, the plants are taken to a final phase:
acclimation (ex vitro), which is carried out outside TIBs (see Figure 3).

Figure 2. Operating cycle of the TIB: (a) non-immersed stage; (b) beginning of the immersed stage; and
(c) immersed stage.

Figure 3. Phases inside and outside TIBs: (a) multiplication: typical shoots; (b) elongation: commonly
produced into containers of high volume; (c) rooting: previous phase before carrying a plant to field;
and (d) acclimatization: final phase where plants adapt to the environment (i.e., outside the TIB).

The use of TIBs at the first stages of pineapple propagation enables precise control of plant growth,
increases the rate of plant multiplication, and decreases space, energy and labor requirements for
pineapple plants in commercial micropropagation [3]. At Centro de Bioplantas, the pineapple culture
is one of the most common uses of TIBs [1–4]. In this research center, the stage reporting higher growth
rate in pineapple plants is the multiplication stage.

According to Escalona et al. [1] and Aragón et al. [25], to obtain the best multiplication rate in
pineapple plants, using a TIB, shoots should be immersed for two minutes every three hours during
42 days. Depending on the volume (according to Escalona et al. [1], a container of 1000 mL of liquid
medium is used for obtaining the time of every operating cycle of immersion) of the container for liquid
medium, the full operating cycle of immersion can take, approximately, four minutes: one minute for

http://www.smcpneumatics.com/SY7440-5DZ.html
http://www.smcpneumatics.com/SY7440-5DZ.html
http://foster.pl/en/index.php?id=c05_02
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pushing the medium from one container to the other (see Figure 2), two minutes of immersion, and
one minute for withdrawing the medium from the culture container.

During 42 days, pineapple plants are, approximately, 6.4 h inside the liquid medium
(immersion time) and the remaining time outside of it. Commonly, at night, in the Centro de Bioplantas,
there are no experts around for supervising every experiment using TIBs. Consequently, if during
this time interval a failure arises in the TIB (e.g., an obstruction (the most frequent obstruction is
produced by waste of plant material) into the silicone tube connecting the containers), then the process
can be aborted.

When a failure is detected in the pneumatic system of a TIB, biotechnologist experts inspect all
the system and carry out tasks according to solve the failure, for example, replace clogged lines or
filters. All tasks executed for solving any problem in a TIB should follow strict aseptic operations.
In some cases, obstructions are produced by the waste of plant material; consequently, experts expect
that the PLC can detect this obstruction and blow the air with more pressure for withdrawing it and as
a result reduce the expert interventions for solving this type of failures.

The Contrast Pattern-Based Approach for Detecting Pneumatic Failures on TIBs

As a first step for solving this problem, an approach for detecting pneumatic failures on TIBs
was proposed in [6]. This approach uses a contrast pattern-based classifier (HeDex proposed by Kang
and Ramamohanarao [30]) for extracting patterns describing pneumatic failures on TIBs. HeDex is
based on a decision trees ensemble using the Hellinger distance [31] as a decision tree splitting criterion.
Hellinger distance is unaffected by the class imbalance problem because it rewards those candidate
splits that maximize the true failure rate while minimizing the false failure rate.

A pattern is an expression defined in a certain language that describes a collection of objects [17,32,33].
Usually, it is represented by a conjunction of relational statements, each of the form: [ fi # vj], where vj is
a value in the domain of feature fi and # is a relational operator from the set {=, 6=,≤,>}. For example,
[Root_rot > 5] ∧ [Green_leaves ≤ 5] ∧ [Stem_canker = “Yes”] ∧ [Lea f _spot = “Several”] is a pattern,
written in a logical form, that describes a collection of plants suffering from bacterial canker. Let p be a
pattern and D be a dataset; then, the support of p is a fraction resulting from dividing the number of
objects in D described (support) by p by the total number of objects in D. In this way, a contrast pattern
(CP) is a pattern describing significantly more objects from a class than from the remaining problem’s
classes [33–35].

The pneumatic failures detected by Loyola-González et al. [6] were regarding bad air pressure,
specifically into: the central distribution line, the plant container, and the liquid medium container.

To detect these kinds of failures in [6], we used eight databases of micropropagation of pineapple
plants. Each database contains objects with information about a time interval of 70 s where the TIB
pneumatic system was powered on. Objects can belong either to the class failure, or not. An object of
the class failure represents the occurrence of a problem during the immersion time. It is worth noticing
that these eight databases are all imbalanced. These databases present different class imbalance ratio
(IR) [36], ranging from 9.48 to 21.45.

In [6], HeDex [30] yielded the best classification result in the detection of pneumatic failures on
TIBs. In addition, the authors analyzed the patterns extracted from HeDex, concluding that it found
patterns, with high support, describing the failure class. The patterns are the following:

(i) Air pressure into the central distribution line is lower than or equal to 0.104 bar.
(ii) Air pressure into the plant container is lower than or equal to 0.136 bar and air pressure into the

central distribution line is greater than 0.127 bar.

The main drawback of Loyola et al.’s approach [6] is that their patterns describe a failure without
identifying where in the associated TIB the failure stems. Through a thorough discussion of this with
biologists, the main users of TIBs, we know that they prefer to fully pinpoint a failure occurrence.
For example, for an expert, it is mandatory to know whether a failure has arisen in the fitting of the
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filter or in the fitting of the siphon, or even whether this failure is in the liquid medium container or
in the plant container. The main reason for this is that some failures are less affordable than others.
For example, a failure in the fitting of the siphon in the liquid medium container only produces air
leak but it does not affect the whole process if it is looked after in a short interval of time. However,
if a failure is detected in the fitting of the filter in the liquid medium container, then it should be given
the highest priority because it could spill all the liquid medium out of the container. In a different vein,
the method of Loyola et al. was tested only against four other, contrast pattern-based, rival methods.
Thus, further and thorough experimentation, including a greater number of heterogeneous classifiers,
is required for corroborating that the contrast pattern-based approach outperforms others for solving
this type of problem.

Then, based on these reasons, we propose to create an experimentation that includes classifiers
based on different approaches, e.g., one-class, contrast patterns, logistic regression, and decision trees,
among others. In addition, we propose to detect the following specific failures (see Figure 4):

(i) Pressure failure on the fitting of the siphon into the liquid medium container.
(ii) Pressure failure on the fitting of the filter into the liquid medium container.
(iii) Pressure failure on the fitting of the siphon into the plant container.
(iv) Pressure failure on the fitting of the filter into the plant container.
(v) Pressure failure on the fitting of the siphon for both liquid medium and plant container.
(vi) Pressure failure on the fitting of the filter for both liquid medium and plant container.

Testing different approaches based on patterns, we can create an explanatory model for detecting
the above-described failures on TIBs. By doing so, we can help application domain experts to obtain
high plant growing rates, high quality plants, and low production costs.

Figure 4. The new failures that we propose to detect in the TIBs. SCADA refers to Supervisory
Control And Data Acquisition; PLC refers to Programmable Logic Controller; and HDMI refers to
High-Definition Multimedia Interface, which is used for communicating with the SCADA system.

3. Materials and Methods

In this section, we present all materials and methods used in this paper. To show that using
contrast pattern-based approaches allows obtaining good classification results for detecting pneumatic
failures on TIBs, we contrasted several supervised classifiers of different paradigms.

We executed two types of experiments using all the selected classifiers: (i) using our proposed
database where there were six types of failures to be identified; and (ii) using the databases proposed
in [6] and our proposed database but using a two-class approach (see Section 3.1).
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This section has the following structure: first, in Section 3.1, we show all characteristics of the
databases as well as the validation procedure executed in our experiments. After, in Section 3.2,
we present a brief explanation of the selected classifiers. Next, in Section 3.3, we show the measures
used for evaluating the performance of the classifiers. Finally, we describe the statistical tests used for
comparing classification results in Section 3.4.

3.1. Datasets and Data Pre-Processing

In this paper, we introduce a new micropropagation pineapple database for detecting pneumatic
failures in TIBs. This database contains 951 objects. We extract 70 features for every air sensor of the
pneumatic system on a TIB. Every feature represents the air pressure of a single sensor for an instant of
time (every sensor measures the air pressure during 70 s with intervals of one second). The pneumatic
system contains the following three air sensors: a sensor within the liquid medium container, a sensor
within the plant container, and a sensor in the central distribution line (see Figure 1).

For every consecutive (in time) measures of every air sensor, we have also extracted the variation of
air pressure. This allows us to have information about the increasing (or decreasing) speed of the air
pressure. Our hypothesis here is that, in the case of a failure, the speed of change of air pressure will be
different to that computed in normal conditions.

It is important to highlight that the feature deltaPfv1 is the difference between the last feature ps
and the first feature pfv. It tries to capture the difference between the measure of the sensors ps and
pfv. In the same vein, the feature deltaPfll1 is the difference between the last feature pfv and the first
feature pfll. It tries to capture the difference between the measure of the sensors pfv and pfll. These
features proved to be useful as well as they appear in several patterns of high support so they have an
important role in the performance of classification.

Every object in the dataset is labeled with one of the following classes: normal, fault 1, fault 2,
fault 3, fault 4, fault 5, and fault 6. Accordingly, each fault class denotes a different failure occurring
during the immersion time (see Table 1).

Table 1. Description of our micropropagation pineapple database, proposed in this paper, for detecting
pneumatic failures on TIBs.

Class Class_Description #Objects

fault 1 Pressure failure on the fitting of the siphon for both liquid medium and plant container 72
fault 2 Pressure failure on the fitting of the filter for both liquid medium and plant container 156
fault 3 Pressure failure on the fitting of the siphon into the plant container 83
fault 4 Pressure failure on the fitting of the siphon into the liquid medium container 81
fault 5 Pressure failure on the fitting of the filter into the plant container 129
fault 6 Pressure failure on the fitting of the filter into the liquid medium container 117
normal The pressure is normal for the pneumatic system on TIBs 313

For each type of failure, initially, we collected 200 objects, but, after a correlation analysis,
we removed duplicate and noisy objects for obtaining a representative database. Consequently,
we obtained a different number of objects for each type of failure, as shown in Table 1.

Figure 5 shows a representation based on time series for each class detailed in Table 1. This figures
plots a time series taking into account the 70 s with intervals of one second for each of the three sensors
used in the TIB. In this figure, we can see that all class of the problem have a similar behavior among
them, which makes this one a hard problem for detecting both normal and failure behavior.

In addition, we used in our experiments the databases introduced in [6]. The aim was to
corroborate that our proposal can detect other kinds of pneumatic failures.

Table 2 shows, for each database introduced in [6], the database name, the number of objects
belonging to the minority (failure) class (#Objects_Min), the number of objects belonging to the majority
class (#Objects_Maj), and the class imbalance ratio (IR).
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We partitioned all databases using five-fold and distribution optimally balanced stratified cross
validation (DOB-SCV) [37] with the goal of avoiding problems about data distribution imbalanced
databases [38].

 

Figure 5. A representation based on time series for the average data of normal class and each of the six
faulty classes.

Table 2. Summary of micropropagation pineapple databases for detecting pneumatic failures on TIBs,
which were introduced in [6].

Name #Objects_Min #Objects_Maj IR

Pineapple 1 17 236 13.88
Pineapple 2 11 236 21.45
Pineapple 3 25 237 9.48
Pineapple 4 14 237 16.93
Pineapple 5 19 236 12.42
Pineapple 6 16 237 14.81
Pineapple 7 15 237 15.80
Pineapple 8 12 234 19.50

3.2. Tested Supervised Classifiers

In this section, we show the different supervised classifiers selected in this paper for testing the
performance in the detection of a pneumatic failure in a TIB. The classifiers’ parameters were configured
following their authors’ recommendation. Table 3 shows, for each tested classifier, its abbreviation used
throughout the paper, its full name, the approach followed for the tested classifier, and its reference.

Table 3. Supervised classifiers selected in this paper for testing the performance in the detection of a
pneumatic failure in a TIB.

Abbrev. Name Approach Ref.

kNN K-Nearest Neighbor Based in distance among the objects [39]
AB.M1 Adaptive Boosting Boosting [40]

C4.5 Decision tree Decision tree [41]
LogReg Logistic Regression Regression [42]

MLP Multilayer Perceptron Neural network [43]
NBayes Naïve Bayes Probabilistic [44]

RF Random Forest Decision trees [45]
SVM Support Vector Machine Support Vector Machine [46]

TreeBagger TreeBagger Bootstrap [47]
PBC4cip Pattern-based Classifier for Class Imbalance Problems Pattern-based classification [17]

B-TPMiner Bagging-TPMiner One-class classification [48]
OCKRA One-Class K-means with Randomly-projected features Algorithm One-class classification and unsupervised classification [49]
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In our experiments, we used kNN, AB.M1, J48, LogReg, MLP, NBayes, RF, and SVM by using
Weka Data-Mining software tool [50]. On the other hand, TreeBagger, B-TPMiner, OCKRA, and
PBC4cip were provided by their corresponding authors.

3.3. Evaluation Methodology

To assess the performance of the selected classifiers, we used the following measures, because
these measures are suitable for class imbalance problems.

AUC: Area Under the receiver operating characteristic Curve [51]: AUC evaluates the true failure
detection rate (TPrate) versus the false failure detection rate (FPrate). This measure is the most
used for assessing the classification results in class imbalance problems because, as stated
by Japkowicz [52], it measure is not affected by subjective factors, unlike G-mean [53] and
F-Measure [54]. In addition, AUC is insensitive to changes in the distribution of the training
dataset, which make it suitable for class imbalance problems.

ZFP: Zero-False Positives is another important measure for assessing the classification results.
ZFP measures the number of true failures (TP) when no false failure (FP) is detected; i.e.,
the value of TP when FP = 0. The higher is the ZFP value, the more reliable is the failure detection
system. The main reason for using this measure is to evaluate the number of false positive alerts
in a short time interval of time [48], which can be disturbing for users receiving continuously
false positive alerts.

We computed these performance indicators from Receiver Operating Characteristic (ROC) curves
according to Fawcett [55]. In addition, we averaged the results of the five-fold cross validation (5-FCV)
performance indicators for each database.

3.4. Statistical Tests

It is common in an experiment to check whether the classification results produced by the selected
classifiers are statistically different. Consequently, we applied the Friedman’s test (a nonparametric
test) and after, we performed the Finner’s procedure (a post-hoc procedure), as suggested in [56,57].

The Friedman’s test is used to know whether there are significant statistical differences among
the classification results, but it is not able to determine which results have statistical differences among
them. Hence, Shaffer’s static procedure (as a post-hoc procedure), suggested by García and Herrera [57],
is used for determining which results have statistical differences among them. Although there exist
other important post-hoc procedures, e.g., Nemenyi, Holm, and Bergmann–Hommel procedures,
we selected the Shaffer’s static procedure because it is more powerful and less computationally
expensive than others well-know post-hoc procedures [57].

It is important to highlight that all statistical tests were executed with a level of significance
α = 0.05, as proposed in [56,57]. We used the KEEL software suite [58] for executing the statistical
methods used in this paper.

4. Results and Discussion

In this section, the main results of our research are presented and discussed. In Section 4.1,
a comparison of several classifiers by using our proposed database for detecting different pneumatic
failures on TIBs is presented. Finally, in Section 4.2, another comparison of all tested classifier by
using our proposed database and the databases proposed in [6] for detecting pneumatic failures, as a
two-class problem, on TIBs is presented.

To simplify the presentation, a supplementary material website (http://sites.google.com/site/
octavioloyola/papers/CP4DPFonTIBs) has been created for this paper, which contains all experimental
results, extracted contrast patterns, our proposed database, as well as the fold partitions used in our
experiments, and all statistical test results.

http://sites.google.com/site/octavioloyola/papers/CP4DPFonTIBs
http://sites.google.com/site/octavioloyola/papers/CP4DPFonTIBs
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4.1. Comparing Classifiers for Detecting Different Pneumatic Failures on TIBs

For this comparison, we used the classifiers outlined in Section 3.2 but we excluded those following
a one-class approach (B-TPMiner and OKCRA) because our proposed database is a multi-class database;
hence, one-class classifiers cannot work there.

Table 4 shows the average AUC results obtained by the tested classifiers in our proposed database
for detecting different pneumatic failures on TIBs. In this table, results on the diagonal represent the
average AUC result regarding each tested classifier. In addition, this table contains the differences
among all classifiers where absolute values greater than 0.05 are considered as an important difference,
and, as a consequence, their values are highlighted with an asterisk (*) symbol.

Table 4. Average AUC results obtained by the tested classifiers in our proposed database.

Classifier SVM RF MLP LogReg C4.5 NBayes TreeBagger AB.M1 3NN PBC4cip

SVM 0.9410 −0.0554 * −0.0552 * 0.0004 −0.0433 −0.0168 −0.0496 0.6623 * −0.0406 −0.0504 *
RF 0.9964 0.0002 0.0558 * 0.0121 0.0386 0.0058 0.7177 * 0.0148 0.0050
MLP 0.9962 0.0555 * 0.0119 0.0384 0.0056 0.7175 * 0.0146 0.0048
LogReg 0.9406 −0.0436 −0.0172 −0.0499 0.6620 * -0.0410 −0.0507 *
C4.5 0.9843 0.0264 −0.0063 0.7056 * 0.0026 −0.0071
NBayes 0.9578 −0.0327 0.6791 −0.0238 −0.0336
TreeBagger 0.9906 0.7119 * 0.0089 −0.0008
AB.M1 0.2787 −0.7029 * −0.7127 *
3NN 0.9816 −0.0098
PBC4cip 0.9914

In Table 4, we can see that all classifiers, except AB.M1, obtained an average AUC result above 0.94.
In addition, it can be noticed that RF, MLP, TreeBagger, and PBC4cip have an average AUC result
close to 1 without important differences among them. Nevertheless, among these classifiers with high
average AUC results, PBC4cip provides a model that is close to the language used by human experts in
the application domain. Hence, based on this reason, we suggest using PBC4cip for detecting different
pneumatic failures on TIBs.

These above-mentioned results are not significantly conclusive because there are several classifiers
and only one database, and, as a consequence, no statistical test can be applied. Hence, we performed
another experiment where we used the collection of databases introduced in [6] and also converted
the database used in this experiment into a two-class problem. By doing this, we used statistical test to
corroborate the following: (i) if classifiers reporting good classification results in these experiments can
detect failures they were not trained for; and (ii) if the pattern-based approach continues obtaining
good classification results.

4.2. Comparing Classifiers for Detecting One Type of Pneumatic Failure on TIBs

In the previous section, we show that several classifiers achieved more than 0.99 of AUC when
classifying failures they were already trained for. In this section, we test the performance of the
classifiers for recognizing new types of failures. Hence, we created six new databases that simulates
the occurrence of new types of failures. For every failure type described in Section 3.1, we included the
objects of the failure in the testing dataset and included the objects labeled with a different failure in the
training dataset. Consequently, every classifier trains with failures different to those it must recognize.
In this way, we can corroborate if the tested classifier is able to recognize new types of failures.

Figure 6 shows a scatter plot of the average Friedman ranks, according to AUC and ZFP, for all
tested classifiers. In this figure, the best classifiers according to ZFP appear at the bottom and the best
classifiers according to the AUC appear on the left. Hence, the classifier closest to the origin (1,1) is the
best considering both performance metrics. In addition, in this figure, those classifiers enclosed into an
ellipse have no statistical differences among them regarding both evaluated measures. In Figure 6,
we can see that MLP, PBC4cip, RF, LogReg, AB.M1, and TreeBagger, in this order, obtained better
ranking positions, for both AUC and ZFP, than the remaining tested classifiers. In addition, it can be
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noticed that MLP, PBC4cip, RF, AB.M1, TreeBagger and LogReg are statistically different respect to the
remaining tested classifiers. Nevertheless, it is important to highlight that MLP, PBC4cip, and RF are
the only classifiers obtaining ranking results below four for both measures.

Figure 6. Average ranking for the tested classifiers, according to AUC vs ZFP. Those results closest to
the origin (1,1) are the best considering both performance metrics; in addition, those enclosed in an
ellipse have no statistical differences among them regarding both evaluated measures.

Figure 7 shows a scatter plot of the average classification results, according to AUC and ZFP, for all
the tested classifiers. In this figure, the best classifiers according to ZFP appear at the top, and the best
classifiers according to AUC appear at the right. Hence, the classifier closest to the upper right corner
is the best one considering both performance metrics. Additionally, in this figure, those classifiers
enclosed into an ellipse have no statistical differences among them regarding both evaluated measures.
In Figure 7, we can see that MLP, RF, PBC4cip, AB.M1, TreeBagger, and LogReg, in this order, obtained
the best classification results, for both average AUC and average ZFP, regarding the remaining tested
classifiers. In addition, it can be noticed that MLP, PBC4cip, and RF obtained values above 0.90 for
both metrics.

From our results, we can conclude that MLP, PBC4cip, and RF obtained the best classification
results for detecting pneumatic failures on TIBs. Nevertheless, from these classifiers, PBC4cip has an
additional advantage because it provides an explanatory model, which is close to the language used
by experts in the application domain.
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MLP

Figure 7. Average AUC vs average ZFP for the tested classifiers. Those results closest to the upper
right corner are the best considering both performance metrics; in addition, those enclosed in an ellipse
have no statistical differences among them regarding both evaluated measures.

4.3. Analyzing the Extracted Contrast Patterns

In Table 5, we show, for each class, an example of a contrast pattern extracted from our proposed
database by using PBC4cip. In this table, for each class (Class), we show a pure (a contrast pattern is
pure when it covers objects from only one class [18,59,60]) contrast pattern (Contrast Pattern) and its
support (Supp). In Table 5, we can see that most of the contrast patterns have items containing the new
features proposed by us, which contain the variations of air pressure. In this way, we corroborate that
our feature representation helps to obtain useful contrast patterns, with high support, which describe
the different types of failures that could arise on a TIBs. In addition, in this table, we can see that there
are contrast patterns having only a few items, which are easier to understand by experts. For example,
from the first pattern in this table ([P f v5 ≤ 0.02] ∧ [deltaPs70 > 0.00]), we can interpret the
following: if at 5 s of initialized the immersion time the air pressure into the liquid medium container
is lower of equal than 0.02, and at the end of the immersion time the variation of air pressure is greater
than 0 then there is a failure of type 1 (fault 1), which means that there is pressure failure on the
fitting of the siphon into the liquid medium container.

Table 6 shows, for each class, an example of a contrast pattern extracted from each database
described in Section 3.1 but using PBC4cip. In this table, for each database (DB) and each class (Class),
we show a pure contrast pattern (Contrast Pattern) and its support (Supp). In this table, we can
notice that all contrast patterns have a high support, above 85%, and they have at most three items,
which is good because, commonly, those patterns having a few items and high support, provide better
classification results and are easier to understand by experts. In this table, we can see that the feature
Ps10 is very important for detecting failures on TIBs. Notice that Ps10 is contained in several contrast
patterns, and as a consequence, together with the pneumatic expert, we have extracted the following
rule to be introduced into the PLC: IF Ps10 ≤ 0.13 THEN Failure. This rule will warn about a fault
just 10 s after starting any pneumatic action and the main reason is an air leak in the central line of the
pneumatic system.
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Table 5. Examples of contrast patterns extracted from our proposed database by using PBC4cip.

Class Contrast Pattern Supp

fault 1 [P f v5 ≤ 0.02] ∧ [deltaPs70 > 0.00] 85%

fault 2 P f v8 > 0.00] ∧ [P f v54 ≤ 0.12] ∧ [Ps26 ≤ 0.10] ∧ [Ps7 ≤ 0.08] ∧ [P f ll11 ≤ 0.06] 49%

fault 3 [Ps48 > 0.10] ∧ [deltaPs33 ≤ 0.00] ∧ [Ps48 ≤ 0.18] ∧ [deltaP f v70 ≤ −0.02] ∧ [Ps7 ≤ 0.16] ∧ [Ps65 > 0.10] 39%

fault 4 [Ps35 ≤ 0.20] ∧ [P f v13 > 0.00] ∧ [Ps46 ≤ 0.13] ∧ [Ps44 ≤ 0.07] ∧ [deltaP f ll2 ≤ 0.01] ∧ [deltaPs32 ≤
0.00] ∧ [P f v7 ≤ 0.02] 40%

fault 5 [P f v34 ≤ 0.02] ∧ [Ps58 ≤ 0.10] ∧ [Ps48 > 0.10] 44%

fault 6 [P f v8 ≤ 0.00] 67%

normal [Ps51 > 0.10] ∧ [P f v24 > 0.02] ∧ [P f ll47 > 0.02] ∧ [Ps5 > 0.10] 80%

Table 6. Examples of contrast patterns extracted from the databases proposed in [6] by using PBC4cip.

DB Contrast Pattern Class Supp

BITPinepple 1 [Ps(48) > 0.10] ∧ [P f ll(1) ≤ 0.11] normal 86%
[Ps(45) ≤ 0.11] ∧ [P f ll(13) > 0.11] ∧ [Ps(41) > 0.08] failure 86%

BITPinepple 2 [P f ll(1) > 0.07] ∧ [P f v(59) ≤ 0.11] normal 80%
[Ps(55) ≤ 0.12] ∧ [P f v(59) > 0.11] ∧ [P f ll(62) ≤ 0.02] failure 100%

BITPinepple 3 [Ps(1) ≤ 0.09] normal 88%
[P f ll(4) ≤ 0.12] ∧ [Ps(41) > 0.09] failure 100%

BITPinepple 4 [Ps(20) ≤ 0.11] normal 84%
[Ps(20) > 0.11] ∧ [P f ll(8) ≤ 0.14] failure 100%

BITPinepple 5 [P f ll(12) > 0.12] normal 85%
[P f v(46) > 0.12] ∧ [Ps(10) ≤ 0.12] failure 100%

BITPinepple 6 [P f ll(17) > 0.11] normal 86%
[Ps(14) ≤ 0.11] ∧ [Ps(42) > 0.10] failure 100%

BITPinepple 7 [Ps(43) ≤ 0.13 normal 80%
[Ps(54) > 0.13] ∧ [Ps(10) ≤ 0.13] failure 92%

BITPinepple 8 [P f v(42) ≤ 0.13] normal 86%
[Ps(10) ≤ 0.12] ∧ [P f v(54) > 0.13] failure 100%

Table 7 shows, for each class, an example of a contrast pattern extracted from our proposed
database by using PBC4cip but using our database as a two-class problem as we stated in Section 3.1.
In this table, for each two-class database (DB) and each class (Class), we show, for each database and
each class, a pure contrast pattern (Contrast Pattern) and its support (Supp). In this table, we can see
that most of the contrast patterns have items containing the new features proposed by us in Section 3.1.
In this way, we can corroborate that our feature representation helps to obtain good contrast patterns,
with high support, which describe the different types of failures appearing on TIBs, when our proposed
database is converted in different two-class problem databases.

In Table 7, we can see that, in this case, the contrast patterns have fewer items than those contrast
patterns shown in Table 5, which were extracted from our proposed multi-class database. In addition,
the contrast patterns showed in Table 7 have higher support than those in Table 5.

It is important to highlight that Tables 5–7 are a random subsample of all contrast patterns
extracted from the databases used in this study, but we have analyzed all results and the explanations
provided in this section are consistent with all the extracted contract patterns, which are provided in
our supplementary material.
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Table 7. Examples of contrast patterns extracted from our proposed database, as two-class problems,
by using PBC4cip.

DB Contrast Pattern Class Supp

Fault 1 [deltaPs2 > 0.00] ∧ [P f v2 > 0.02] normal 69%
[P f v26 ≤ 0.02] ∧ [Ps31 > 0.15] ∧ [P f v33 ≤ 0.02] failure 75%

Fault 2 [P f v31 > 0.02] ∧ [P f v37 > 0.02] normal 78%
[P f v37 ≤ 0.02] ∧ [Ps25 > 0.07] ∧ [deltaP f ll3 ≤ 0.00] failure 79%

Fault 3 [P f v22 > 0.02] ∧ [deltaP f ll2 > 0.00] normal 76%
[P f ll44 ≤ 0.02] ∧ [P f v34 ≤ 0.02] ∧ [P f v68 > 0.06] failure 64%

Fault 4 [P f v15 > 0.02] ∧ [Ps11 > 0.08] normal 77%
[P f v23 ≤ 0.02] ∧ [Ps53 > 0.08] ∧ [deltaPs60 > 0.00] failure 75%

Fault 5 [P f v9 > 0.02] ∧ [deltaPs42 > 0.00] ∧ [P f v19 > 0.01] normal 80%
[P f ll35 ≤ 0.02] ∧ [P f v30 ≤ 0.01] failure 55%

Fault 6 [deltaP f ll2 > 0.01] ∧ [P f v4 > 0.02] normal 78%
[P f ll68 ≤ 0.02] ∧ [Ps67 > 0.06] ∧ [P f v15 ≤ 0.02] failure 60%

4.4. Analyzing Classification Results Jointly with Experts

We analyzed the classification results obtained by MLP, PBC4cip, and RF jointly with experts
in biotechnology and pneumatic systems. From these interactions, we have obtained the following
know-how:

Biotechnology experts: The average AUC results obtained by MLP, PBC4cip, and RF were above
0.98, and the average ZFP results were above 0.9. This means that, of the 16 daily immersions
(see Section 2), experts will receive at most two (1.6) false failure alerts. As ZFP measures the number of
true failures (TP) when no false failures (FP) is detected (see Section 3.3), then a result of ZFP = 0.9
means a FP = 0.1 (or 1.6 FP from 16 daily immersions). On the other hand, biotechnology experts prefer
PBC4cip as the classifier to be used for detecting pneumatic failures on TIBs because this classifier
provides contrast patterns describing where the failure arose (plant or liquid medium container,
or the central air line). Although MLP and RF have slightly better average AUC and ZFP than
PBC4cip, biotechnology experts prefer to use PBC4cip because it also provides specific information
from when the failure arises (i.e., if it arises during the immersion time and the specific time interval).
Finally, experts suggest extending this explanatory model to include other valuable information as
the number of fresh mass, amount of liquid medium, and number of shoots.

Pneumatic system experts: The explanatory model proposed by PBC4cip is very helpful because
it obtains high classification results and provides a model based on contrast patterns, which can be
converted into rules. These rules can be introduced, in an easy way, into a PLC used to manage
the pneumatic system on a TIB. Although MLP obtains better classification results than PBC4cip,
the pneumatic system experts comment that the model provided by MLP is very hard to be introduced
into a PLC, and it does not provide an explanatory model to detect when and why the pneumatic
system of a TIB fails. On the other hand, RF provides a model that could be converted into rules,
but it contains significantly more rules than those extracted from the PBC4cip model, and there is not a
statistical difference between the classification results obtained by these classifiers.

From this analysis with experts in the application domain, we can conclude that PBC4cip is
the best classification model to be used for detecting pneumatic failures on TIBs because it obtains
high-quality classification results and also provides a model easy to understand by experts and suitable
to be included into a PLC.
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5. Conclusions and Future Work

In this paper, we propose an approach based on contrast patterns for detecting pneumatic failures
on TIBs. Our proposal obtained significantly better classification results than other state-of-the-art
classifiers, on micropropagation pineapple databases, for detecting pneumatic failures on TIBs.
In addition, our proposal obtained the best classification results together with Random Forest and
Multilayer Perceptron but our proposal provided a model that is easier to understand by experts and
suitable to be included into a programmable logic controller.

On the other hand, we introduced a feature representation for this kind of problems and a new
micropropagation pineapple database for detecting four new type of pneumatic failures on TIBs.
In addition, we provided a joint analysis with both biotechnology and pneumatic experts regarding
the classification results obtained by the classifiers that produced the best results.

As every research, this one can be improved. First, although we used a filtering method for
obtaining a set of high-quality patterns covering all instances in the training dataset, this set is a bit
strong to be interpreted by a human expert. Second, this research was focused on detecting pneumatic
failures on TIBs, but there are other features for obtaining high-quality plants on TIBs, which are
important for experts in biotechnology.

Based on these possible improvements, we suggest the following lines for future work. First,
new algorithms for discovering patterns could be proposed for extracting a small set of high-quality
patterns. Second, a new filtering method for patterns can be proposed for detecting pneumatic failures.
Finally, by using methods for processing images, coming from both plant and medium liquid container,
experts in biotechnology can obtain valuable information about the micropropagation procedure.
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10. Kobyliński, L.; Walczak, K. Emerging Patterns and Classification for Spatial and Image Data. In Contrast
Data Mining: Concepts, Algorithms, and Applications; Data Mining and Knowledge Discovery Series; Dong, G.;
Bailey, J., Eds.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2012; Chapter 20, pp. 285–302.

11. Alavi, F.; Hashemi, S. DFP-SEPSF: A dynamic frequent pattern tree to mine strong emerging patterns in
streamwise features. Eng. Appl. Artif. Intell. 2015, 37, 54–70. [CrossRef]

12. Acosta-Mendoza, N.; Gago-Alonso, A.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F.; Medina-Pagola, J.E.
Improving graph-based image classification by using emerging patterns as attributes. Eng. Appl. Artif. Intell.
2016, 50, 215–225. [CrossRef]

13. Zhang, B.; Lin, C.W.; Gan, W.; Hong, T.P. Maintaining the discovered sequential patterns for sequence
insertion in dynamic databases. Eng. Appl. Artif. Intell. 2014, 35, 131–142. [CrossRef]

14. Dong, G.; Li, J.; Wong, L. The use of emerging patterns in the analysis of gene expression profiles for the
diagnosis and understanding of diseases. In Engineering Applications of Artificial Intelligence; John Wiley:
Hoboken, NJ, USA, 2004; Chapter 14, pp. 331–354.

15. Ryu, K.H.; Lee, D.G.; Piao, M. Emerging Pattern Based Prediction of Heart Diseases and Powerline Safety. In
Contrast Data Mining: Concepts, Algorithms, and Applications; Data Mining and Knowledge Discovery Series;
Dong, G., Bailey, J., Eds.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2012; Chapter 23, pp. 329–336.

16. Chen, L.; Dong, G. Using Emerging Patterns in Outlier and Rare-Class Prediction. In Contrast Data Mining:
Concepts, Algorithms, and Applications; Data Mining and Knowledge Discovery Series; Dong, G., Bailey, J.,
Eds.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2012; Chapter 12, pp. 171–186.

http://dx.doi.org/10.1007/s002990050653
http://dx.doi.org/10.1007/s00299-011-1195-7
http://www.ncbi.nlm.nih.gov/pubmed/22134875
http://dx.doi.org/10.1007/s00299-013-1493-3
http://www.ncbi.nlm.nih.gov/pubmed/23959598
http://dx.doi.org/10.1007/s11738-017-2576-5
http://dx.doi.org/10.1080/07388551.2018.1489778
http://www.ncbi.nlm.nih.gov/pubmed/30431379
http://dx.doi.org/10.1016/j.engappai.2014.08.010
http://dx.doi.org/10.1016/j.engappai.2016.01.030
http://dx.doi.org/10.1016/j.engappai.2014.06.016


Sensors 2019, 19, 414 17 of 19

17. Loyola-González, O.; Medina-Pérez, M.A.; Martínez-Trinidad, J.F.; Carrasco-Ochoa, J.A.; Monroy, R.;
García-Borroto, M. PBC4cip: A new contrast pattern-based classifier for class imbalance problems.
Knowl.-Based Syst. 2017, 115, 100–109. [CrossRef]

18. Zhang, X.; Dong, G. Overview and Analysis of Contrast Pattern Based Classification. In Contrast Data Mining:
Concepts, Algorithms, and Applications; Dong, G., Bailey, J., Eds.; Data Mining and Knowledge Discovery
Series; Chapman & Hall/CRC: Boca Raton, FL, USA, 2012; Chapter 11, pp. 151–170.

19. Bolton, W. Programmable Logic Controllers, 6th ed.; Newnes: Oxford, UK, 2015; p. 424.
20. Teisson, C.; Alvard, D. A New Concept of Plant In Vitro Cultivation Liquid Medium: Temporary Immersion.

In Current Issues in Plant Molecular and Cellular Biology: Proceedings of the VIIIth International Congress on Plant
Tissue and Cell Culture; Terzi, M., Cella, R., Falavigna, A., Eds.; Springer: Dordrecht, The Netherlands, 1995;
pp. 105–110.

21. Paek, K.; Chakrabarty, D.; Hahn, E. Application of bioreactor systems for large scale production of
horticultural and medicinal plants. In Liquid Culture Systems for in vitro Plant Propagation; Springer: Dordrecht,
The Netherlands, 2005; pp. 95–116.

22. Teisson, C.; Alvard, D. In vitro production of potato microtubers in liquid medium using temporary
immersion. Potato Res. 1999, 42, 499–504. [CrossRef]

23. Etienne, H.; Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ
Cult. 2002, 69, 215–231. [CrossRef]

24. Buchanan, W. Modbus. In The Handbook of Data Communications and Networks; Springer: Berlin, Germany,
2004; pp. 677–687.

25. Aragón, C.E.; Escalona, M.; Capote, I.; Pina, D.; Cejas, I.; Rodriguez, R.; Jesus Cañal, M.; Sandoval, J.;
Roels, S.; Debergh, P.; Gonzalez-Olmedo, J. Photosynthesis and carbon metabolism in plantain (Musa AAB)
plantlets growing in temporary immersion bioreactors and during ex vitro acclimatization. In Vitro Cell. Dev.
Biol. Plant 2005, 41, 550–554. [CrossRef]

26. Aragón, C.; Carvalho, L.C.; González, J.; Escalona, M.; Amâncio, S. Sugarcane (Saccharum sp. Hybrid)
Propagated in Headspace Renovating Systems Shows Autotrophic Characteristics and Develops Improved
Anti-oxidative Response. Trop. Plant Biol. 2009, 2, 38–50. [CrossRef]

27. Aragón, C.; Carvalho, L.; González, J.; Escalona, M.; Amâncio, S. Ex vitro acclimatization of plantain plantlets
micropropagated in temporary immersion bioreactor. Biol. Plant. 2010, 237–244. [CrossRef]

28. Aragón, C.E.; Escalona, M.; Rodriguez, R.; Cañal, M.J.; Capote, I.; Pina, D.; González-Olmedo, J. Effect of
sucrose, light, and carbon dioxide on plantain micropropagation in temporary immersion bioreactors.
In Vitro Cell. Dev. Biol. Plant 2010, 46, 89–94. [CrossRef]

29. Aragón, C.E.; Sánchez, C.; Gonzalez-Olmedo, J.; Escalona, M.; Carvalho, L.; Amâncio, S. Comparison of
plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro
growth and acclimatization. Biol. Plant. 2014, 58, 29–38. [CrossRef]

30. Kang, S.; Ramamohanarao, K. A robust classifier for imbalanced datasets. In Advances in Knowledge Discovery
and Data Mining; Lecture Notes in Computer Science; Springer International Publishing: Berlin, Germany,
2014; Volume 8443, pp. 212–223.

31. Cieslak, D.A.; Hoens, T.; Chawla, N.; Kegelmeyer, W. Hellinger distance decision trees are robust and
skew-insensitive. Data Min. Knowl. Discov. 2012, 24, 136–158. [CrossRef]

32. Michalski, R.S.; Stepp, R. Revealing conceptual structure in data by inductive inference. Mach. Intell. 1982,
10, 173–196.

33. García-Borroto, M.; Martínez-Trinidad, J.; Carrasco-Ochoa, J. A survey of emerging patterns for supervised
classification. Artif. Intell. Rev. 2014, 42, 705–721. [CrossRef]

34. Dong, G.; Li, J. Efficient mining of emerging patterns: Discovering trends and differences. In Proceedings of
the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’99,
San Diego, CA, USA, 15–18 August 1999; pp. 43–52.

35. Dong, G. Preliminaries. In Contrast Data Mining: Concepts, Algorithms, and Applications; Dong, G.,
Bailey, J., Eds.; Data Mining and Knowledge Discovery Series; Chapman & Hall/CRC: Boca Raton, FL, USA,
2012; Chapter 1, pp. 3–12.

36. Orriols-Puig, A.; Bernadó-Mansilla, E. Evolutionary rule-based systems for imbalanced data sets. Soft
Comput. 2009, 13, 213–225. [CrossRef]

http://dx.doi.org/10.1016/j.knosys.2016.10.018
http://dx.doi.org/10.1007/BF02358166
http://dx.doi.org/10.1023/A:1015668610465
http://dx.doi.org/10.1079/IVP2005640
http://dx.doi.org/10.1007/s12042-008-9026-x
http://dx.doi.org/10.1007/s10535-010-0042-y
http://dx.doi.org/10.1007/s11627-009-9246-2
http://dx.doi.org/10.1007/s10535-013-0381-6
http://dx.doi.org/10.1007/s10618-011-0222-1
http://dx.doi.org/10.1007/s10462-012-9355-x
http://dx.doi.org/10.1007/s00500-008-0319-7


Sensors 2019, 19, 414 18 of 19

37. Moreno-Torres, J.G.; Saez, J.A.; Herrera, F. Study on the Impact of Partition-Induced Dataset Shift on k-Fold
Cross-Validation. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1304–1312. [CrossRef] [PubMed]

38. López, V.; Fernández, A.; Herrera, F. On the importance of the validation technique for classification with
imbalanced datasets: Addressing covariate shift when data is skewed. Inf. Sci. 2014, 257, 1–13. [CrossRef]

39. Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66.
[CrossRef]

40. Freund, Y.; Schapire, R.E. Experiments with a New Boosting Algorithm. In Proceedings of the Thirteenth
International Conference on Machine Learning, ICML’96, Bari, Italy, 3–6 July 1996, pp. 148–156.

41. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers Inc.: San Francisco, CA,
USA, 1993; p. 302.

42. Cessie, S.L.; Houwelingen, J.C.V. Ridge Estimators in Logistic Regression. J. R. Stat. Soc. Ser. C Appl. Stat.
1992, 41, 191–201. [CrossRef]

43. Haykin, S.S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Tsinghua University Press: Beijing, China,
2001.

44. John, G.H.; Langley, P. Estimating Continuous Distributions in Bayesian Classifiers. In Proceedings of
the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI’95, Montréal, QC, Canada,
18–20 August 1995; pp. 338–345.

45. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
46. Platt, J.C. 12 fast training of support vector machines using sequential minimal optimization. Adv. Kernel

Methods 1999, 185–208.
47. MathWorks, Inc. TreeBagger; Mathworks Inc.: Sherborn, MA, USA, 2015.
48. Medina-Pérez, M.A.; Monroy, R.; Camiña, J.B.; García-Borroto, M. Bagging-TPMiner: A classifier ensemble

for masquerader detection based on typical objects. Soft Comput. 2017, 21, 557–569. [CrossRef]
49. Rodríguez, J.; Barrera-Animas, A.Y.; Trejo, L.A.; Medina-Pérez, M.A.; Monroy, R. Ensemble of One-Class

Classifiers for Personal Risk Detection Based on Wearable Sensor Data. Sensors 2016, 16, 1619. [CrossRef]
50. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software:

An Update. SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]
51. Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl.

Data Eng. 2005, 17, 299–310. [CrossRef]
52. Japkowicz, N. Assessment Metrics for Imbalanced Learning. In Imbalanced Learning: Foundations, Algorithms,

and Applications; He, H.; Ma, Y., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; Chapter 8,
pp. 187–206.

53. Kubat, M.; Matwin, S. Addressing the curse of imbalanced training sets: One-sided selection.
In Proceedings of the 14th International Conference on Machine Learning (ICML97), Nashville, TN, USA,
8–12 July 1997; pp. 179–186.

54. Baeza-Yates, R.A.; Ribeiro-Neto, B. Modern Information Retrieval; Addison-Wesley Longman Publishing Co.,
Inc.: Boston, MA, USA, 1999.

55. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
56. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.
57. García, S.; Herrera, F. An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for

all Pairwise Comparisons. J. Mach. Learn. Res. 2008, 9, 2677–2694.
58. Alcalá-Fdez, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S. KEEL Data-Mining Software Tool: Data Set

Repository, Integration of Algorithms and Experimental Analysis Framework. J. Mult.-Valued Logic Soft
Comput. 2011, 17, 255–287.

http://dx.doi.org/10.1109/TNNLS.2012.2199516
http://www.ncbi.nlm.nih.gov/pubmed/24807526
http://dx.doi.org/10.1016/j.ins.2013.09.038
http://dx.doi.org/10.1007/BF00153759
http://dx.doi.org/10.2307/2347628
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s00500-016-2278-8
http://dx.doi.org/10.3390/s16101619
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1109/TKDE.2005.50
http://dx.doi.org/10.1016/j.patrec.2005.10.010


Sensors 2019, 19, 414 19 of 19

59. Loyola-González, O.; Martínez-Trinidad, J.F.; Carrasco-Ochoa, J.A.; García-Borroto, M. Effect of class
imbalance on quality measures for contrast patterns: An experimental study. Inf. Sci. 2016, 374, 179–192.
[CrossRef]

60. García-Vico, A.M.; Carmona, C.J.; Martín, D.; García-Borroto, M.; del Jesus, M.J. An overview of emerging
pattern mining in supervised descriptive rule discovery: Taxonomy, empirical study, trends, and prospects.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2017, 8, e1231. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ins.2016.09.040
http://dx.doi.org/10.1002/widm.1231
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Temporary Immersion Bioreactors
	Materials and Methods
	Datasets and Data Pre-Processing
	Tested Supervised Classifiers
	Evaluation Methodology
	Statistical Tests

	Results and Discussion
	Comparing Classifiers for Detecting Different Pneumatic Failures on TIBs
	Comparing Classifiers for Detecting One Type of Pneumatic Failure on TIBs
	Analyzing the Extracted Contrast Patterns
	Analyzing Classification Results Jointly with Experts

	Conclusions and Future Work
	References

