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Abstract: This paper proposes a novel infrared-inertial navigation method for the precise landing
of commercial aircraft in low visibility and Global Position System (GPS)-denied environments.
Within a Square-root Unscented Kalman Filter (SR_UKF), inertial measurement unit (IMU) data,
forward-looking infrared (FLIR) images and airport geo-information are integrated to estimate
the position, velocity and attitude of the aircraft during landing. Homography between the
synthetic image and the real image which implicates the camera pose deviations is created as vision
measurement. To accurately extract real runway features, the current results of runway detection
are used as the prior knowledge for the next frame detection. To avoid possible homography
decomposition solutions, it is directly converted to a vector and fed to the SR_UKF. Moreover,
the proposed navigation system is proven to be observable by nonlinear observability analysis.
Last but not least, a general aircraft was elaborately equipped with vision and inertial sensors to
collect flight data for algorithm verification. The experimental results have demonstrated that the
proposed method could be used for the precise landing of commercial aircraft in low visibility and
GPS-denied environments.

Keywords: infrared-inertial navigation; homography; runway detection; observability analysis;
precise landing; low visibility; GPS-denied

1. Introduction

Landing is the most accident-prone phase of flight for both military and civil aircraft. This is due to
the manoeuvring sequence required to exhaust a large amount of aircraft kinetic energy in a relatively
small area. Fixed-wing aircraft usually descend smoothly at a constant angle, pointing in the direction
of the runway centerline, and touch down at the beginning of the runway. If low visibility conditions
(e.g., fog or haze) are encountered, the pilots have no choice but to manipulate the aircraft to land
using navigation instruments. If the conventional radio navigation systems are disturbed or disabled,
they can mislead the pilots and cause a Controlled Flight Into Terrain (CFIT) accident. In addition,
most airports are equipped with simple and coarse radio beacons rather than expensive and precise
ground-based guidance systems. Nowadays neither avionics systems, nor airport infrastructures are
perfectly designed to support precision landing. Faced with these challenges, an autonomous, accurate
and affordable landing navigation mechanism is extremely necessary for most fixed-wing aircrafts.

The traditional landing aid systems include the Instrument Landing System (ILS), and Global
Position System (GPS). However, these systems themselves have deficiencies for fixed-wing aircraft
precision landing. ILS can only guide an aircraft to the decision height (DH, usually DH = 100 ft) and
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cannot guide it onto the runway. Besides, ILS, with its high cost and complicated maintenance is not
suitable for general aviation airports. Although GPS can meet the needs of class I and II landings for
most aircraft, its signal is vulnerable to jamming or disabling [1].

Recently vision-based landing navigation, which has the benefits of accuracy, autonomy and low
cost, is becoming a central research topic [2,3]. Existing studies on vision-based landing for fixed-wing
aircraft are classified into two categories, namely ground-based and onboard-based. The ground-based
methods [4-10] often utilize multilocular vision systems arranged on the ground to detect, track, and
guide the aircraft to landing. Martinez et al. [4] designed a trinocular system, which is composed of
three Firewire cameras fixed on the ground, to estimate an UAV’s position and orientation by tracking
color land markers on the UAV. Kong et al. [5-7] developed a custom-built infrared stereo camera with
a large field of view and claimed that their system could resist all weather conditions, and further
improve the detection precision by the Chan-Vese method [8] and the saliency-inspired method [9]. In
addition, Yang et al. [10] showed promising results for UAV auto-landing in GPS-denied environments
using a ground-based infrared camera array and a near infrared laser lamp-based cooperative optical
imaging method.

Onboard-based vision landing navigation based on looking-forward images and computer vision
algorithms can be divided into two types, namely moving platform-based and airport runway-based
methods. For landing on a moving platform, the core solution is to track a known target, e.g.,
an aircraft carrier, and compute its relative position and orientation. Coutard et al. at the French
INRIA [11,12] proposed a method for carrier visual detection and tracking for landing on the deck.
The carrier is detected in the image by a warped patch of a reference image. Ding et al. [13] presented
a FLIR/INS/RA integrated landing guidance approach to estimate the aircraft states and carrier
dynamics for fixed-wing aircraft landing on the deck in low-visibility weather and high sea states
by employing the Newton iterative algorithm, Kalman filter and wavelet transform. Jia et al. [14]
put forward a carrier landing algorithm based on point and line features for fixed-wing UAVs. This
algorithm calculates the attitude according to the sky-sea line and runway vanishing point, estimates
the position parameters on the basis of the landmark and tracklines’ collinear equations by least square
solutions, but it was only verified by simulation experiments. Recently Muskardin et al. in DLR [15]
analyzed and proposed an algorithm for a solar-powered fixed-wing UAV landing on top of a mobile
ground vehicle. For landing on an airport runway, a fixed-wing aircraft should descend smoothly at a
constant angle, pointed in the direction of the runway centerline, and touch down at the beginning
of the runway. Korn et al. at DLR [16] proposed a simple method to estimate the relative of position
of an aircraft with respect to a runway based only on camera images. Neither a calibrated camera,
nor any knowledge of special points of the runway are needed. The premise of this method is to
accurately detect the horizon, but it is not suitable for all airports. Goncalves et al. [17] presented a
study of a vision-based automatic approach and landing for an aircraft use an efficient second-order
minimization-based tracking method. In contrast with feature extraction methods, direct methods can
achieve ideal accuracy, but they are computationally consuming. Gui et al. [18] proposed an airborne
vision-based navigation approach for UAV accuracy landing based on artificial markers. This method
needs to install a visible light camera integrated with a DSP processor on the UAV and place four
infrared lamps on the runway. Guo et al. [19] designed a vision-aided landing navigation system
based on a fixed waveband guidance illuminant using a single camera. Bras et al. [20] used the edges
and the front corner points of the runway extracted from the forward-looking images to implement a
visual servo control method for autonomous UAV landings. Fan et al. [21] adopted a spectral residual
saliency map to detect regions of interest, then selected sparse coding and spatial pyramid matching to
recognize runways and used orthogonal iteration to estimate position and attitude. Burlion et. al. at the
French ONERA [22] studied the vision-based flight control problem under field of view constraints and
proposed a vision-based landing framework for a fixed-wing UAV on an unknown runway. Gibert et al.
at Airbus [23-25] designed two nonlinear observers based on a high gain approach and sliding mode
theory and applied them to a vision-based solution for civil aircraft landing on an unknown runway.
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However, this method does not utilize inertial measurements with high update. Ruchanurucks et
al. [26] used an Efficient Perspective-n-Point (EPnP) solution to estimate relative pose for an automatic
aided landing system for landing a fixed-wing UAV on a runway. The accuracy of this method is
however susceptible to runway detection errors.

Although the above algorithms have achieved remarkable progress in vision-aided landing
navigation, there are four main problems which need to be coped with. Firstly, image sensors cannot
satisfy the requirements of high-speed landing navigation because of their low image update rates,
whereas, IMUs can measure accelerations and rotational velocities at high update rates. The two types
of sensors can complement each other in nature and integrate well in an optimized framework [27].
Secondly, most often fixed-wing aircrafts landing scenes are characterized by large-scale, no loop
closure and plane. Thus, real-time SLAM algorithms [28-30] cannot be adopted directly, and a method
based on sparse runway features must be developed. Thirdly, in order to operate smoothly under low
visibility conditions, a forward-looking infrared (FLIR) camera can be used to monitor the runway,
however, a big problem is that fewer features can be extracted from infrared images, especially in the
runway area, due to their low resolution and poor texture [31]. Therefore, it is necessary to improve
existing algorithms [32-35] to meet the robustness and accuracy requirements of runway detection in
FLIR images. Finally, considering the flight safety, the observability of the proposed visual-inertial
navigation system must be analyzed.

The main contributions presented in this paper are as follows: we propose a visual-inertial landing
navigation method based on SR_UKEF in which inertial data, infrared images and geo-referenced
information are fused to estimate the landing kinetic states of the aircraft. Firstly, a short-wave
infrared (SWIR) camera is used to capture a forward-looking infrared (FLIR) image to meet the
requirement of precise landing under low visibility. Moreover, the homography that contains the
measured pose deviation of the FLIR camera is directly created as the vision observation instead of
its decomposition, because it implies the pose deviation between the measured camera and the true
camera. Furthermore, an improved runway detection algorithm based on FLIR images is proposed
to reach more robustness and accuracy. Specially, a non-linear observability analysis based on Lie
derivatives [36-38] is performed to ensure that the sensor measurements provide sufficient information
for motion estimation. Finally, we design a flight data acquisition platform based on a general aircraft
and adopt real flight data to verify that the proposed method can be used for precise landing of
commercial aircraft in GPS-denied and low visibility environments. This paper is organized as follows:
in Section 2, we propose the visual-inertial navigation system for aircraft precise landing and discuss
its observability. Section 3 gives the experimental results and discussions. The conclusions are drawn
in Section 4.

2. Methodology

This section explicitly details the framework of the proposed visual-inertial navigation approach.
Vision observations with the camera pose deviations are designed elaborately, then the visual-inertial
fusion based on SR-UKF is constructed, and its observability is analyzed.

2.1. Framework of Infrared-Inertial Landing Navigation

In general, a complete landing procedure of a commercial aircraft includes two parts: an
instrument flight segment and a natural vision segment. The instrument portion of an instrument
landing procedure ends at the Decision Altitude (DA), and the visual segment begins just below DA
and continues to the runway. Prior to reaching DA, the pilot’s primary references for maneuvering the
airplane are the aircraft instruments and onboard navigation system. As the pilot approaches the DA,
he or she looks for the approach lighting system, if there is one, as well as the runway threshold and
touchdown zone lights, markings, surfaces. These visual references help the pilot align the aircraft with
the runway and provide position and distance remaining information. At 100 feet above the Threshold
Elevation (THRE), the visual transition point, the pilot makes a determination about whether the flight
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visibility is sufficient to continue the approach and distinctly identify the required visual references
using natural vision. If the requirements identified above are met, the pilot may continue descending
below DA down to 100 feet height above THRE [39]. Otherwise, the pilot should pull up the aircraft
at once, as shown in Figure 1. In order to land commercial airplane safely in GPS-denied and low
visibility environments, the pilot needs to obtain accurate navigation information, especially the flight
altitude. In the present paper, the proposed method is aimed at landing above 100 feet.

Miss
Approaching
1000ft

Vision Flight Rule L Instrument Flight Rule

< |‘

Figure 1. Approach and Landing procedure.

Among several flight parameters, the flight height is one of the most important ones for the pilot’s
decision in a landing procedure. Usually the height measured by barometer or radio altimeter is
inaccurate, while the altitude captured by GPS is unreliable. In this paper, the FLIR camera and IMU
can complement each other in nature and fuse well in a filtering framework. This paper proposes a
novel visual-inertial landing navigation approach based on the SR-UKEF, in which visual observation
and inertial measurements are integrated to estimate aircraft landing motion. This novel visual-inertial
navigation system (VINS) is composed of a FLIR camera, an IMU, a barometer (BARO), a radio
altimeter (RALT) and a processing unit that is in charge of motion estimation of the aircraft.

As shown in Figure 2, the inertial measurements are used to propagate the system states, whereas
the homography is chosen as the visual observation. The proposed visual-inertial integration can be
used for commercial aircraft precise landing in GPS-denied and low visibility.
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Figure 2. Framework of the proposed landing navigation: the blue box is the core part of the
proposed approach

This method involves three key issues: process modeling, measurement modeling, and its
observability. Firstly, this novel vision observation is designed in Section 2.2. Then the visual-inertial
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navigation based on SR-UKEF is proposed in Section 2.3. Finally, the observability of the proposed
algorithm is analyzed in Section 2.4.

2.2. Vision Observation

2.2.1. Homography between Synthetic and Real Images

Before proposing the measurement model, we need to analyze the vision measurement
mechanism. During the landing, the aircraft descends along the glide slope, and the optical axis
of the FLIR camera is aligned with the airport runway. The camera pose is composed of the calibrated
IMU/ camera relative pose and the measured IMU pose. Ideally the measured camera pose should be
equal to the real camera pose. The synthetic image is derived by the terrain data and the measured
camera pose, and the real image is captured by the FLIR camera. Therefore, in the image plane the
synthetic runway features should be in coincidence with the real detected features accurately. However,
the random errors of inertial sensors bring a deviation between the measured camera pose and the
real camera pose and further lead to the mismatch between the synthetic runway features and the real
runway features. The relationships between the measured camera pose (é)”, Pn) and the real camera

pose (®", P") in the navigation reference frame are described as follows:

Al/Jn = " — "

{ AP" =p" —P" @
where ®" and P" denote the measured attitude and position of the FLIR camera in the navigation
reference frame, respectively, ®" and P” represent the real attitude and position of the FLIR camera in
the navigation reference frame separately, Ay" and AP" are the attitude and position measurement
deviations of the FLIR camera in the navigation reference frame individually.

As shown in Figure 3, at the time f the transformation from the synthetic image to the real image
satisfies the homography HX,(t), so the synthetic runway features and the real runway features can be
understood as two independent visual projections of the same runway from the geodetic coordinate
system to the pixel coordinate system, respectively, derived by the real camera pose and the estimated
pose. RY;(t) and TX, (t) represent the relative rotation and translation of the FLIR camera from the
measured pose to the real pose separately. Ny (f) is the unit normal vector of the airport plane with
respect to the FLIR camera in the measured pose, dp;(t) denotes the distance from the airport plane to
the optical center of the FLIR camera in the measured pose.

Measured Pose {RI':A Tﬁ}

Real Pose

<
Synthetic \ Real
Image N i Image
dy Ny
‘ Airport Runway

Corner Point

Figure 3. Homography between synthetic and real images
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Note that the matrix HY;(t) depends on the motion parameters {RX;(#), TX; ()} as well as the
structure parameters {Nys(t), dp(t)} of the ground plane [40,41]. To increase the readability of the
mathematical formulae, the time variables in HY, (¢), R, (t), T¥;(t), Na(t) and dps(t) will be omitted
in the sequel. Then, the homography HX, can be expressed as:

1

R R
dM

TR Ny " @)

It is notable that the terms RII\{A, TRM, N and dj can be further written in the VINS states as:

RY = ey (Mep)' ©

Tﬁ = (RCE)T' (MPn - RPn) 4)

Ny = 71-(ch)T-e3, with ez = [ 00 1 ]T )
dM = —1-€3T-MP,1 (6)

where RC}! is the attitude matrix of the FLIR camera in the real pose, and MC is the attitude matrix
of the FLIR camera in the measured pose. Obviously, the homography matrix contains the deviation
between the real camera pose and the measured camera pose, which can be calculated by the line
features of synthetic runway and real runway. Furthermore, the synthetic runway features can be
derived by geo-information and inertial measurements, and the real runway features can be extracted
from FLIR images in real-time.

2.2.2. Synthetic Runway Features

In the proposed VINS, a FLIR camera and an IMU are installed on the aircraft. As shown in
Figure 4, these reference frames obey the right-hand rule in this paper.

Figure 4. Reference frames and runway model

{E} is the Earth-centered earth fixed (ECEF) reference frame, and a point f in {E} is £ Pre 3.
{G} denotes the geographic reference frame, any point f in {G} is “P;. {B} represents the body
reference frame. Its origin O is at the center of IMU, X3 axis points to the head, Yp axis points toward
the right, Zp axis is upward. A point f in {B} denotes BPf € R3. {C} is the camera reference frame
with the origin €O at the camera optical center. The Zc axis coincides with the camera principle axis
and points to the forward direction. The X axis points to the column scan direction, while the Y¢ axis
faces to the row scan direction. A point f in {C} is CPf. {P} denotes the pixel reference frame with
its origin YO located in the upper-left of image plane. The u— and v— axes in { P} point to the right
and downward directions. A point f in {P} denotes " Pr e R2. The runway features in the synthetic
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image are derived by the runway geographic information and the measured pose of IMU. This vision
projection process involves five coordinate transformations as follows:

(1) Transformation between geodetic and Cartesian coordinates in the ECEF reference frame

The geodetic coordinate that contains longitude L;, latitude A; and ellipsoidal height h; of any
point can be transformed to the Cartesian coordinate in the ECEF reference frame by the following
equation:

T
Ep, — [ (Ry + hi)-cosLi-cosA;,  (Ry+hi)-cosLi-sind;, ((1—e?)-Ry+h)-sinL; } 7)

where R, is the radius of curvature in the prime vertical, and e is the first eccentricity of the Earth.
(2) From {E} to {G}

Any known point in the ECEF can be projected into the geographic coordinate system with the
IMU center as its origin:

—sinL;-cosA;, —sinL,;-sinA; cosL,
GPf = —sin A, cos A, 0 ~(EPf —EPa) 8)
—cosLy-cosA, —cosL,-sinA, —sinL,

where EP '+ denotes the Cartesian coordinates of any point f on the runway surface, Ep, represents the
Cartesian coordinates of the IMU. In order to facilitate the coordinate transformation, the geographic
coordinate system {G} is selected as the navigation coordinate system {N}.

(3) From {N} to {B}

The navigation coordinate system {N} has the same origin with the body coordinate system {B},
the former rotates yaw-pitch-roll angle round Xy — Yy — Zy axis to the latter in sequence, as follows:

PPy =T NPy )
where Cz denotes the attitude matrix.

(4) From {B} to {C}

The rigid connection between aircraft body and camera contains a relative rotation R§ and
translation T§ that has been accurately calibrated before flight:

“P; =R§-PP +Tf (10)

(5) From {C} to {P}

According to the pinhole imaging model [42], the homogeneous coordinate projection of any
point in the pixel coordinate system is:

1 1/dx s up f 00
PPf:Z 0 1/dy v |-| 0 f 0 |CPf (11)
0 0 1 0 0 1

where Z, is the normalization coefficient, dx and dy represent the pixel sizes in image u and v axes
respectively, (1, vg) are the coordinates of the principal point, s is the skew parameter, and f is the
focal length of the FLIR camera.
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Equations (10)—(14) give a complete transformation from the runway plane to the pixel plane of
airborne FLIR camera, as shown in Figure 5. Therefore, a marking point P ¢ on the airport runway
can be projected onto the pixel plane as a point ” Pre R2.

LA, C; R¢.T¢ K

m?2=m

| ! } !

E

P Eq(8 Eq.(9 Eq.(10) . Eq(ll

o Eq®) _xp 4-9) . ip, q.( )=‘Pf q.(11) . P,
EP S / ! ;

a

Figure 5. Projection of features in synthetic image.

Line features of airport runway can be generated by the projection model combining IMU pose
and runway geo-information. Consequently, the pixel coordinate of line features can be described as:

T
e = [ 1, =(re=r)/(cs—ct), (s —re)/(es — )i =11 | (12)

T
where P P, = { s Cs } is the pixel coordinate projected from the starting point £P;, PP, =

T
{ e Ct } is the pixel coordinate projected from the terminal point £ P;.

2.2.3. Real Runway Features

Visible images have high spatial resolution and rich texture details, but these images can be easily
influenced by severe conditions, such as poor illumination, fog, and other effects of bad weather. Visible
images capture reflected light, whereas infrared images capture thermal radiation. In general, infrared
images are resistant to these disturbances. In the present paper, we adopt the SWIR camera to capture
FLIR images with important airfield features in low visibility. However, infrared images typically have
defects of low resolution and poor texture [31]. Existing runway detection algorithms [32-34] cannot
satisfy the requirements of robustness and accuracy in airborne extract runway features from FLIR
images accurately and robustly. Improvements have been made on the basis of our recently proposed
method [35]. In the presented paper, the detection result of the previous image is used as the prior
knowledge of the next image to detect and extract four runway edges instead of left and right edges
from the FLIR image, as shown in Figure 6.

This improved method adopts a coarse-to-fine hierarchical idea in which the runway region of
interest (ROI) is preliminarily estimated in the FLIR image and the runway edges are finely extracted
from the ROI. At the coarse layer, the runway ROI can be calculated by the aircraft pose parameters
and airport geo-information in the first few frames. Then, the detected runway is used as the prior
knowledge of the next image. Meanwhile, considering the errors of aircraft pose parameters, the
runway ROI based on special confidence interval can be estimated. The higher the confidence level is,
the larger the runway ROI will be. Therefore, surrounding useless objects and complex background
texture can be excluded from ROI so as to reduce interference and image processing time. Especially
the errors transfer equations of vision projection model can be given as follows:

T
Ar=J,% withx = | AL, AA, Ah Ap A9 A¢ | (13)

Ac =] % (14)

where Ar is the error of pixel row and Ac is the error of pixel column. J, is the Jacobian of row pixel r
with respect to X, and J,. is the Jacobian of column pixel c with respect to X. AL, AAg, Ahy, A, AB, and
A¢ are the measurement deviations of longitude L,, latitude A,, ellipsoidal height h,, yaw ¢, pitch 6,
and roll ¢ of the IMU respectively.
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Figure 6. Real Runway Detection: the black solid rectangle is the runway ROI, the red lines are
the extracted line segments, the blue quadrangle is the synthetic runway contour, the black dashed
rectangles are the neighborhoods of runway edges, and the green quadrangle is the fitted runway edge.

At the fine layer, EDLines detector [43] is used to extract straight line segments from ROI, then
fragmented line segments generated by EDLines are linked into complete runway edge lines based
on the morphology of synthetic runway in the ROL Due to the less texture and low resolution of the
FLIR image, the detected edges are divided into small segments and scattered in the ROI disorderly.
However, each synthetic runway line has a neighborhood which is determined by the pixel errors
(r—=Ar <7 <r+Ar,c—Ac < ¢é < c+ Ac) of its endpoints. If one of the fragmented line segments
locates in the neighborhood of any synthetic runway line and the angle between them is less than 3°,
it belongs to the set of the synthetic runway line candidates. Therefore, in the ROI four sets of lines
are extracted from the detected line segments individually, and other lines are abandoned. In view of
these facts, our method calculates the weight of each line segments according to its length and width.
In each set, a number of points are randomly selected from these small line segments according to the
line weight value. Obviously, the large weight line segment contributes greatly to the fitting of the line
segments. Finally, each set of the line segments can be fitted into an edge line by using the RANSAC
method. The detection and extraction results of runway features are given in Section 3.2.

2.3. Visual-Inertial Navigation

The UKF adopts a deterministic sampling technique to estimate the state and covariance of the
non-linear models directly. Compared with the EKF, the UKF can predict the state of the non-linear
system more accurately rather than calculate the Jacobian and Hessian matrices of the process and
measurement models. However, the UKF need calculate the square root of state covariance matrix
during sigma points update, it may occasionally generate a negative definite state covariance matrix
which will cause the program to abort. The SR-UKF requires less numerical computations and
has more accuracy by using a Cholesky factorization of the error covariance matrix in propagation
directly [44]. The proposed visual-inertial navigation approach adopts SR-UKEF to integrate nonlinear
visual observation and inertial measurements to estimate aircraft motion.

2.3.1. Process Modeling

Firstly, we define the system state as:

xE=1| T ovl ospT T VT (15)
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where P € R3, ov" € R3 and Jp” € R° are the attitude, velocity and position errors of INS
respectively. £” € 3 denotes the gyroscope drift, V"' € R? represents the accelerometer bias. Then
the continuous-time system process model is given by:

X(£) = A()x() + w(t) (16)
03x3  Izxz 03x3 Osxz Oszx3
[fux] 03x3 03x3 0343 b

A= | 03x3 03x3 03x3 —Cj 0343 (17)

03x3 03x3 03x3 0O3x3 0O3x3
03x3 03x3 03x3 0O3x3 O3x3

T
w= [ e V" O1x3 wg wg } (18)
Considering the discrete-time, the model can be written as follows:
X = ®p/p—1Xk—1 + Wi—1 (19)

b
ﬁk—l A(t)dt

q)k/kfl =e =~ EA(tkfl)At ~I+ A(fkfl)At, with At = te —teq (20)

2.3.2. Vision Measurement Model

Because the homography matrix contains the deviation of aircraft pose, four groups of possible
solutions can be obtained by decomposing the homography matrix according to the traditional
method [40,41], and then a set of solutions which are closest to the true value, i.e., the deviation of
aircraft pose, can be selected by prior knowledge as UKF measurement. However, the homography
matrix decomposition not only increases computation, but also introduces computation errors. In this
paper, the measured homography matrix is transformed into one-dimensional column vector, which is
used as visual measurement to participate in UKF.

Suppose that I:I}{A € R and HY;, € 133 are the measurement and the estimation of the
homography, then ﬂRM and HY, can be converted into two column vectors vecﬂRM € %’ and vecHY, €
R respectively. Considering the measurement noises of the homography I:IR{A € R3*3, the nonlinear
vision measurement model is formalized as:

vecﬂRM = vecHlf/I + Viiir (21)

where v flir € R is assumed to be a zero-mean Gaussian noise.
NET .
(1) Hy, Calculation

The homography I:IZI\{/I € R3*3 can be calculated by the feature matching between synthetic images
and real images, which is described in Section 2.3.2. The detailed algorithm for homography calculation
refers to [42] which gives the transformation rule for lines. A line transforms as:

e = (A) " lu 22)

where (Ig, Ijr) is a line pair between the synthetic image and the infrared image. The main line features
include the four edges of runway at least that support the calculation of the homography with eight
degrees of freedom.

2) HRM Estimation
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M Cg is the estimated attitude matrix from the body frame to the navigation frame, and Mp, is the

estimated position of the body, while *C} is the measured attitude matrix, and RP, is the measured
position of the body. According to Equations (2)—(6), HY, can be calculated as follows:

Mch. (RP, — MP,,)-e3T-MC!
{33T.Mp71

HY = RcpMch + (23)

So vecHR; can be expressed as the function of attitude error " and position error 6P" through the
conversion HRM — UecHRM.

2.3.3. Other Observations

Besides the above visual measurements, the proposed landing navigation can integrate with other
common observations such as air pressure height and radio altitude. These measurement models can
be written as follows:

flimu - Itlhpr =oh+ Ohpr = Chpr')_( + Uhpr (24)
I:limu - I:lmlt = 0h + vyt = CrapX + Uy (25)
Cipr = Cratr = [ 01x3 01x3 €37 01x3 O1x3 J) g5 (26)

where £, is theA altitude measured by IMU, fzhpr indicates the air pressure height measured by the
barometer, and h,,; represents the radio altimeter. vy, and v,4; are all assumed to be zero-mean
Gaussian white noise. By combining FLIR vision, air pressure height and radio altimeter, the nonlinear
measurement model is presented as:

z(t) = C(x) + o(t) (27)
veclflf/{ vecHY, Vi

z(t) = }Alimu - }Alhpr , C(x) = | oh o(t) = Uhpr (28)
himu - hrult oh Oralt

The multi-source information fusion framework based on SR_UKF consists of the process model
and measurement model, which realizes the integration of inertial measurements, infrared image,
airport geo-reference, air data and radio altitude.

2.4. Observability

Observability is an inherent characteristic of the proposed VINS; it provides an understanding
of how well states of a system can be inferred from the system output measurements. Recently
there has been many works in studying the observability of VINSs [36-38]. We apply the non-linear
observability analysis proposed by Herman and Krener in [36] and refer to the work of Kelly [37] and
Weiss [38] for details about how to apply this method to a system similar to ours. In the following,
the observability analysis of the core system is established by studying the observability matrix rank
based on Lie derivatives.

2.4.1. Nonlinear Observability

Considering the state space as an infinitely smooth manifold X of dimension 7, the nonlinear
system is described by the following model:

X= Zf:() £ (x)u; 29
{ y =h(x) )

where x € R" is the state vector, u; € ®,i = 0--- p denotes the control input, uyp = 1, and y =
[y1,--- ,ym]" € R™ is the measurement vector with y, = h(x),k = 1,- - - ,m. The zeroth-order Lie
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derivative is the function itself, i.e., L’h(x) = h(x). The first-order Lie derivative of h with respect to
f;atx € Xis:

Leh(x) = Veh(x) = Wfi (x) (30)
The recursive Lie derivative is defined as:
dL¢h(x)
LgLeh(x) = Tfj(X) (31)
The k-th derivative of h along f; is:
L¢ 'h(x)
fi
LEh(x) = ———fi(x) (32)

ox
Based on the preceding expression for the Lie derivative, the observability matrix is defined as:

[ VLh(x)

VL}h(x)
o=|: (33)
VLE...f].h(X)

If the observability matrix O is full rank, the system is locally weakly observable.

2.4.2. Observability Analysis

In order to reveal the observability of our proposed system, we use the motion state instead
of the state errors. The state errors are approximations where second and higher order terms are
omitted under the assumption of a small error state [38]. However, the observability analysis on the
full nonlinear system prevents information loss.

First, we define the system state vector of the core system as follows:

T
X(t):[qu VnT PnT bgT baT (34)

Then the nonlinear kinematic equations of the core system for computing the Lie derivatives is
rearranged as:

a —0.52(q!')bg 0.52(q) 0353
Vi §—C(ap)ba 033 C(q)
?n =1 Vu + | O3x3 Wy + | O3x3 |am = fo + fHawy, + fhay (35)
b, 031 03x3 03x3
b, 031 O3x3 03x3

where C(q}!) is the rotational matrix corresponding to the quaternion q, Z(q) is the quaternion
multiplication matrix for the quaternion of rotation q with q = 0.5Z(q)w, w,, denotes the angular
velocity vector, ay, is the accelerate vector.

A well-known result that we will use in the observability analysis of (31) is the following: when
four and more known features are detected in FLIR image frame, the infrared camera pose is observable.
According to Equation (2), the measurements can be summarized as:

hy = C(q}')-Ro + Ro-p,, N, T /dy — Tg (36)
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where Ry = SVC’,Jl, pPo =P,y Ny = —1-Rp-e3,d;, = —1~e3T~p0, and Ty = RO-pO-NnT/dn. Furthermore,
we enforce the unit-quaternion constraints by employing the following additional measurement
equation:

hy = (qf)"q) =1 (37)

(1) Zeroth-Order Lie Derivatives: Define the zeroth-order Lie derivative of h; and hy, which are
simply the measurement functions themselves, i.e.,:

L°h; = C(q}})-Ro + Ro-p, "N, /dy — T (38)
L°hy = (q;)"-q} (39)
Their gradients are:
VL’h = { T1(q;) O3x3 Di(p,)/dn 03x3 03x3 } (40)
Vithe = | 2(q))" O3 Osxs O3z Oses | (41)
oC(q} ) Ry (R 'Py,'NnT
where Iy (qf) = "SGR p, p,) = 2RopuNel),
(2) First-Order Lie Derivatives: The first-order Lie derivatives of h; and h, with respect to fj are
computed as (34):
Lg hy = VLOhyfy = —0.5T1(q})E(q} )bg + D1 (p,)v/dy (42)
Lihe = —(q) "E(q)bg (43)
Their gradients are:
VLighi = { I2(qy) Di(p,)/dn Da(p,)/dn —05T1(q;)ZE(q)) Osx3 } (44)
T~
Viih = | T3(q)) Oss Oss —(af)"E(q) Oas | (45)
o(L! ny 9Ll hy 9(L} hy
where I'»(q}!) = (afgg), Dy (p,) = <afgﬂ ),Fs(qi,’) = <afq°g )

(3) Second-Order Lie Derivatives: The second-order Lie derivative of h; with respect to fy is
computed as (36):

Lghy = VL'hfy = —0.5T2(q})E(qp)bg + D1(p,,) (g — C(qj)ba) /dn + Da(p,)V/dn  (46)

The gradient is:

Viihi = | Tu(qf) S(vi) Ds(p,) —05T2(qf)E(q}) —Di(p,)C(af)/dn |  47)
(L% h o(L2 hy o(L2 hy
where 1"4(qZ) = (afgzzl)/ S(vn) = 4<afv0n )/DS(Pn) = <af}fn )

We obtain the observability matrix O by stacking the gradient matrices above:
VL' I (qZ% 03x3 D1(p,,)/dn 03x3 03x3
VL(l)hz 2(qyp) 03x3 03x3 03x3 O3x3

O= | VLghi | = | Ta(ap) Di(p,)/ds Da(p,)/du —0ST:(q7)5(a}) 05:3 (48)

VL}th I'3(q}) 03x3 03x3 —(a}) E(q) O3x3
VL Ty(qy)  S(va) Ds(p,)  —05T2(q;)Z(q;) —Di(p,)C(qp)/dn

where the complete matrix has size 5 x 5. Considering the system state of aerial vehicle in landing
phase, the attitude is relatively stable without any complex maneuver, i.e., pitch 6 € [2°,4°], roll
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¢ € L_—lo, 1‘:1], and angle velocity vector w,, is minor. In the observability matrix O, these matrices
(qa}) ", (q}) E(q), and D1(p,,) are full rank. After applying block Gaussian elimination to removing
any rows of the matrix O that consist entirely of zeros, a row-reduced form of the matrix O having the
same rank is given by:

03x3 03x3 I3xz 0O3x3 O3x3

I3xz 03x3 03x3 O3x3 O3x3

03x3 Isxz O3x3 O3z Osxs (49)

03x3 03x3 03x3 I3x3 O3x3

03x3 03x3 03x3 O3x3 Isx3

which has full column rank, so the proposed system is proven to be observable.

3. Experimental Section and Discussion

In this section, we designed a flight data acquisition platform and adopted real flight data to
verify the accuracy and robustness of the proposed method.

3.1. Experiments Preparation

The flight data was gathered at a general aviation airport (Pucheng, China) under different weather
conditions such as fog, haze, cloud and sunny. As shown in Figure 7, the general aircraft (Y-12F)
was equipped with an image sensing suite, an INS (Applanix AV510), a flight parameter recorder
(FPR, AMPEX miniR 700), a flight video recorder (FVR, VM-4), a barometer (BARO, XSC-6E) and a
radio altimeter (RALT, Honeywell KRA405b). An image sensing suite (ISS) mounted on the aircraft
radome contains a SWIR camera (NIP PHK03M100CSWO0) and a visible light camera. Furthermore, an
INS, FPR, and FVR were installed on the deck of aircraft cabin. The flight data mainly included FLIR
video (frame rate 24 Hz), inertial measurements (update 100 Hz), air pressure height (update 16 Hz)
and radio altimeter (update 20 Hz) which were labeled by recorders with time stamp to synchronize
measurements. In addition, a DGPS ground station (Trimble R5) was used for DGPS-inertial integration
navigation to provide the ground truth.

To get accurate motion estimations, precise FLIR camera parameters and camera/INS relative pose
are needed. Classical calibration method based on chessboard pattern [45] is adopted to obtain intrinsic
parameters of the FLIR camera. The world coordinates of FLIR camera and INS are individually
measured by an electronic total station, then the FLIR camera/INS relative pose can be calculated
through vector relation between them [10]. The calibrated parameters of INS and FLIR camera are
shown in Table 1.

Table 1. The calibrated parameters of INS and FLIR camera.

pixel size 0.025 pm
focal length fx =1010.7 pixel, f, = 1009.5 pixel
FLIR Camera principal point ug = 316.376 pixel, vy = 237.038 pixel
Intrinsic Parameters radial distortion k1 = —0.3408, k2 = 0.1238
spectral response 0.9-1.7 pm
CCD resolution 640 x 512
field of view 20°(H) x 30°(V)
FLIR Camera position [—0.002, 0.094, —12.217] m
Installation attitude [—0.0181, —0.0824, —0.0049] rad
INS Installation position [0.0704, —0.4742, —7.2863] m

attitude [0.0789, 0.0003, —0.0088] rad
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. —q—
(c)

Figure 7. The flight data acquisition platform: (a) ISS; (b) ISS installation; (c) aircraft landing; (d)
instruments for flight data acquisition; (¢) DGPS ground station.

The flight data is stored in a flight data simulator (FDS), which can play back the whole flight
process for the algorithm design and verification. Moreover, the geographic data of the airport and
its surrounding has been surveyed accurately. In this paper, experiments are run on an embedded
computer board (Nvidia Jetson TX2) with six ARM CPU cores, 256 Pascal GPU cores, 8 GB memory.
The block diagram of the experimental platform is shown in Figure 8. The embedded computer receives
the airborne sensors data from the FDS and simultaneously reads the airport geographic information
stored in the solid-state disk (SSD), then outputs the aircraft motion states through multi-source
information fusion.

Inertial data (100 Hz)

GPS data (20 Hz)

Air data (16 Hz)
Flight Date Radio Altimeter (16 Hz) Es-timate d
Simulator Embedded motion states

—>
(Flight Data & Computer TX-2
FLIR Video) Infrared video (24 fps)
Airport

geo-information

SSDh
(Terrain Database)

Figure 8. The block diagram of the experimental platform.
3.2. Runway Detection Experiment

An ideal line segment detector could process any images regardless of its orientation or size,
and extract line segments in real-time without parameters tuning. Among existing algorithms,
EDLines detector [19] and Line Segments Detector (LSD) [20] can satisfy these requirements. However,
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EDLines runs up to 11 times faster than LSD [19], which makes it more suitable for real-time runway
detection. As shown in Figure 9, line segments are extracted from the ROI by LSD and EDLines
detector, respectively.

(b)
Figure 9. Line Segments Extraction from ROI: (a) EDLines: 173 lines, 3.1 ms; (b) LSD: 213 lines, 17.1 ms.

In this paper, a complete landing process in fog is used for verifying the proposed algorithm.
Experimental results contain two parts: runway detection and motion estimation. Some runway
detection results are shown in Figure 10, From top to bottom the three rows represent three typical
scenarios captured at flight altitudes of 200 ft, 100 ft and 60 ft, and the three columns from left to right
denote the coarse layer, the fine layer, and the final results, respectively.

At the coarse layer, the ROI is marked in red at the left column. At the fine layer of our improved
method, some line segments in ROI are detected and highlighted in red, and the trapezoid of runway
contour is labeled in green at the middle column. These line segments are fitted into the final runway
features which are shown in red at the right column. In addition, the statistics of runway detection
listed in Table 2 show that the ratio of pixels in ROI to total pixels in CCD is less than 25%. Obviously,
the proposed method is faster than others [33,34] which process the whole image, and its robustness is
significantly improved.

Table 2. The statistics of the runway detection at three typical flight altitude.

Scenarios Flight Height (Ft) ROI (pixels) ROI/CCD Ratio Lines
1 200 49 x 77 0.0115 16
2 100 106 x 214 0.0692 58

3 60 164 x 488 0.2442 173
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(a) ---
! ---
(C) ---

Figure 10. Runway detection at typical flight height: (a) 200 ft; (b) 100 ft; (c) 60 ft.

3.3. Motion Estimation Experiment

As shown in Figure 11, the approach and landing trajectories from the two landing navigation
methods are presented. The red curve represents INS/DGPS data, and the green is the motion
estimation of the proposed method. The blue pattern denotes the airport runway area. The aircraft
descended from 500 feet to 47 feet, through three typical altitudes of 200 feet, 100 feet and 60 feet,
flying for 59.45 s. Five recorded time points are marked in this figure. In our experiments, the results
of INS/DGPS integration are selected as ground truth.

The proposed algorithm is compared with three other methods such as INS/GPS integration [46],
EPnP based method [26] and INS/GPS/BARO/RALT integration [47]. To be consistent with the
specifications of the sensor manufactures, the comparison results of position errors, velocity errors,
and attitude errors are shown in Figure 12. AX,, AX,;, and AX,, denote the measurement errors of
the aircraft position in the eastward, northward, and upward, respectively. Ay, A8, and A¢ represent
the measurement errors of the aircraft yaw, pitch, and roll separately. AV,, AV, and AV, are the east,
north, and azimuth measurement errors of the aircraft velocity severally. As shown in Figure 12, the
motion errors of INS/GPS/BARO/RALT integration are obviously larger than those of the others,
while the motion errors of the proposed algorithm are smaller than those of the others. Because the
EPnP-based algorithm adopts pure image features to calculate the position and orientation of the
camera relative to the runway, the accuracy is greatly limited by the relative distance between the
camera and the runway. It is difficult to accurately extract the features of the runway terminal in the
500-200 feet stage. Besides, the errors effect of the runway features in the 100-47 feet stage is greater
due to the high ratio of runway features to image. The accuracy of motion estimation is higher only in
the 200-100 feet stage.
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Figure 12. Errors of motion estimation: (a) position errors, (b) attitude errors, and (c) velocity errors.

Meanwhile, the data update rate is limited by the camera frame rate, which is lower than the INS
update rate. In addition, the accuracy of motion estimation based on INS/GPS/BARO/RALT cannot
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be further improved due to the larger measurement errors of barometer and radio altimeter. However,
this paper improves the existing runway detection algorithm to avoid the problem that the features of
runway terminal are difficult to accurately detect, which can obtain accurate runway features. After
the integration of vision measurements and inertial data, the update rate of motion estimation is also
improved. Even if in low-visibility environments the motion estimations of the proposed method are
still accurate enough, which is benefited from the accurate visual observations. In addition, the RMS
errors of different motion estimation are listed in Table 3. The attitude, velocity and position errors of
INS/GPS/BARO/RALT integration are slightly larger than those of the others, while these errors of
the proposed algorithm are smaller than those of the others.

Table 3. RMS Errors of attitude, velocity and position.

Height = Method (dAeeg) (ﬁi;) (élell;) o) e e @) @ m
A 0.0222 0.0275 0.0275 0.1384 0.2344 0.1180 0.2544 1.0091 0.0638
500200 B 05252 00118 00478 01300 01205 01118 25186 38128 33936
ft C 03686 00345 00808 00980 06693 01159 93157 43762 32143
D 02056 01645 00118  — — 2409 13071 06973
A 0.0133 0.0275 0.0151 0.1096 0.1709 0.0748 0.3938 0.6297 0. 4013
200-100 B 0.5063 0.0151 0.0303 0.0916 0.1164 0.0754 1.9192 3.7881 3.2277
ft C 0.4934 0.0364 0.0650 0.1001 0.4617 0.0780 12.952 8.6355 3.2394
D 0.4415 0.3349 0.0207 — — — 1.5185 0.7632 0.6902

A 00122 00268 00203 00793 01228 00601 04051 08981  0.0531
10060 B 04869 00135 00080 00802 01093 00619 20229 40380 32476
ft C 0.4773 0.0346 0.0375 0.1173 0.3777 0.0631 14.617 10.401 3.3094
D 0.6914 0.5275 0.0304 — — — 2.5647 1.3917 0.7617
A 0.0190 0.0379 0.0131 0.1187 0.1282 0.1189 0.4038 0.8795 0.0567
60-47 B 0.4762 0.0596 0.0141 0.0769 0.1525 0.1221 1.9263 4.1950 3.2373
ft C 0.4703 0.0800 0.0486 0.1390 0.5439 0.1224 18.051 10.948 3.2825
D 0.7734 0.4161 0.0202 — — — 3.3010 1.7121 0.4384

Note: A—INS/FLIR, B—INS/GPS, C—INS/GPS/BARO/RALT, D—EPnP.

Among several flight parameters, the height observation is one of the most important for flight
safety in landing phase. The flight altitude from GPS is usually inaccurate and unreliable, while the
height channel of INS trends to diverges caused by the absence of damping. In general, air pressure
height or radio altitude is adopted to damp the height channel of INS, but their accuracy is too low to
meet the precision landing. The proposed algorithm that absorbs the advantages of vision and inertial
sensors can not only improves the estimation accuracy but also guarantees high update rate.

In Figure 13, the flight height in landing obtained by different methods is represented. The RMS
errors of flight height in the landing phase are shown in Table 4. Radio altimeter and barometer are
not only of low update rate but also of poor accuracy, which is not suitable for landing navigation.

Although INS/GPS mode has high update rate of height data, its accuracy is poor compared
with DGPS/INS. The EPnP-based method has higher accuracy than INS/GPS mode, but EPnP has
lower update rate than INS/GPS mode due to its use of pure vision navigation. Obviously, the height
precision obtained from the proposed INS/FLIR method is the smallest, it can replace INS/DGPS
mode to meet precision landing demands.
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Figure 13. Flight height among 6 modes during landing.
Table 4. RMS Errors of flight height in landing phase, unit (m).
Height INS/FLIR  INS/GPS  INS/GPS/BARO/RALT  EPnP BARO , Radio
Altimeter
500-200 ft 0.0638 3.3936 3.2143 0.6973 3.0746 4.9590
200-100 ft 0.0413 3.2277 3.2394 0.6902 3.6841 4.7333
100-60 ft 0.0531 3.2476 3.3094 0.7617 4.0300 4.1154
6047 ft 0.0567 3.2373 3.2825 0.4384 4.1483 3.6150

3.4. Discussions

The proposed method has high precision up to the DGPS/INS level in low visibility. Firstly, the
homography can be served as an ideal visual observation without error accumulation. Meanwhile,
owing to the improved runway detection method, it can efficiently overcome the defects of infrared
images and smoothly run in a landing scene with large scale and less texture. Compared to ILS and
GPS, our method merely takes advantage of an infrared camera to cooperate with airborne navigation
sensors, e.g., IMUs, to achieve autonomous motion estimation with low cost, robustness and accuracy.
In particular, the accuracy of our method has reached the level of the DGPS/INS for precision approach
and landing.

In the proposed method, the main factors that affect the accuracy of aircraft motion estimation
include sensors calibration errors, terrain database precision, spatiotemporal consistency, and runway
detection quality. The errors can be partially eliminated by strict sensors calibration [10,45], high
precision terrain database and time synchronization [38]. However, the accuracy of runway detection
has a great influence on the proposed method, which can be guaranteed by the algorithm itself. The
size of synthetic runway neighborhood directly affects the accuracy of the fitted straight line features.
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If the neighborhood is too small, the line features will not be found. If the neighborhood is too large,
the interference features will increase significantly. In this paper, the pixel errors (Ar, Ac) are set to be
20, which are trade-off settings.

4. Conclusions and Future Works

The paper proposed a novel visual-inertial navigation method to provide drift-free pose
estimation for fixed-wing aircrafts landing, in which inertial measurements, infrared observations and
geo-information are organically fused in the UKF. In addition, the proposed method has been proven
to be observable by nonlinear observability. Comprehensive experiments with real flight data have
verified the accuracy and robustness of the proposed method.

In the future, there are still some research tasks to do for further improvement. (1) For stronger
adaptability, we will adopt a multispectral image fusion method [48,49] to enhance the sensitivity in
more weather conditions such as rain, snow, or dust. (2) Deep-learning methods [50] can be tried
to detect semantic objects with known geo-references around the runway in infrared images, which
should not only increase the quantity of vision features to improve the system precision, but also
intensify the robustness to detect and recognize different airports. (3) For convenience, the online
technique for calibration of the camera to an inertial system [51,52] can also be used to substitute the
complicated hand-eye calibration.
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