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Abstract: Moving object segmentation is the most fundamental task for many vision-based
applications. In the past decade, it has been performed on the stationary camera, or moving
camera, respectively. In this paper, we show that the moving object segmentation can be addressed
in a unified framework for both type of cameras. The proposed method consists of two stages: (1)
In the first stage, a novel multi-frame homography model is generated to describe the background
motion. Then, the inliers and outliers of that model are classified as background trajectories and
moving object trajectories by the designed cumulative acknowledgment strategy. (2) In the second
stage, a super-pixel-based Markov Random Fields model is used to refine the spatial accuracy of
initial segmentation and obtain final pixel level labeling, which has integrated trajectory classification
information, a dynamic appearance model, and spatial temporal cues. The proposed method
overcomes the limitations of existing object segmentation algorithms and resolves the difference
between stationary and moving cameras. The algorithm is tested on several challenging open datasets.
Experiments show that the proposed method presents significant performance improvement over
state-of-the-art techniques quantitatively and qualitatively.

Keywords: moving object segmentation; motion trajectory; multi-frame homography constraint;
Markov random fields model

1. Introduction

Unsupervised moving object segmentation is a challenging problem for many applications,
such as video semantic analysis, intelligent transportation system, automated video surveillance [1],
and so on. In the unsupervised manner, the algorithm should segment the foreground moving
objects from complex videos automatically, where cluttered backgrounds [2,3], scale diversification,
and motion blurs exist. In a previous study, various unsupervised algorithms have been proposed
to deal with the videos captured by the stationary camera, where the camera does not move and
the scene in the video does not change. Generally speaking, a popular method is in generating a
background model of the scene representation, and then the outliers of that model are treated as
moving objects. In the past decades, a significant number of literatures have been published under the
assumption that the camera is stationary, such as Gaussian Mixture Model used in [4], Codebook Model
used in [5], and Self-Organizing Neural Network Model proposed by Maddalena and Petrosino [6].
However, the captured videos may not be static in many real applications. For example, pan-tilt-zoom
(PTZ) cameras [7,8] have been widely used in modern surveillance systems recently, whose view
can be dynamically controlled by their panning, tilting, and zooming parameters. In addition, the
videos used for sematic analysis are almost captured by the handheld cameras. In such cases, the
background subtraction methods used in the stationary background circumvent cannot be applied
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directly. Therefore, a moving segmentation algorithm, that can solve freely moving cameras, is
necessary. And a unified segmentation framework, for the both types of cameras, also needs to
be present.

1.1. Related Work

Previous methods for moving object segmentation are vast, especially for the stationary camera.
While, our method aims to introduce a segmentation technique for the moving camera, which can
be extended to the stationary camera case automatically. Thus, motion segmentation for the moving
camera is the most related topic to this paper. When the camera is moving, the pixels corresponding to
background do not maintain the same image positions in consecutive frames, which severely make
the traditional video object segmentation complicated. In order to segment the object regions, an
intuitive idea is to estimate the transformation parameters between consecutive images and creating
a difference image [9–11]. By now, most of the printed literatures are aware this approach, and this
it has become widely adopted as it requires less computational cost and memory storage. However,
this approach only returns an incomplete object contour. Another body of work has attempted to
extend stationary background modeling methods for moving cameras. Then, moving objects can be
segmented in a similar way to the fixed camera case. Xue et al. [12] introduced a panoramic Gaussian
Mixture Model, which provides global information for the moving camera’s field of view. Then, each
observed frame is registered to the panoramic background to segment moving objects. However,
there are many limitations of panorama-based methods, such as error accumulation, slow background
adaptation, and so on. Instead of constructing a large panoramic background model, Kim et al. [13]
build a spatio-temporal background model, whose size is same as observed frame. Then, Lucas Kanada
Tracking method [14] is adopted to estimate camera motion between observed frame and background
model, and the background subtraction technology is used to segment moving objects. The limitation
of this method is that the moving camera must keep static at first to generate key frames and initialize
the background model. Using similar strategy, Ferone and Maddalena [15] proposed an extension
method of their self-organizing neural network model [6] to the case of moving cameras. However,
as they stated in the experiments, a hand-made initial background estimate is needed if the video
sequences have no initial static frames for background estimation.

Indeed, both of the above methods use motion and color information between consecutive images
to distinguish between moving objects and background. While, the motion cues [16] accumulated in
the multiple frames are not utilized, the researchers attempted to extract a long term trajectory [17],
which can establish point correspondence between multiple frame images. With these point trajectories,
the differences between moving object trajectories and background trajectories can be measured and
the classification can be implemented. Dey et al. [18] constructs a monocular multi-frame epipolar
constraint, then point trajectories that violate the constraint are regarded as moving objects. However,
their method just segment moving objects from the background at the trajectory level, and the final pixel
level classification is not considered. Thus, the segmentation results tend to be sparse and incomplete.
Ochs and Brox [19] obtain dense segmentation results by combining spectral clustering method and a
mulit-level variational model. Their method, however, incorporates little dynamic appearance and
spatial temporal information for the final labeling, which may show bad performance in complicated
and challenging videos. On the other hand, [20] proposes a matrix factorization method, based on
low rank [21] and group sparsity constraints. Their method is sensitive to incomplete trajectories,
especially when the camera is moving fast. In [22], the authors assume that the background trajectory
is located on the low rank subspace, composed of three basic trajectories [23] under the assumptions of
affine camera model, whereas the foreground trajectory deviates from the subspace. However, this
method is hindered by the following limitations. First, an affine camera model, rather than a more
accurate perspective camera model, is used, thereby resulting in poor segmentation performance for
considerable changes in background depth. Second, this method needs the long term trajectory to be
equal length, which will make part of the image region have no trajectory point. Third, fixed rank
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constraints face difficulty in managing a stationary camera circumvent (at this point, the rank of the
observation matrix for the background trajectory is two [24,25]). Recently, Zhu et al. [26] proposes a
multilayer based framework for online background subtraction for videos captured by moving camera.
While, their method is only adapted to the moving camera only, their method is not stable and sensitive
to parameter selection.

Besides long term trajectory, the frame-to-frame dense optical flow also contains rich motion
information. Using optical flow, Lim et al. [27] proposes an iterative method by dividing the image into
multiple blocks and estimating the background and foreground motion of each block. However, their
method is prone to complex scene and small objects that inhibit the planar scene assumption for each
block. In [28], the authors use a similar strategy, which is based on density propagation techniques of
image block, but their methods are complex and have many free parameters involved. The works
presented in [29,30] attempt to discover key-segments and group them to find the foreground objects
by measuring multi-scale appearance and optical flow. While, their method does not deal with the
moving object segmentation problem, it just output a ranked list of spatio temporal segments likely
to be objects. On the other hand, authors in [31] proposes to segment the prominent moving objects
based on iterative refinement with neighborhood information. Their method relies too much on the
results of bottom-up saliency detection approaches [32], which may not give the desired result since
they are very prone to errors by now. Yang et al. [33] proposes an adversarial contextual model to
segment moving object from the camera. Their method uses the deep neural network to predict the
optical flow in a region and works on a supervised manner.

1.2. Our Contributions

In this paper, we present a unified framework for moving object segmentation from a moving
camera or stationary camera, based on a multi-frame homography constraints. Unlike [20,22], we do
not apply a low-rank model. Instead, we divided the whole video into several overlapped windows,
and generate a multi-frame homography model for the background. This treatment can utilize all the
trajectories in the video, and overcome the aforementioned problems of [20,22]. On the other hand,
unlike [27], we do not assume that the scene is planar or the camera motion is in rotation. The only
requirement is that the object is moving differently from its surrounding background. Therefore,
the proposed method can handle rapidly moving background, arbitrary object motion, non-rigid
deformations, and so on.

Figure 1 shows the graphical abstract of the proposed scheme. The proposed segmentation
algorithm takes a raw video sequence as input, and generates a binary labeling at the pixel level.
It has two major steps: Initial multi-frame homography model for trajectories classification and
final Markov Random Fields model for foreground background labeling. In the first step, a dense
set of trajectories are tracked over all frames. With the dense point trajectories, a novel multi-frame
homography model is proposed to describe the background motion. Then, applying the designed
cumulative acknowledgment method, the inliers and outliers of that model are treated as background
trajectories, and moving object trajectories, respectively. In the second step, a superpixel-based Markov
Random Fields model is built to label motion segments as foreground or background, which has
incorporated spatial temporal smoothness of each superpixel and dynamic appearance of moving
object and background.

The contributions of this paper can be summarized as follows. We introduce a unified framework
for automatic video object segmentation from moving camera or stationary camera by: (1) constructing
a multi-frame homography model that relates adjacent frames in the whole video; (2) designing a
trajectory classification method based on cumulative acknowledgment strategy; (3) incorporating
trajectory classification, dynamic appearance, spatial temporal cues for the final labeling.

The remainder of the paper is organized as follows. In the next section, we introduce the
multi-frame homography model and cumulative acknowledgment strategy for trajectories classification.
Then, the details of proposed foreground-background labeling method are presented in Section 3.
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Section 4 provides the experimental results and comparative study with recent state-of-the-art
techniques. Finally, Section 5 concludes this paper.Sensors 2019, 19, x FOR PEER REVIEW 4 of 19 
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Figure 1. The framework. Our method takes a raw video as input, and produces a binary labeling as
the output. Two major steps are initial multi-frame homography model for trajectories classification
(left) and final Markov random fields model for foreground background labeling (right).

2. Trajectory Classification Based on Multi-Frame Homography Model

We use an off-the-shelf dense point tracker [34] to produce the trajectories. Compared to traditional
feature point trackers, this method can provide arbitrarily dense trajectories, so it allows labels to be
assigned more densely. We assume that the calculated trajectories are expressed as,

Λ = {Λi, i = 1, . . . , n}, Λi =
{
xl

i, l = ti, . . . , Ti
}

(1)

where n is the total number of produced trajectories; ti and Ti are the initial and end frame numbers,
respectively, of the trajectory Λi; and xl

i represents the homogeneous coordinates of trajectory Λi
on the frame l(ti ≤ l ≤ T). In general, the produced trajectories can be divided into two categories:
the background trajectories generated by the motion of the camera, and the foreground trajectories
generated by the moving object. Given the tracked trajectories, our objective is to estimate the
foreground support as well as the underlying background ones.

2.1. Homography Constraint

In view of the smooth camera movement in a typical video sequence, the change of camera center
in the adjacent frames is small, so that the background motion can be approximated by the homography
constraint [35,36].

x′ ≈ Hx (2)

The aforementioned constraints can be understood as follows. For a video sequence acquired by a
handheld camera, the background of the adjacent frames can approximately satisfy the homography
constraints. For a video sequence acquired by a PTZ camera, since the optical center is assumed
to remain unchanged, so the background points of adjacent frames strictly satisfy the homography
constraints. While, for a video sequence acquired by a stationary camera, the homography model
is degraded to the identity matrix. Thus, the homography model can be used to establish the
background motion constraint of adjacent frames for a plurality of video sequences (stationary camera
or moving camera).
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2.2. Trajectory Classification Method

With the above homography constraint, we propose a novel trajectory classification method.
Firstly, we divided the input video temporally into T-t overlapping windows of T frames with the time
interval t. Subsequently, the algorithm estimates the homography constraint of each window separately.
Thus, we could obtain the homography matrix set of all windows, which is a rich description of the
background motion. Finally, to obtain an accurate classification of tracked trajectories, we propose a
mechanism to combine the results of a consecutive homography matrix to analyze the accumulative
motion properties of each trajectory.

As illustrated in Figure 2, two frames with interval t are regarded as adjacent frames. That is,
for a video sequence with T frames, the corresponding multi-frame homography matrices are
Hmulti =

{
Hk, k = 1, . . . , T − t

}
. To calculate the homography matrix Hk of each window, we applied the

Random Sample Consensus (RANSAC) framework [37] to compute the best estimate of corresponding
points that satisfy the homography model (inlier points). To improve the accuracy of homography
matrix estimation, we used all the inlier points to re-estimate the homography constraint matrix after
performing the RANSAC calculation. The matrix was then used to obtain a new set of inlier points.
This method was iterated several times until the number of inlier points remains the same.
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Figure 2. Illustration for the temporally partition of the input video.

Obviously, the framework in relation to above homography matrix estimation easily
demonstrations the ability to classify the long-term trajectories on each window by measuring the
projection error. However, because of the irregularity of the object movement, the motion amplitude
of the object may be small in some windows (such as the object is keeping still for a short period
of time). If we perform the trajectories classification on each window, respectively, and merge the
classification of successive windows to yield the final aggregate result, the classification accuracy will
be low. Thus, in order to make use of the full motion cues of a certain trajectory in its life cycle, we
propose a cumulative acknowledgment strategy to distinguish the properties of each trajectory. More
precisely, we assumed that the first and last frame of the trajectory Λi are ti, and Ti, respectively. Then,
based on our temporal partition illustrated in Figure 2, the corresponding homography matrix set of
trajectory Λi is:

Hmulti
i =

{
Hk, k = ti, . . . , Ti − t

}
(3)

We define the average projection error of trajectory Λi as:

εi =
1

Ti − t− ti + 1

Ti−t∑
k=ti

‖xk+t
i −Hkxk

i ‖ (4)
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In general, if Λi is the background trajectory, the corresponding average projection error εi should
be small. Conversely, if Λi is the trajectory of moving object, εi should be larger. So the trajectories can
be well distinguished by the value of εi. In an ideal case, the trajectory can generally be classified by
setting an appropriate threshold. However, there are often errors in the actual trajectory extraction.
For example, some trajectory points drift often occurs in the boundary of the background and the
moving object, which will result in some erroneous trajectories. According to our observation, the
average projection error of these erroneous trajectories is often between the background trajectories
and the moving object trajectories. Therefore, a double threshold method is proposed to remove the
effect of these erroneous trajectories, as shown in the Equation (5):

Λi =


Background trajectory i f εi ≤ τL

Foreground trajectory i f εi ≥ τH

Noise trajectory otherwise

(5)

To further improve the trajectory classification, we use motion boundary to refine the spatial
accuracy. Firstly, we compute the optical flow vector between pairs of subsequent frames. Let ft(i, j)

be the optical flow vector at image position (i, j) of the t-th frame, ‖
→

∇ ft(i, j)‖ be the corresponding
gradient magnitude of optical flow. Then, we can define a strength ratio of motion boundary bt(i, j):

bt(i, j) = 1− exp
(
−λ‖

→

∇ ft(i, j)‖
)

(6)

where λ is a parameter controlling bt(i, j) ∈ [0, 1]. The image points whose bt(i, j) is close to 1 (we set
0.8 in our experiments) are regarded as the physical object boundaries b̂t. Finally, the corresponding
point of trajectory Λi on the t-th frame is assigned the foreground/background label by the point in
polygon problem.

Step1) Shoot 8 rays spaced by 45 degrees for the image point of trajectory Λi on the t-th frame.
Step2) Calculate the intersection number of each ray and the estimated object boundaries b̂t.

For each ray, if its intersection number is odd (or even), it can cast a vote of foreground (or
background) label.

Step3) Assign foreground/background labels to image point of trajectory Λi on the t-th frame by
the majority rule.

3. Foreground Background Labeling Based on Markov Random Fields Model

Motion information alone is often insufficient for acquiring the pixel level segmentation, since
the tracked trajectories tend to be sparse relative to the image pixels. Indeed, only about 3% to 6% of
image pixels are labeled as background or foreground by the proposed trajectory classification method.
This is illustrated in Figure 3a, where the foreground and background trajectories are shown by the
purple, and blue colors, respectively. To obtain a dense video segmentation, we propose an extension of
graph cut [38,39] with per frame superpixel as node and convert trajectories classification to superpixels
labeling. The superpixel can be defined as a group of pixels that share common characteristics (like
pixel color). Using superpixels to deal with the dense video segmentation problem can ensure the
pixels with similar color assign the same label while pixels with difference color assign opposite labels.
Thus, it is more suitable for a basic unit of moving object segmentation problem, compared to the
pixel-based method. Figure 3b shows the final segmentation result, where the boundary between the
superpixels is expressed in blue line, and the background regions are darkened while the foreground
ones are highlighted by the yellow color.

Specifically, we used SLIC algorithm [41,42] to oversegment each frame to obtain a set of
superpixels. Let<t denotes the superpixel set of the t-th frame. Each superpixel ri

t ∈ <t can correspond
to a label lit ∈ {0, 1}, where 0 denotes the background and 1 denotes the foreground. Thus, we formulated
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the moving object segmentation as superpixel labeling problem by construct a spatial temporal MRF
model with the superpixel set as node. And we designed an energy function to estimate the labeling,

E(L) =
∑
t,i

1∑
c=0

Ac
t

(
ri

t

)
+

∑
t,i

∑
r j
t∈ψ(r

i
t)

Si, j
t

(
ri

t, r j
t

)
+

∑
t,i

∑
r j
t+1∈ζ(r

i
t)

Ti, j
t

(
ri

t, r j
t+1

)
(7)

where L =
{
lit
}
t,i

denotes the output labeling of all the superpixels, ψ
(
ri

t

)
and ζ

(
ri

t

)
denote the spatial

and temporal neighborhood set of the superpixel ri
t, Ac

t(·), Si, j
t (·) and Ti, j

t (·) denote the unary potential,
spatial smoothness potential, and temporal smoothness potential, respectively.Sensors 2019, 19, x FOR PEER REVIEW 7 of 19 
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Figure 3. Example of initial trajectory classification and final pixel labeling. The selected image is from
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Ac
t(·) reflects the similarity that a superpixel is background or foreground according to the

trajectory classification result obtained in the previous section. To get a better segmentation result,
we design a dynamic appearance model of the foreground and background. Firstly, we calculate
a coefficient pi

t according to the normalized histogram of foreground trajectory labels that intersect
the interior of superpixel ri

t. The larger the coefficient pi
t, the more likely superpixel ri

t belongs to the
foreground object, and vice versa. Thus, we can compare the coefficient pi

t with two thresholds and
classify the superpixels into foreground and background preliminarily.

ri
t =

foreground superpixels i f pi
t ≥ T1

background superpixels i f pi
t ≤ T2

(8)

Then, we used a low-dimensional vector consisting of the centroid coordinate and average
RGB color, to represent each superpixel. At each frame, t, we estimated the dynamic appearance
model, including two Gaussian Mixture Models (g1

t denotes the foreground model and g0
t denote the

background model) based on the initial superpixels classification results. Considering that the larger
the coefficient pi

t, the more devoting to the foreground appearance model g1
t , we incorporated a weight

to quantity this contribution. More precisely, the weight of each foreground superpixel is expressed as:

λi
t =

pi
t∑

i
pi

t

(9)

While the estimation of the background appearance model g0
t is analogous, with the weight λi

t
replaced by:

λi
t =

pi
t∑

i

(
1− pi

t

) (10)
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Finally, after estimating the foreground and background appearance models, the unary potential
Ac

t

(
ri

t

)
is the log probability of superpixel ri

t with label lit under the appropriate model (i.e., the
foreground model g1

t if lit = 1 and vice versa).

Ac
t

(
ri

t

)
= − log

(
gc

t

(
ri

t

))
· δ

(
lit, c

)
(11)

where δ(·) is the Kronecker delta function. The above equation shows that if a superpixel is given a
label, which is more consistent with its appearance model, its unary potential will be small, so that the
whole energy function are ensured to be minimum.

The pairwise potentials are used to encode the continuity of the adjacent superpixels, and can
be divided into two types: spatial smoothness potential and temporal smoothness potential. For the
spatial smoothness, we consider two superpixels to be spatially connected if they are adjacent and in
the same frame. Then, we define the pairwise cost as,

Si, j
t

(
ri

t, r j
t

)
=

(
1− δ

(
lit, l j

t

))
·

1

‖ci
t − c j

t‖
·

1

e‖h
i
t−h j

t‖
(12)

where r j
t ∈ ψ

(
ri

t

)
, ‖ci

t − c j
t‖ is the Euclidean distance between the centroid coordinate of two superpixels

and e‖h
i
t−h j

t‖ is the difference between the average color of two superpixels. For the temporal smoothness,
we consider two superpixels to be temporally connected if they are in subsequent frames and there
is at least one pixel after optical flow compensation [43,44]. We define r j

t+1 ∈ ζ
(
ri

t

)
as the temporal

neighborhood of superpixel ri
t, and we assume Q

(
ri

t, r j
t+1

)
to be the overlap area of ri

t moving into r j
t+1

after the optical flow compensation. Then, we define the pairwise cost as:

Ti, j
t

(
ri

t, r j
t+1

)
=

(
1− δ

(
lit, l j

t+1

))
· Q

(
ri

t, r j
t+1

)
·

1

e‖h
i
t−h j

t+1‖
(13)

After establishing the potential function of each superpixel, we used a graph cut algorithm to
solve the energy minimization problem, and get the optimal classification result of each superpixel. In
summary, all steps of the proposed video object segmentation algorithm are summarized in Algorithm 1.

Algorithm 1 Video segmentation algorithm based on multi-frame homography constraints

1: Input: video sequence
2: Initialize: frames number T; temporal window interval t; trajectory classification thresholdand τL and τH;
initial superpixel classification parameters T1 and T2
3: Trajectory classification based on multi-frame homography model

a: Calculate the long term trajectory Λ = {Λi, i = 1, . . . , n} of input video
b: Estimate the homography matrix set Hmulti =

{
Hk, k = 1, . . . , T − t

}
c: for i = 1, . . . , n do

Use Equation (3) to select the corresponding homography matrix set Hmulti
i of trajectory Λi

Use Equation (4) to estimate the average projection error εi of the trajectory Λi
end for

d: Use Equation (5) to classify the motion trajectory.
e: Use motion boundary to refine the spatial accuracy of trajectory classification.
4: Pixel labeling based on Markov Random Fields model
f: Oversegment the input video to get the superpixel set

∑
ri

t
g: for t = 1:T do
Use Equation (8)–(11) to calculate the unary potential Ac

t

(
ri
t

)
of superpixel ri

t

Use Equation (12) and (13) to calculate the pairwise potential Si, j
t

(
ri

t, r j
t

)
and Ti, j

t

(
ri

t, r j
t+1

)
of superpixel ri

t
end for

h: Use graph cut algorithm to solve the energy function minimization problem
5: Output: Pixel level object segmentation result for each frame of input video
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4. Experiments

Several publicly released video sequences are selected as experimental data in this study.
These videos are from the Hopkins dataset [40] (cars1–7, people1–2), and from [34] (vcar, vperson,
vhand), which have been used by recent quantitative papers on this topic [18–32]. We additionally
include a challenging sequence that reflects a real surveillance scene acquired by the PTZ camera [45]
(backyard) and three standard videos captured by the stationary camera (highway, office, and
pets2006) [46]. The selected videos, include rapidly camera motion, non-rigid deformations, multiple
moving objects, and arbitrary changes in the scene content.

In order to obtain real the background and foreground object regions, we manually generated
ground truth data by extracting the moving objects in every five frames. In our experiments, we
set t = 10, which means each overlapped window contains ten frames. The trajectory classification
threshold is kept fixed at τL = 0.01, τH = 0.05 in all experiments. The initial classification parameters
of superpixel are set as T1 = 0.2, T2 = 0.01. Our experiments are conducted on a PC with dual-core Intel
i7 Ivy bridge 2.50 GHZ CPU. The proposed method is implemented using a combination of C++ and
MATLAB code.

4.1. Experimental Results on Trajectory Classification

We firstly present the experimental results on trajectory classification with comparison to low rank
based method [22]. When testing our method, the same trajectories were used for both algorithms.
The qualitative results on the trajectory level classification are shown in Figure 4. Figure 4a gives an
example, where multiple objects are separated and then occluded. It can be seen that the proposed
method outperforms the low rank-based method on both trajectory distribution and classification
accuracy. Figure 4b presents an experimental result, where multiple objects have large scale differences.
The low rank-based method employs affine camera model, which is difficult to describe the depth and
scale changes. This limitation results in labeling the long-range small car on the middle of the image,
as part of background. However, our algorithm detects it correctly as foreground region. Figure 4c is
another example that explains our proposed multiple overlapped homography constraint well. In this
case, the white clothed pedestrian leaves the camera’s field of view in about twentieth frame. Due to the
entire usage of tracked trajectories, our method can make trajectory points uniformly distributed in the
image plane, which will greatly benefit the final pixel level labeling. Figure 4d presents an experimental
result of an indoor surveillance video. The selected sequence is challenging because it includes no-rigid
deformations and scale changes. The moving person has similar color to the background. As we can see
from the experimental result, our method also performs well in a challenging scene. This demonstrates
the ability of our multi-frame homography background representation. Figure 4e gives a difficult
example, where the video sequence is clipped from a PTZ camera on real surveillance scene. On the
long sequence, the moving pedestrian remains still for a period of time. Methods in [22] face difficulty
in this situation; the results have an obvious classification error at the leg of the pedestrian. Benefit from
the long term motion analysis and cumulative acknowledgment strategy, our method can still classify
the background trajectories and foreground ones successfully. Figure 4f is a highway surveillance
video taken by a stationary camera. The rank of background trajectory matrix is two, which does not
satisfy the fixed rank constraint (i.e., three) of the low-rank constraint algorithm [22]. Thus, when
the algorithm is used to separate trajectories, several foreground trajectories are misclassified as
background ones. By contrast, the proposed algorithm models the background motion of adjacent
frames as homography constraint, which can still adapt to stationary cameras. So it can accurately
separate background and foreground trajectories.

We also present quantitative performance evaluation of our algorithm, compared to low rank-based
method [22] in trajectory classification. For quantitative comparison, we considered the percentage of
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correct classification (PCC) and trajectory distribution (Density) in our experiments, which are defined
as follows [47]:  PCC = TP+TN

TP+FP+TN+FN
Density = TP+FP+TN+FN

Width×Height
(14)

The TP, FP, TN, and FN denote the number of true-positive, false-positive, true-negative, and
false-negative trajectories, respectively. The Width and Height represent the size of tested image.
Using above metrics, we get the quantitative results on the trajectory level separation as shown in
Table 1. In summary, our method obviously outperformed the low rank based method [22] in PCC
evaluation. This is because we divided the whole video into multiple overlapped windows, whereby
the background motion of each window could be represented by the homography model. Thus, all the
trajectories could be distinguished by the multi-frame homography constraint, based on the cumulative
acknowledgment strategy, which make motion information accumulated in the life cycle of long term
trajectory fully utilize. Furthermore, we observed that [22] has no trajectories around the moving
objects and image boundaries since the incomplete trajectories are discarded in their method. Thus,
our method gets an obvious higher density of trajectories than [22]. Both, the higher classification
accuracy and trajectory densities is beneficial for subsequent pixel level labeling.

Table 1. Quantitative evaluation of motion trajectory classification.

Video Sequence Sheikh et al. [22] Our Method

PCC/% Density PCC/% Density

cars1 97.51 0.0432 98.89 0.0490
cars2 98.23 0.0483 99.56 0.0502
cars3 98.66 0.0480 99.48 0.0521
cars4 97.49 0.0489 99.40 0.0537
cars5 97.90 0.0511 99.29 0.0528
cars6 99.74 0.0449 99.88 0.0496
cars7 98.93 0.0457 99.52 0.0502

people1 99.45 0.0469 99.93 0.0513
people2 98.23 0.0436 99.94 0.0498

vcar 98.64 0.0479 99.65 0.0510
vperson 98.92 0.0387 99.51 0.0477
vhand 97.48 0.0430 99.10 0.0531

backyard 99.10 0.0384 99.81 0.0464
highway 97.89 0.0412 99.45 0.0531

office 96.38 0.0406 99.11 0.0479
pets2006 97.16 0.0387 98.94 0.0566

4.2. Experimental Results on Pixel Level Labeling

We also evaluated the performance of our method with several start-of-the-arts method at the pixel
level labeling. The compared methods are trajectory-based methods [22,26] and optical flow-based
method [31]. The results on the pixel-level labeling are shown in Figure 5. Obviously, our method
outperforms the competitive methods. As presented in cars 4 and people 2 sequences, we observed
that [22] is prone to error around the moving object and image boundaries, since it has no trajectory at
these regions. Furthermore, this method lacks the appearance models and spatial temporal constraints
at pixel-level labeling, which will cause inconsistent segmentations of moving objects. The method
presented in [26] relies on block-based motion and appearance model estimation and propagation.
While, we found that their method is not stable and sensitive to parameter selection through our pixel
level labeling experiments. We also observed that [31] has lower segmentation precision when the
object is small and moving non-rigidly, such as people 1 sequences. The reason is that this algorithm
relies on bottom-up saliency detection which is difficult when non-rigid deformations happen in the
moving object.
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In Table 2, we present quantitative comparison results, using well-known F-measure metric [48,49],
which are computed, based on the labels generated by the algorithms and manually annotated ground
truths. It should be point that we report the F-measure metric of [26] based on the results reported in
the original paper. In addition, we also add three additional algorithms for quantitative comparison,
where their results have been released on several papers [26–28,35]. From the results shown in Table 2,
we can confirm that our approach produce almost the highest F-measure scores compared other six
methods. Moreover, our F-measure scores are more than 85% in all test videos. The reason is because
we, not only obtained a higher trajectory classification accuracy in advance, but also introduced
appearance model and spatial temporal smoothness in pixel labeling stage. This greatly refines the
initial segmentation compared to the use of motion information only.

Table 2. Quantitative evaluation of pixel level labeling.

Video
Sequence

Sheikh et al.
[22] Zhu et al. [26] Chiranjoy

et al. [31] Lim et al. [27] Kwak et al.
[28]

Zamalieva
et al. [35] Our Method

cars1 0.823 0.920 0.847 0.871 0.803 0.822 0.936
cars2 0.839 0.902 0.778 0.822 0.685 0.789 0.892
cars3 0.834 0.932 0.724 0.729 0.792 0.882 0.933
cars4 0.822 0.916 0.646 0.882 0.666 0.895 0.889
cars5 0.821 0.866 0.661 0.817 0.746 0.874 0.873
cars6 0.893 0.922 0.827 0.814 0.733 0.903 0.931
cars7 0.846 0.912 0.751 0.909 0.691 0.869 0.928

people1 0.829 0.814 0.453 0.812 0.802 0.866 0.890
people2 0.904 0.943 0.642 0.847 0.814 0.916 0.941

vcar 0.837 0.879 0.618 x x x 0.896
vperson 0.799 0.865 0.709 x x x 0.928
vhand 0.671 0.846 0.611 x x x 0.876

backyard 0.829 0.772 0.715 x x x 0.884
highway 0.537 0.684 0.464 x x x 0.879

office 0.686 0.702 0.712 x x x 0.861
pets2006 0.684 0.769 0.632 x x x 0.892

5. Conclusions

We present a novel and modular object segmentation algorithm for both, a stationary camera
and a moving camera. In order to take full use of motion information and cover videos sufficiently,
we divided the input sequences into several overlapping temporal windows. Then, multi-frame
background model was built, based on homography constraint of each window, and cumulative
acknowledgment mechanism is introduced for the trajectory classification. We incorporated a trajectory
classification, dynamic appearance, spatial temporal information for the final pixel labeling, which can
automatically refine the spatial accuracy of the trajectory-based segmentation and to also segment the
objects in frames.

In order to make an accurate evaluation, we compared the proposed method with the
state-of-the-art approaches on multiple challenging videos. The comparisons are evaluated from two
aspects: One is the performance of the trajectory classification and the other is the performance of the
final pixel level labeling. Quantitative and qualitative experiments demonstrate that the proposed
method achieves promising performances from these two aspects, respectively.

Similar to all previous methods, our algorithm works in offline mode. Thus, it is not suitable for
real-time moving object segmentation. In the future, we plan to develop an online version of a proposed
algorithm that can work incrementally, e.g., the multi-frame homography constraint, extracted from
the beginning frames can be updated online when the new frames arrive.
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