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Abstract: In this paper, a drag model-aided fault-tolerant state estimation method is presented for
quadrotors. Firstly, the drag model accuracy was improved by modeling an angular rate related item
and an angular acceleration related item, which are related with flight maneuver. Then the drag
model, light detection and ranging (LIDAR), and inertial measurement unit (IMU) were fused based
on the Federal Kalman filter frame. In the filter, the LIDAR estimation fault was detected and isolated,
and the disturbance to the drag model was estimated and compensated. Some experiments were
carried out, showing that the velocity and position estimation were improved compared with the
traditional LIDAR/IMU fusion scheme.
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1. Introduction

In recent years, quadrotors have been widely used in many fields, such as agriculture, industry,
and ecology [1]. Navigation systems calculate attitude, velocity, and position, which are important
for stable control. For quadrotors, inertial navigation systems (INS) and global positioning system
(GPS) integration systems are mostly used. However, GPS cannot be used in an indoor environment
because of signal interference. In a GPS denied environment, vision [2] or light detection and ranging
(LIDAR) [3] based navigation methods are usually adopted.

Vision navigation is based on computer vision algorithms. The environment is captured by the
camera, then the relative motion between the camera and the environment is estimated. However,
the estimation accuracy is usually affected by light interference [4]. In some dark and enclosed
environments, such as caves and tunnels [5], a LIDAR-based navigation method is usually adopted.
LIDAR is an active sensor and can measure ranges between itself and the environment. The motion
state is estimated by using the simultaneous localization and mapping (SLAM) algorithm [6].

LIDAR can be divided into 2 dimensional (2D) LIDAR [7] and 3 dimensional (3D) LIDAR [8].
The 2D type can measure a two-dimensional plane, and the 3D type can measure three-dimensional
space. Due to size and weight limitations, 2D LIDAR is usually adopted by quadrotors. Because
quadrotors fly in a 3D environment, the classical 2D LIDAR SLAM may lead to estimation error [9].
It is usually assumed that the environment is formed by collections of vertical walls [10]. In some
complex or sparse-feature environments, the state estimation accuracy will decrease. As a result, the
robustness of the SLAM algorithm in these environments is now a challenging issue [11].

Dynamic model-aided navigation is a novel and developed method. The dynamic model of
plants, which describes the relationship between the plant motion, control input, and surrounding
environment, is fused with navigation sensors, improving the navigation accuracy and reliability.
The dynamic model-aided navigation method has been used for aircraft [12], vehicles [13], and
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underwater robots [14]. The fusion schemes for different plants are different because they should be
designed based on the model characteristics.

As for the fixed wing aircraft, the whole dynamic model (including the thrust, drag, and moments)
is considered [15]. The dynamic model is fused with the INS. Experiment results show that the
scheme is useful for the low-cost micro-electromechanical systems (MEMS) INS and can improve the
navigation accuracy [16]. As the state estimation using the dynamic model is a dead reckoning process,
the estimation accuracy is affected by the model parameter uncertainty [17].

The quadrotor is an underactuated system. The horizontal motion is coupled with the attitude
motion, which is usually estimated by fusing gyros and accelerometers [18], and the drag is proportional
to the velocity [19]. In recent years, drag model-aided navigation has been widely studied. [20] proposed
a drag model/INS fusion scheme. The velocity and attitude estimation are improved compared with
the pure INS scheme. [21] showed that the velocity estimation accuracy can be kept the same while the
frequency of position correction decreases. A unified model technique was used by [22]. The state
prediction of the dynamic model and INS are fused, and the procedure of the traditional Kalman
filter is simplified. A dynamic model/INS/GPS fusion scheme was proposed by [23]. When GPS is
available, the INS/GPS fusion results are used to identify the model parameters. When GPS is denied,
the dynamic model is fused with INS. The dynamic model/INS/vision sensor fusion scheme is adopted
by the AR. Drone [24]. The accelerometer’s bias can be estimated online. In [25], the dynamic model
was used to estimate the scale factor of monocular vision. In [26], a dynamic model/optical flow/inertial
sensor fault-tolerant fusion method was proposed. The faults of the above sensors can be detected.
The navigation accuracy can be retained in the case of failure of one sensor.

In this paper, a drag model-LIDAR-IMU fusion scheme (Figure 1) is proposed for quadrotors in
an indoor environment. The contributions of the paper can be summarized as:
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(1) An improved drag model of quadrotors is proposed. The traditional drag model only contains
the velocity related item. Its accuracy is affected by maneuver flight [27]. In this paper, some attitude
motion related items are considered to improve the model accuracy.

(2) A fault-tolerant state estimation is realized for quadrotors. The failures of LIDAR and drag
model are both considered. If the LIDAR SLAM accuracy decreases due to environmental disturbance,
it is detected and isolated from the global filter. The drag model accuracy may be affected by the wind.
In the filter, the wind velocity is treated as a state and can be estimated online. Therefore, the accuracy
decrease brought by the wind is suppressed.

2. Improved Drag Model of Quadrotor

In this paper, the body coordinate system (b-frame) is defined as the front-right-down frame
(Figure 2), and the navigation coordinate system (n-frame) is defined as the local north-east-down
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frame. In the dynamic model-aided navigation method, the model accuracy affects the navigation
performance. Therefore, the drag model will be studied in this section.
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2.1. Drag Modeling of Quadrotor

The traditional drag model can be expressed as [18] Dx = kx(Vb
nbx −Vb

wx)

Dy = ky(Vb
nby −Vb

wy)
(1)

where Dx and Dy represent the x-axis and y-axis drag force resolved in the b-frame. Vb
nbx and Vb

nby are

the components of Vb
nb, which is the linear velocity of the b-frame with respect to the n-frame resolved

in the b-frame. Vb
wx and Vb

wy are the components of Vb
w, which is the wind velocity resolved in the

b-frame. kx and ky are the drag coefficients.
Equation (1) means that the drag is proportional to the airspeed. If the wind is ignored, Equation (1)

is transformed to  Dx = kxVb
nbx

Dy = kyVb
nby

, (2)

Because the drag force can be estimated by the accelerometer, it can be derived as f b
nbxm = kxVb

nbx
f b
nbym = kyVb

nby
, (3)

where f b
nbx and f b

nby are the x-axis and y-axis accelerations resolved in the b-frame, which can be

obtained from the outputs of the accelerometers. It can be seen that Vb
nbx and Vb

nby are proportional to

f b
nbx and f b

nby.
In the traditional INS algorithm, velocity is calculated by integrating the accelerometers’ outputs.

Using the drag model, the velocity can be directly estimated from the accelerometers. Therefore, the
velocity error can be bounded.

In this paper, two additional factors are taken into account. Firstly, the traditional drag force
model is derived based on the characteristics of one blade, and the quadrotor is treated as a mass
point. However, there exists distances among the rotors, accelerometers, and center of gravity (CoG),
shown in Figure 2. d represents the distance between the rotor and the CoG, and b represents the
distance between the accelerometers and the CoG. When the quadrotor pitches or rolls, a tangential
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acceleration between the accelerometer and the center of gravity is introduced. Therefore, Equation (3)
transforms to 

(
f b
nbx −

.
ω

b
nby/b− fx0

)
m = kxVb

nbx(
f b
nby −

.
ω

b
nbx/b− fy0

)
m = kyVb

nby

, (4)

where ωb
nb =

[
ωb

nbx ωb
nby ωb

nbz

]
is the angular rate of the b-frame with respect to the n-frame

resolved in the b-frame, which can be estimated from gyros’ outputs. fx0 and fy0 are the biases of the x-
and y-axis accelerometers.

Secondly, in the traditional drag model, the blade flapping effect is ignored, which is an important
aspect of quadrotor dynamics [28]. The flapping effect causes the blade rotation plane to tilt, and the
blade velocity can be expressed as [29]

Vri = Vb
nb +ωb

nb × Li, (5)

where Vri is the ith rotor’s velocity, and Li is the displacement between the rotor and the CoG. Therefore,
the drag force of the ith rotor can be expressed as

Dri = kVri = k
(
Vb

nb +ωb
nb × Li

)
, (6)

Then the drag force of the whole quadrotor can be derived as

D =
4∑

i=1
Dri

=
4∑

i=1
kVri

= k
(
4Vb

nb +
4∑

i=1
ωb

nb × Li

)
= 4k

(
Vb

nb +
[

dωb
nby −dωb

nbx 0
]T)

(7)

Combining Equations (4) and (7), the improved drag model can be expressed as
(

f b
nbx −

.
ω

b
nby/b

)
m = k′x

(
Vb

nbx + dωb
nby

)
(

f b
nby −

.
ω

b
nbx/b

)
m = k′y

(
Vb

nby − dωb
nbx

) , (8)

Then the velocity can be derived as Vb
nbx = kx0 + kx1 f b

nbx + kx2
.
ω

b
nby + kx3ω

b
nby

Vb
nby = ky0 + ky1 f b

nby + ky2
.
ω

b
nbx + ky3ω

b
nbx

, (9)

where kx0, kx1, kx2, kx3, ky0, ky1, ky2, and ky3 are constant coefficients.
It can be seen that there are four items in the improved drag model: the accelerometer bias, the

velocity related item, the angular rate related item, and the angular acceleration related item.

2.2. Test of Drag Model Accuracy

Some experiments were done to verify the superiority of the improved model. The quadrotor was
controlled to do different maneuvers, including hover, horizontal flight, and attitude rotation. Five
experiments were conducted in a no wind environment. The least square method was used to identify
the model parameters. The velocities estimated by the traditional model and the improved model
were compared. The velocity obtained by GPS was treated as a reference. In the improved model,
the angular acceleration was obtained by differentiating the gyros’ signals. Because the difference
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operation introduces noise to the signal, it was smoothed before being used. The accelerometers’
outputs were also used as inputs of the models. The experimental results are shown in Figure 3 and
Table 1. Figure 3 is the velocity estimation result of one experiment, and Table 1 is the statistical results
of the five experiments.
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Table 1. The velocity RMSE (root mean square error) comparison of different drag models.

State

X-axis Velocity RMSE (m/s) Y-axis Velocity RMSE (m/s)

Traditional Drag
Model

Improved Drag
Model

Traditional Drag
Model

Improved Drag
Model

Hover 0.455 0.443 0.190 0.189
Horizontal movement 0.288 0.267 0.573 0.554

Rotation movement 0.908 0.655 0.837 0.534

From the experiments, it can be seen that during the hover or horizontal flight, the accuracy of the
two models are almost the same. When the quadrotor does an attitude motion, the accuracy of the
improved model is better than the traditional model by 1.38 times in x-axis and 1.56 times in y-axis.

3. Drag Model-LIDAR-IMU Fusion Scheme

In this section, the fault-tolerant fusion scheme is studied. The drag model, IMU, and LIDAR
were fused through a Federal Kalman filter (FKF). The filter can deal with the disturbances to the
LIDAR and drag model.

3.1. Quadrotor Dynamic Equation

According to the drag model (considering the wind effect) and the INS algorithm, the velocity
differential equation can be expressed as

.
V

b
nbx

.
V

b
nby

.
V

b
nbz

 =


Vb
nbx

Vb
nby

Vb
nbz

×

ωb

nbx
ωb

nby
ωb

nbz

+

(Vb

nbx −Vb
wx − kx0 − kx2

.
ω

b
nby − kx3ωb

nby)/kx1

(Vb
nby −Vb

wy − ky0 − ky2
.
ω

b
nbx − ky3ωb

nbx)/ky1

f b
nbz

+ Cb
n


0
0
g

, (10)

where f b
nbz is the z-axis acceleration resolved in the b-frame, Cb

n is the coordinate transformation matrix
from the n-frame to the b-frame, and g is the gravitational acceleration.
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The attitude is described through quaternion, and the attitude differential equation can be
expressed as 

.
q0.
q1.
q2.
q3

 = 0.5


0 −ωb

nbx −ωb
nby −ωb

nbz
ωb

nbx 0 ωb
nbz −ωb

nby
ωb

nby −ωb
nbz 0 ωb

nbx
ωb

nbz ωb
nby −ωb

nbx 0




q0

q1

q2

q3

, (11)

where q0, q1, q2, q3 stand for the quaternion.
The position differential equation is

.
PN.
PE.
PD

 = Cn
b


Vb

nbx
Vb

nby
Vb

nbz

, (12)

The wind velocity is regarded as constant velocity expressed as
.

V
b
wx

.
V

b
wy

 =
[

0
0

]
, (13)

3.2. Fault-Tolerant Filter Design

The architecture of the filter is shown in Figure 1. It contains a main filter and two sub-filters,
which are denoted as C1 and C2, respectively. The wind velocity affects the drag model accuracy, thus
it is included in the state vector, which is chosen as

xc =
[

q0 q1 q2 q3 Vb
nbx Vb

nby Vb
nbz PN PE PD Vb

wx Vb
wy

]T
, (14)

The input vector is defined as

u =
[
ωx ωy ωz faz

.
ωx

.
ωy g

]T
, (15)

where ωx, ωy, and ωz are the x, y, and z axis gyros’ outputs, faz is the z-axis accelerometer’s output,
and g is the gravitational acceleration.

The state equation can be derived from (10)–(13) and expressed as

.
x= f (x, u)+Gw, (16)

where G is the noise transition matrix, and w is the state noise matrix.
The measurements of the two sub-filters are chosen as z1 =

[
PLx PLy

]
z2 =

[
fax fay ψm hbaro

] , (17)

where PLx and PLy are the position estimated by LIDAR SLAM method, fax and fay are the outputs
of the x- and y-axis accelerometers, ψm is the yaw estimated by the magnetic sensor, and hbaro is the
height estimated by the barometer.

The measurement equations of the two sub-filters are expressed as{
z1 = hc1(xc) + VC1

z2 = hc2(xc) + VC2
, (18)
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where VC1 and VC2 are the measurement noise matrices of C1 and C2. The updating progress of the
FKF can be referred to in [30] and is not described here.

3.3. Fault Detection of LIDAR SLAM

In this paper, the LIDAR SLAM fault is considered. The LIDAR SLAM accuracy is affected by the
feature salience of the environment. In some sparse-feature environments, the accuracy is low. In that
case, the LIDAR SLAM result should be cut off from the global filter. Although the wind introduces
disturbance to the drag model, it is estimated in the filter, so the drag model fault is not considered.

The chi-square test [31] is used for the fault detection of sub-filter C1. The statistics parameter is
defined as

λC1(k)=rC1(k)PC1r(k)
−1rC1(k)

T, (19)

where rC1(k) is the residual of C1, and PC1r(k) is the covariance matrix of rC1(k). They are defined as

rC1(k) = z1(k) − hc1(xc(k|k− 1)), (20)

PC1r(k) = HC1(k)PC1(k|k− 1)HC1(k)
T + RC1(k), (21)

where xc(k|k− 1) is the prediction state, PC1(k|k− 1) is the covariance matrix of xc(k|k− 1), HC1(k) is

Jacobian matrix and calculated by HC1(k) =
∂hc1(xC(k|k−1))
∂xC(k|k−1) , and RC1(k) is the measuring noise variance

matrix.
When there is no fault, λC1(k) follows a chi-square distribution [30]. The fault detection function

can be constructed as

TD(k) =
{

1 λC1(k) > τD

0 λC1(k) < τD
, (22)

where τD is the threshold. TD(k) = 1 means that the LIDAR SLAM error increases and should be
isolated from the filter.

3.4. Observability Analysis

The observability is an important indicator for a filter. It can reflect whether the states can be
estimated. In this paper, the lie deviation method [32] is adopted for observability analysis. Two cases
are considered: (1) no fault occurs; (2) the position supplied by LIDAR SLAM is faulty.

When there is no fault, the rank of the observability matrix is 12. It means that all the states are
observable. However, when the position measurement is not available the rank is 8. It means that
4 states are not observable. Using the null space analysis method [33], the unobservable states are[

PN PE Vb
wx Vb

wy

]
, which are the horizontal position and wind velocity.

4. Experiments and Analysis

In this section, experiments designed and carried out to test the proposed method are described.
The following cases were considered:

(1) The navigation result in the LIDAR SLAM failure case. The navigation performance of the
proposed method needs to be tested.

(2) The test when the quadrotor does an attitude maneuver. The proposed drag model improves
compared with the traditional model, so the navigation accuracy should be tested.

(3) The test under wind. The wind introduces interference to the model, so the navigation accuracy
in windy environment should be considered.

4.1. Test Setup

The test platform was built based on a DJI M100 quadrotor. The quadrotor specification is
shown in Table 2. The navigation system included an IMU, a magnetic sensor, a barometer, and a 2D
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LIDAR. The navigation result was outputted to the autopilot N1 and served as the control algorithm.
The update rates of IMU, magnetic sensor, and barometer were 50 Hz, and the update rate of the
LIDAR SLAM was 10 Hz.

Table 2. Unmanned aerial vehicle (UAV) technical features.

Technical Features Description

Airframe DJI-M100 Arm length 0.65 m
Autopilot DJI N1
2D LIDAR Hokuyou TM-30LX, Scanning range 30 m

Navigation processor DJI Manifold

The test scheme is shown in Figure 4. The experiments were carried out in an underground garage.
A total station (Leica MS60) was used as the position reference. The position accuracy was better than
0.01 m.Sensors 2019, 19, x 9 of 15 
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4.2. Test in LIDAR SLAM Failure Case

In this paper, the ICP (Iterated Closest Points) LIDAR SLAM algorithm [34,35] was adopted.
It is a classical SLAM method. Because the SLAM method for 2D LIDAR is based on the 2.5D
assumption [9,10], when there exists a step change in the environment, position estimation error may
be introduced. In the test, some carton boxes were placed to construct the environment changes (shown
in Figure 4). When the quadrotor flew across the boxes, the LIDAR SLAM failed. The velocity and
position estimation results of two schemes are compared: the IMU/LIDAR fusion scheme and the
proposed drag model-LIDAR-IMU fusion scheme (shown in Figures 5 and 6). The fault detection
result is shown in Figure 7. The RMSE of velocity and position is shown in Table 3.
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Table 3. The RMSE (root mean square error) comparison of different schemes.

State X-axis Velocity
RMSE (m/s)

Y-axis Velocity
RMSE (m/s)

X-axis Position
RMSE (m)

Y-axis Position
RMSE (m)

Traditional Scheme 8.020 7.503 121.832 147.137
Proposed Scheme 0.147 0.147 0.899 1.885

From the experimental results, it can be seen that:

(1) When the quadrotor flew over the boxes, the LIDAR SLAM algorithm failed due to a step
environment change. The LIDAR SLAM failure can be detected and isolated by both the
two schemes.
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(2) When the LIDAR was isolated from the filter, the IMU/LIDAR fusion scheme degraded to the
pure INS scheme. The navigation accuracy improved by introducing the drag model. The velocity
error was bounded, and the positioning error also significantly decreased. The x-axis and y-axis
velocity accuracies improved by 54.6 times and 51.0 times, respectively. The x-axis and y-axis
position accuracies improved by 135.5 times and 78.1 times, respectively.

4.3. Quadrotor Attitude Maneuver Test

The quadrotor was controlled to do attitude maneuvers. The traditional drag model and the
improved drag model were compared. The navigation results are shown in Figure 8, Figure 9, and
Table 4. The fault detection result is shown in Figure 10.
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Table 4. The RMSE (root mean square error) comparison of different drag model.

State X-axis Velocity
RMSE (m/s)

Y-axis Velocity
RMSE (m/s)

X-axis Position
RMSE (m)

Y-axis Position
RMSE (m)

Traditional Drag Model 0.192 0.975 1.631 1.388
Improved Drag Model 0.188 0.422 0.414 0.952
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From the experimental results, it can be seen that:

(1) When the quadrotor completed attitude maneuvers, the LIDAR SLAM accuracy decreased and
failed. This was due to the mismatch of the LIDAR scanned points.

(2) In the test, the quadrotor completed an attitude maneuver in the y-axis, so the y-axis velocity
accuracy improved by 2.3 times using the improved model, while the x-axis velocity accuracies
of the two models were almost the same. The percentage increase of the x-axis position accuracy
(3.9 times) was larger than the y-axis position (1.5 times), that is because the velocity errors of the
y-axis velocity were offset after the integration.

(3) It was noticed that the accuracy improvement (2.3 times) was different from the test result of the
y-axis velocity in Section 2.2, which was 1.56 times. That is because the flight maneuvers of the
two tests were different, which affected the improvement degree.

4.4. Wind Interference Test

Although the experiments were carried out indoors, wind interference may still be present.
For example, when the quadrotor flew close to the wall (Figure 4), the wind force generated by the
blades reacted on the quadrotor. Because wind does not affect the LIDAR SLAM, the accuracy of
LIDAR SLAM was not tested. The navigation results of two schemes were compared: the drag
model-LIDAR-IMU fusion filter with and without wind estimation. The velocity estimation results
are shown in Figure 11 and the RMSE is shown in Table 5. The wind estimation results are shown in
Figure 12.
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Table 5. The RMSE (root mean square error) comparison of different wind estimation.

State X-axis Velocity RMSE (m/s) Y-axis Velocity RMSE (m/s)

Wind Estimation Disable 0.264 0.141
Wind Estimation Enable 0.049 0.058
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From Figures 11 and 12 and Table 5, it can be seen that:

(1) When the quadrotor flew near the wall, the velocity estimation accuracy decreased. That is
because the wind introduces interference to the drag model. If the wind velocity is included in
the state, the wind can be estimated, and the interference can be partly compensated. The x-axis
velocity accuracy improved by 5.4 times and the y-axis velocity accuracy improved by 2.4 times.

(2) It can be seen that when the quadrotor was away from the wall, the estimated wind velocity was
small (0 s~10 s). When the quadrotor flew close to the wall, the wind became greater. Because wind
is generated by the reaction of the rotating blades, the estimated wind is not constant.

5. Conclusions

A drag model-LIDAR-IMU fault-tolerant fusion method was proposed. An angular rate related
item and an angular acceleration related item were added to the traditional drag model. The model
accuracy during the maneuver flight improved. An FKF based fusion scheme was designed. The LIDAR
SLAM estimation fault was detected and isolated from the filter, avoiding the disturbance to the
navigation result. Compared with the traditional method, the velocity and position accuracy is
improved by introducing the drag model. The wind velocity is included in the states and can be
estimated online, and the filter is robust to wind interference.
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