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Abstract: The silicon content in industrial blast furnaces is difficult to measure directly online.
Traditional soft sensors do not efficiently utilize useful information hidden in process variables. In this
work, bagging local semi-supervised models (BLSM) for online silicon content prediction are proposed.
They integrate the bagging strategy, the just-in-time-learning manner, and the semi-supervised extreme
learning machine into a unified soft sensing framework. With the online semi-supervised learning
method, the valuable information hidden in unlabeled data can be explored and absorbed into the
prediction model. The application results to an industrial blast furnace show that BLSM has better
prediction performance compared with other supervised soft sensors.

Keywords: soft sensor; silicon content; semi-supervised learning; extreme learning machine;
just-in-time-learning

1. Introduction

As a type of metallurgical furnace, blast furnaces are used for smelting to produce industrial
metals. The silicon content in hot metal, both as a quality factor and as a chief indicator of the
thermal level of the blast furnace, is of central importance. However, it is difficult to measure it
online. Additionally, chemical reactions and transfer phenomena in blast furnaces are very complex.
Till now, a reliable first-principles model for industrial practice is not available [1–5]. Because of
the complexity of the task, the prediction of the silicon content is tricky and it recently attracted
much attention. In past two decades, several data-driven soft sensors were proposed to predict the
silicon content [6–24]. For example, some neural networks (NNs) [6–10] and support vector regression
(SVR) [17,18] were built as a black-box predictor. The partial least squares regression [11], fuzzy logic
approach [12], nonlinear time series analysis [14–16], chaos-based iterated multistep predictor [19],
multiscale modeling methods [20], and multiple models [21], were also applied to predict the silicon
content. Saxén et al. gave a review on data-driven discrete time models for the hot metal silicon
content prediction in the blast furnace [22]. These empirical data-driven soft sensor models can be
built quickly using the available measured variables [25–32].

In industrial processes, a large amount of sensor variables that are available can be used as input
to the soft sensor model. The quality-relevant variable to be predicted using a soft sensor can be
regarded as “labeled” data. However, the amount of quality-relevant variable (“labeled” data) is
often limited mainly because it is difficult to measure online. Till now, most soft sensors in industrial
ironmaking processes act in a supervised manner. That is, for construction of a soft sensor, both of
inputs (sensor variables) and outputs (quality-relevant variables) are required for the task of supervised
modeling. The labeled dataset contains both input and output data, while the unlabeled one consists
of only input data (i.e., large amount of sensor variables). Actually, the labeled data are much fewer
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than the unlabeled data mainly because the assaying process of silicon contents is infrequent and
time-consuming. In contrast, the process input variables are measured frequently. Using a limited set
of labeled data, the soft sensors are often inaccurate. To enhance the prediction performance, with
large amounts of unlabeled data available, some semi-supervised soft sensors have been applied to
chemical processes [33–35]. Therefore, the information hidden in unlabeled data is explored to develop
a semi-supervised soft sensor for the silicon content prediction.

Most soft sensors have their fixed prediction domains. The predictive accuracy of soft sensors
gradually decreases due to changes in the state of chemical plants [36]. Consequently, flexible models
with adaptive structure, e.g., just-in-time-learning (JITL) soft sensors [23,24,37] are more attractive
than only using a fixed one in practice use. Unfortunately, most conventional JITL-based soft sensors
were constructed only with the labeled data. Only the labeled data are considered in the process of
selection and modeling of similar samples. Consequently, without integration of useful information in
the unlabeled data, the prediction performance of JITL-based models may still not be sufficient for
some applications.

In this work, bagging local semi-supervised models (BLSM) for online silicon content prediction
are proposed. It integrates the bagging strategy, the JITL modeling manner [37] and semi-supervised
extreme learning machine (SELM) [34,38,39] into a unified soft sensing framework. For online
prediction of a test sample, the useful information in both of similar labeled and unlabeled samples is
taken into its special JITL model. Additionally, a simple bagging strategy is adopted to online construct
the model. Compared with conventional JITL models only with the labeled data, the prediction
performance of BLSM is improved by utilizing the useful information in unlabeled data.

This work is organized in the following way. The extreme learning machine (ELM) and SELM soft
sensors are described in Section 2. Additionally, the BLSM online modeling method and its detailed
implementation are proposed in this section. In Section 3, BLSM is applied to online silicon content
prediction and compared with other approaches. Finally, a conclusion is given in Section 4.

2. Soft Sensor Modeling Methods

In this section, three soft sensing methods for the silicon content prediction are presented.
First, the ELM-based supervised regression algorithm is briefly described. Second, the SELM-based
semi-supervised regression algorithm is presented. Finally, the BLSM online local modeling method
is proposed.

2.1. Extreme Learning Machine (ELM) Regression Method

The labeled dataset is denoted as {S} = {X, Y}, where
{
Xl

}
=

{
xl

i

}L

i=1
and

{
Yl

}
=

{
yl

i

}L

i=1
are L input

and output data, respectively. ELM works for generalized single-hidden layer feedforward networks
(SLFNs) [38]. The ELM model has an input layer, a single-hidden layer, and an output layer. With N

hidden nodes, ELM approximates the training data, i.e.,
L∑

i=1
‖yl

i − ŷl
i‖ = 0, where yl

i and ŷl
i denote the

actual output and predicted one, respectively. Compactly, the ELM-based regression formulation [38]
is described as:

Pα = Yl (1)

where the output matrix of hidden-layer P = [p1, p2, . . . , pN]L×N with pi =


v
(〈

ai, xl
1

〉
+ bi

)
...

v
(〈

ai, xl
L

〉
+ bi

)


L×1

, i =

1, . . . , N; v
(〈

ai, xl
j

〉
+ bi

)
is the activation function output of the ith hidden node related to the jth input

xl
j. For the ith hidden node, ai and bi are its input weight and bias, respectively; and

〈
ai, xl

j

〉
is the
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inner product of ai and xl
j. Here, the commonly used nonlinear sigmoidal function v(x) = 1

1+exp(−x) is

utilized. The output weights are α =


α1
...
αN


N×1

.

Different from the gradient-descent based training algorithms (e.g. backpropagation method) for
many NNs and the optimization method based for support vector machines, the essence of ELM is that
the hidden layer of SLFNs need not be tuned. Without resorting to some complex training algorithms,
the weights of the hidden neurons in ELM can be efficiently computed [38]. For many regression cases,
the number of hidden nodes is much less than the number of training samples, i.e., N << L. In such a
situation, the output weights α [38] are determined as:

α =
(
PTP

)−1
PTYl (2)

Using the Moore–Penrose generalized inverse of matrix P to solve α in ELM is feasible, i.e.,
α = P+Yl [38]. Additionally, to avoid the problem of PTP being noninvertible, a regularized ELM
(RELM) model was formulated [34]

α =
(
PTP + γI

)−1
PTYl (3)

where γ > 0 is the ridge parameter for the unit matrix I.
Finally, for a test sample xt = [xt1, xt2, · · · , xtn]

T
∈ Rn, its prediction ŷt is obtained below:

ŷt = ptα = pt
(
PTP + γI

)−1
PTYl (4)

where pt is the output vector of the hidden-layer associated with xt.

2.2. Semi-supervised Extreme Learning Machine (SELM) Regression Method

For the semi-supervised learning methods, the input and output samples are represented as

{X} =
{
Xl
∪Xu

}
and Y =

[
Yl

Yu

]
=



yl
1
...

yl
L

0
...
0


(L+U)×1

, respectively. Additionally, the hidden layer output

matrix P can be defined as P = [p1, p2, · · · , pN](L+U)×N as aforementioned. The manifold regularization
framework is utilized to learn the matrix W of an SELM model [39].

min
W

1
2

{
‖JPW−Y‖2 + λ(PW)TLPW

}
(5)

where ‖JPW−Y‖2 is the approximation errors of labeled training data (i.e., for the empirical risk) while
λ(PW)TLPW is the penalty term utilizing the graph Laplacian L with a parameter λ ≥ 0 (i.e., for the
complexity of learnt function). All the unlabeled data are integrated into the matrix P. The graph
Laplacian L can be designed using a basic identity in the spectral graph theory [39]. Additionally, for

the convenience of calculation, J =
[

IL 0
0 0

]
(L+U)×(L+U)

is defined [39].

By solving Equation (5), the coefficient matrix W [39] is obtained as:

W =
[(

J + λLT
)
P
]+

JY (6)
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Generally, for semi-supervised learning methods, there is an assumption that the input patterns
from both labeled and unlabeled data are from the same distribution. In such a situation, the data
samples in the local region should have similar labels [33,34,39]. Useful information hidden in the
unlabeled data can be explored from the above modeling framework. The graph Laplacian L of SELM
contains the information in both of labeled and unlabeled data. Once the unlabeled data are ignored
(i.e., λ = 0), W is the same as α in Equation (3). The prediction performance improvement can be
obtained by suitably choosing λ as the penalty of model complexity. Finally, for a query sample
xt = [xt1, xt2, . . . , xtn]

T
∈ Rn, its prediction ŷt is obtained below:

ŷt = ptW = pt
[(

J + λLT
)
P
]+

JY (7)

where pt is the output vector of the hidden-layer associated with xt.

2.3. Bagging Local Semi-supervised Models (BLSM) Online Modeling Method

In industrial processes, JITL-based local soft sensors are more flexible than only using a fixed one
for the relatively long-term utilization [23,24]. Nevertheless, most conventional JITL approaches only
use limited labeled data, regardless of the useful information in lots of unlabeled data samples. As can
be expected, using the unlabeled data, the prediction accuracy of JITL models can be improved.

Online inquiry of xt contains three main steps. First, select a similar set {St} =
{
Sl

t ∪ Su
t

}
, including

both of Lt labeled data and Ut unlabeled data (i.e.,
{
Sl

t

}
=

{
Xl

t, Yl
t

}
and

{
Su

t

}
=

{
Xu

t

}
), from the historical

database {S} via some defined similarity criteria [37]. The common Euclidean distance-based similarity
is adopted here. Other similarity criteria available [23,24,37] can also be combined with local SELM
models. Second, construct a local SELM model f (xt) using the selected similar dataset {St}. Third,
online predict and then repeat the same procedure for another query sample.

For a selected {St}, two parameters, i.e., the number of hidden nodes N and the balance parameter
λ ≥ 0, are necessary to train a local SELM model. To avoid the overfitting problem, a simple bagging
strategy is adopted to generate multiple local candidate models with diversities and then aggregate
them as a new predictor. With the bootstrapping re-sampled strategy, several candidate regression
models are ensembling to achieve an improved prediction [40].

For the similar labeled dataset
{
Sl

t

}
=

{
Xl

t, Yl
t

}
, Lt pairs of samples are randomly selected to replace{

Sl
t

}
where the probability of each pair being chosen is 1

Lt
[40]. These Lt pairs of data are a re-sampled

training set
{
Sl

t

}
. Sequentially, the procedure is repeated for K times and to obtain K re-sampled datasets,

i.e.,
{
Sl

t1, · · · , Sl
tK

}
. Similarly, the bagging strategy is applied to the unlabeled dataset

{
Su

t

}
=

{
Xu

t

}
to get

K re-sampled datasets
{
Su

t1, . . . , Su
tK

}
.

For the kth dataset {Stk} =
{
Sl

tk ∪ Su
tk

}
, Wk of the kth local SELM model is obtained (similar with

Equations (5) and (6)). Consequently, for a test input xt = [xt1, xt2, . . . , xtn]
T
∈ Rn, the prediction value

of the kth local SELM model, i.e., ŷk,t, is formulated:

ŷk,t = ptWk (8)

where pt is the output matrix of the hidden-layer associated with xt.
Finally, using a simple ensemble strategy, K candidate SELM models are equally weighted to

generate the final prediction.

ŷt =
1
K

K∑
k=1

ŷk,t (9)

The main modeling flowchart of BLSM is given in Figure 1. In summary, BLSM has two main
characteristics. First, the useful information hidden in unlabeled data is explored and absorbed. Second,
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using the bagging strategy [40], the BLSM model can be aggregated using multiple local candidates
with diversities.
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Figure 1. Bagging local semi-supervised models (BLSM)-based online soft sensing flowchart for the
silicon content prediction.

3. Industrial Silicon Content Online Prediction

3.1. Data Sets and Pretreatment

The BLSM method is applied to the silicon content prediction in an industrial blast furnace in
China. For construction of soft sensors, the related input variables include the blast volume, the blast
temperature, the top pressure, the gas permeability, the top temperature, the ore/coke ratio, and the
pulverized coal injection rate [22–24]. After preprocessing the data set with 3-sigma criterion, most
of obvious outliers were removed out. A set of about 260 labeled samples was investigated. Half of
labeled samples are considered as the historical samples. The remaining part is used for testing the
models. Additionally, 500 unlabeled data were obtained as historical samples in the same furnace.
The labeled and unlabeled data are from the same industrial blast furnace, indicating that they share
with similar characteristics in a production process. Consequently, the semi-supervised learning
methods can be applied.

As a recent supervised method with good nonlinear regression performance, the just-in-time least
squares SVR (JLSSVR) soft sensor [23] is adopted for comparison. Additionally, as a semi-supervised
model, the SELM model [39] is also combined with JITL to construct a local SELM soft sensor here.
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Two common performance indices, including the root-mean-square error (RMSE), the relative RMSE
(simply denoted as RE), and the hit rate (HR), are adopted and defined, respectively.

RMSE =

√√√Ntst∑
t=1

(
yt − ŷt

Ntst

)2

(10)

RE =

√√√
1

Ntst

Ntst∑
t=1

(
yt − ŷt

yt

)2

(11)

HR =

Ntst∑
t=1

Ht

Ntst
× 100% (12)

where Ntst is the number of test samples. Ht is defined as:

Ht =

{
1,

∣∣∣ŷt − yt
∣∣∣ < 0.1

0, else
(13)

3.2. Results and Discussion

First, with different sizes of unlabeled data, the comparison results of three performance indices
between two semi-supervised models, i.e., BLSM and local SELM, are shown in Figures 2–4, respectively.
For both BLSM and local SELM models, the prediction performance is enhanced gradually with the
increase in the size of the unlabeled data. Due to the ensemble local modeling ability, BLSM exhibits
superior prediction performance to a single local SELM one. In this case, the prediction performance is
not further enhanced when the number of unlabeled samples is more than about 400. This is mainly
because most of useful information in unlabeled dataset is absorbed from the first 400 data.
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Figure 4. Hit Rate (HR) comparison of the silicon content prediction between bagging local
semi-supervised models (BLSM) and local semi-supervised extreme learning machine (SELM) models
with different numbers of unlabeled data.

With 400 unlabeled data, taking the HR index as an example, different numbers (i.e., K) of
candidate local SELM models for construction of a BLSM one is shown in Figure 5. With the ensemble
learning strategy, the efforts on parameter selection of BLSM can be reduced. The HR index indicates
that the ensemble learning can enhance the prediction performance to some extent (the HR value
increases from 77.2% to 80.3%). And BLSM achieves the best prediction performance when K = 15 for
this application.
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For the three soft sensors (i.e., BLSM, local SELM, and JLSSVR [23]), the silicon content prediction
results are shown in Figure 6. This parity plot shows that BLSM is better than local SELM and JLSSVR
methods. The prediction performance comparison of three modeling methods is listed in Table 1. Their
main characteristics are also described briefly. Generally, BLSM is a local semi-supervised learning
model and therefore it can better capture nonlinear characteristics in local regions, especially with
the help of unlabeled data. For JLSSVR [23] only with a few labeled data, the prediction domain
may be limited. Different from JLSSVR [23], BLSM explores and utilizes the hidden information in
lots of unlabeled data to improve the local modeling ability. Moreover, using the simple bagging
ensemble strategy, the prediction performance of a semi-supervised local model (e.g., a local SELM)
can be enhanced.Sensors 2019, 19, x FOR PEER REVIEW 9 of 12 
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Figure 6. The silicon content assay values against prediction results using bagging local semi-supervised
model (BLSM), semi-supervised extreme learning machine (SELM), and just-in-time least squares
support vector regression (JLSSVR) soft sensors.
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Table 1. Detailed prediction performance comparison of semi-supervised and supervised learning
models (best results are bold and underlined).

Soft Sensor
Models Brief Description RMSE RE

(%)
HR
(%)

BLSM Bagging local semi-supervised learning
method with ensemble learning strategy 0.070 13.11 80.3

Local SELM Local semi-supervised learning method
without ensemble learning strategy 0.077 14.28 77.2

JLSSVR [23] Local supervised learning method 0.091 17.43 70.9

The computational complexity of BLSM is about K times of a local SELM model. Based on the
experiences, K is often much less than 100. The online prediction time of BLSM for a test sample is
about 1 s (with CPU main frequency 2.3 GHz and 4 GB memory). Compared with the interval time of
lab assay, the computational load is accepted. With more historical data (especially unlabeled data),
the computational load of online modeling becomes larger. To alleviate this problem, it is suggested
that the online and offline models are integrated using the Bayesian analysis [37]. Alternatively,
development of the recursive version of BLSM may be a choice. In summary, all the obtained results
show that BLSM is a promising prediction method of the silicon content in hot metal produced in
blast furnaces.

4. Conclusions

This work has presented an online semi-supervised soft sensor model, i.e., BLSM, for blast furnace
hot metal silicon content prediction. Two main advantages distinguish BLSM from most current hot
metal silicon prediction soft sensors. First, the useful information in unlabeled data is absorbed into the
online modeling and prediction framework efficiently. Second, a bagging-based ensemble strategy is
integrated into the online semi-supervised model to improve its prediction reliability. The application
results show that BLSM has better prediction performance than traditional soft sensors. This is the first
application of semi-supervised learning methods to industrial blast furnaces. How to efficiently select
the more informative unlabeled data in an error-in-variables environment for construction of a more
robust semi-supervised model will be tackled in our future work.

Author Contributions: Data curation, X.H. and K.L.; Funding acquisition, Y.L.; Investigation, X.H., J.J. and K.L.;
Methodology, X.H., J.J. and Y.L.; Project administration, Z.G.; Writing—original draft, Y.L.; Writing—review &
editing, Y.L.

Funding: The National Natural Science Foundation of China (grant no. 61873241), Zhejiang Provincial Natural
Science Foundation of China (grant no. LY18F030024), and the Open Research Project of the State Key Laboratory
of Industrial Control Technology, Zhejiang University, China (No. ICT1900330).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

BLSM bagging local semi-supervised model
ELM extreme learning machine
JITL just-in-time-learning
JLSSVR just-in-time least squares support vector regression
NNs neural networks
RE relative root-mean-square error
RMSE root-mean-square error
RELM regularized extreme learning machine
SELM semi-supervised extreme learning machine
SLFNs single-hidden layer feedforward networks
SVR support vector regression
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