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Abstract: Accurate information acquisition is of vital importance for wireless sensor array network
(WSAN) direction of arrival (DOA) estimation. However, due to the lossy nature of low-power
wireless links, data loss, especially block data loss induced by adopting a large packet size, has
a catastrophic effect on DOA estimation performance in WSAN. In this paper, we propose a
double-layer compressive sensing (CS) framework to eliminate the hazards of block data loss, to
achieve high accuracy and efficient DOA estimation. In addition to modeling the random packet loss
during transmission as a passive CS process, an active CS procedure is introduced at each array sensor
to further enhance the robustness of transmission. Furthermore, to avoid the error propagation from
signal recovery to DOA estimation in conventional methods, we propose a direct DOA estimation
technique under the double-layer CS framework. Leveraging a joint frequency and spatial domain
sparse representation of the sensor array data, the fusion center (FC) can directly obtain the DOA
estimation results according to the received data packets, skipping the phase of signal recovery.
Extensive simulations demonstrate that the double-layer CS framework can eliminate the adverse
effects induced by block data loss and yield a superior DOA estimation performance in WSAN.

Keywords: double-layer compressive sensing; direction of arrival; block data loss; packet size; joint
sparse representation

1. Introduction

As a branch of array signal processing, DOA estimation has been a hot topic in many research
fields, such as smart antennas, mobile communication and target tracking [1–5]. Traditionally, DOA
estimation is implemented using sensor arrays, such as in active sonar systems [6,7], where all sensors
have a wired connection to the fusion center (FC). For wireless sensor array networks (WSAN) [8–10],
sensor arrays are deployed in a large sensor field and communicate with the FC via wireless channels.
Generally, the data transmission process from sensor arrays to the FC is assumed to be reliable
and lossless.

Unfortunately, due to the existence of channel noise, multi-path effects and link asymmetry, etc.,
low-power wireless links often generate a high packet loss rate [11]. Data sent from the sensor array
to the FC are often subjected to missing or garbled values, posing a great challenge for information
acquisition at the FC. Thanks to the sparsity of monitored signals, the newly-emerged compressive
sensing (CS) technique has a broad application prospect in wireless communication because of its
ability to recover the raw signal from a small number of random measurements [12–15]. Additionally,
it has been widely used to deal with data loss in wireless sensor networks (WSNs). In [16], the authors
presented the low-rank structure, spatial similarity and temporal stability of the environmental data
and proposed a novel approach based on CS to reconstruct the lost data. In [17], a CS-based lost data
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recovery approach for smart wireless accelerometers used in structural health monitoring (SHM) was
proposed, and the raw acceleration signal can be effectively reconstructed, though some data loss may
happen. In [18], an oversampled CS source coding was adopted to neutralize the stochastic nature of
wireless link disturbances and hence compensate channel erasures, making the data recovery at the
sink largely immune to data loss. The work in [19] studied the lossy nature of low-power wireless links
and introduced a CS-based channel coding scheme. Utilizing CS reconstruction techniques rather than
traditional interpolation methods for lost data recovery, they achieved an enhanced channel utilization
and transmission reliability. However, all of these works demonstrated their results in terms of the
accuracy of signal recovery, without insight into the level of information acquisition, e.g., the DOA
information in WSAN. Besides, there is an issue that has not been investigated yet. Block data loss is
common in wireless communication, as data samples are transmitted in the form of packets, and a
large packet size is often adopted for high transmission efficiency. However, block data loss often does
great harm to various applications.

In this paper, we first investigate the adverse effects of block data loss on DOA estimation in
WSAN. Subsequently, a double-layer compressive sensing framework is proposed to eliminate its
hazards and to realize high accuracy and efficient DOA estimation. Under the double-layer CS
framework, DOA estimation is implemented according to the received data samples (the measurement
vectors) at the FC. Conventionally, DOA estimation is fulfilled in two stages. We first need to recover
the raw sparse vectors and then perform DOA estimation based on them. This process is denoted by
DCS-DOA. Furthermore, to avoid the error propagation from signal recovery to DOA estimation in
DCS-DOA, we propose a direct DOA estimation technique, called DCS-DDOA, to achieve a better
DOA estimation performance. Leveraging a joint frequency and spatial domain sparse representation
of the sensor array data, the FC can directly obtain the DOA estimation results according to the same
received data samples, skipping the stage of signal recovery. Extensive simulations are carried out
to validate that the double-layer CS framework can dispel the detriment of block data loss and yield
a superior DOA estimation performance in WSAN.

The main contributions of this paper are summarized as follows:

• A double-layer compressive sensing framework is proposed to eliminate the adverse effects of
block data loss on DOA estimation in WSAN. Specifically, we model the random packet loss
during transmission as a passive CS process and introduce an active CS process at each array
sensor to address the block data loss problem.

• We present the mutual coherence of the equivalent measurement matrix and the absolute
off-diagonal entries’ distribution of the corresponding Gram matrix under the double-layer
CS framework, which account for the satisfactory DOA estimation performance.

• A direct DOA estimation technique (DCS-DDOA) is proposed under the double-layer
CS framework to avoid the error propagation problem in DCS-DOA. A joint frequency and
spatial domain sparse representation of the sensor array data is constructed and exploited to
directly perform DOA estimation at the FC.

The remainder of this paper is organized as follows. Section 2 describes the preliminaries of
compressive sensing, array signal model, lossy wireless links and block data loss briefly. In Section 3,
we elaborate the double-layer CS framework and the two DOA estimation techniques. The performance
evaluation for DCS-DOA and DCS-DDOA is presented in Section 4, followed by conclusions in
Section 5.

2. Background

2.1. Compressive Sensing

Denote x = Ψs, where x ∈ RN×1 is the signal of interest, and Ψ ∈ RN×N is a transformation
basis. We say x is K-sparse if s has only K (K � N) dominant elements, while other elements are
zero or close to zero. The theory of CS states that, under certain conditions, instead of periodically
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sampling x, we only need to acquire M (M� N) non-adaptive linear measurements y = Φx, where
Φ ∈ RM×N is a carefully-chosen measurement matrix [15]. Combining the measurement process and
sparse representation, we have y = Φx = ΦΨs = As, where A is called the equivalent sensing matrix.
It was shown in [20] that x can be exactly recovered from its measurement vector y by solving the
following constrained optimization problem:

min ‖s‖0 s.t. y = As (1)

as long as K < 1
2

(
1 + 1

µ(A)

)
. Additionally, µ (A) = max

i 6=j,1≤i,j≤N

{
|aT

i aj|
‖ai‖·‖aj‖

}
represents the mutual

coherence of A, with ai, aj denoting the i-th and j-th column, respectively. Another metric is the

average mutual coherence µav (A) = mean
i 6=j,1≤i,j≤N

{
|ai

Taj|
‖ai‖·‖aj‖

}
. They can also be determined according

to the maximum or average value among the absolute off-diagonal elements in the corresponding
Gram matrix G = ÃTÃ, where Ã is the column-normalized version of A. The mutual coherence µ (A)

is by now a classical way of analyzing the recovery abilities of a measurement matrix. Furthermore,
it can be proven that the solution to the problem in (1) is the same as the relaxed one to the l1-based
minimization below:

min ‖s‖1 s.t. y = As (2)

which can be solved efficiently using the algorithms such as basis pursuit (BP) [15].

2.2. DOA Estimation

Without loss of generality, we consider a uniform linear array (ULA) consisting of H
omnidirectional sensors, with an inter-element spacing of d, d < λmin/2, and λmin is the minimum
wavelength of the impinging signals. Consider K far-field wideband signals sk (t) incident on the ULA
from direction θk, k = 1, ..., K. The array output vector x (t) is then given by:

x (t) =
K

∑
k=1

a (θk) sk (t) + n (t), t = 1, ..., T (3)

where a (θk) =

[
1, e−j2π f

d sin(θk)
c , ..., e−j2π f

(H−1)d sin(θk)
c

]T
is the H × 1 steering vector of the

array corresponding to θk; A = [a (θ1) , ..., a (θK)] is the H × K array manifold matrix;
s (t) = [s1 (t) , ..., sK (t)]T is the source signal vector. T is the number of samples; c is the wave
speed. n (t) is the noise vector, whose elements are assumed to be temporally and spatially white,
and uncorrelated from the sources.

Observing that signals impinging on the arrays are intrinsically sparse in the spatial domain,
efficient strategies for DOA estimation based on sparse signal recovery have been proposed in [3,21],
where the sparsity constraints have been enforced through a l1-norm minimization. The concept of
group-sparsity has been exploited to cope with the problems of wideband DOA estimation [22,23].

2.3. Lossy Wireless Links

Due to factors like channel noise, multi-path effects, link asymmetry, etc., low-power wireless
links often suffer from a high packet loss rate [11]. We conduct extensive experiments to test the spatial
characteristic of wireless links using a pair of STM32W108 chips in our teaching building corridor.
Results demonstrate that wireless links can be represented by three different communication regions,
the connected region, the transitional region and the disconnected region [24], as shown in Figure 1,
which depicts the variation trend of packet reception rate versus the communication distance. In most
cases, wireless data transmission occurs in the transitional region. Therefore, to ensure the reliability
of communication, we need to take some error correcting measures, such as Automatic Repeat reQuest
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(ARQ), which retransmits the lost data packets, and Forward Error Correction (FEC), which adopts
some coding schemes to improve the robustness of transmission. However, both of the methods above
are imperfect because of the additional energy consumption and transmission delay.

Thanks to the inherent sparsity of monitored signals, compressive sensing has been widely used
in WSNs. Many research works have utilized it to deal with data loss in wireless communication to
improve transmission reliability. However, the emphasis was put on the accuracy of signal recovery,
rather than the information acquisition in specific application scenarios.
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Figure 1. The spatial characteristic of wireless links.

2.4. Block Data Loss

Taking the IEEE 802.15.4 standard as an example, its data packet structure is shown in Figure 2,
which consists of the MAC header (MHR), the MAC footer (MFR) and payload. Each transmitted
packet has a minimum fixed overhead provided by MHR and MFR. This cost is predetermined and
independent of the packet payload size. Intuitively, it is easy to come to the conclusion that using
larger packet sizes could achieve a better data transmission efficiency by minimizing the overhead per
useful bit transmitted in the payload. However, things may change greatly in practice. Given a bit
error rate BER, the packet reception rate (PRR) can be obtained as follows:

PRR = (1− BER)L (4)

where L = Lpayload + Loverhead is the whole packet size including two parts: Lpayload is the payload size,
and Loverhead denotes the size of fixed overhead. Naturally, the relationship between PRR and payload
size under a varying BER is illustrated in Figure 3a, achieved through simulation. Obviously, PRR
falls as payload size rises, and the downtrend becomes sharper when BER increases. On the other
hand, according to [25], we can define the data transmission efficiency as follows:

E =
Lpayload × (1− BER)Lpayload+Loverhead

Lpayload + Loverhead
(5)

where E represents the normalized data transmission efficiency. Based on Equation (5), the relationship
between E and Lpayload under a varied BER is depicted in Figure 3b.

MAC header Payload MFR

Figure 2. Data packet structure of IEEE 802.15.4. MFR, MAC footer.
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(a) Packet reception rate
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(b) Normalized transmission efficiency

Figure 3. Packet reception rate (PRR) and normalized transmission efficiency E versus payload length
under different BER.

We will take it for granted that the data transmission efficiency will improve with a larger payload
size, and this is indeed the case when BER is sufficiently low, that is wireless links are of high quality.
However, in practice, BER is usually somewhat high; thus, the data transmission efficiency will first
rise and then drop with the increase of payload size. This is because data packets with larger sizes are
more likely to be lost, exactly as demonstrated in Figure 3a. When a packet with a large size is lost
during transmission, all of the data samples in it are missing simultaneously, which is called block
data loss. Block data loss does serious harm to the transmission performance, and it becomes more
grievous with the increased packet size. For example, assume 65,536 data samples are transmitted
over a lossy link, with PRR being 25%; the histograms of the occurrence number for different sizes of
block data loss using different packet sizes are shown in Figure 4. Obviously, the size of block data
loss becomes larger when a larger packet size is adopted. Therefore, there is a tradeoff between the
desire to improve transmission efficiency by using a large packet size and the need to heighten the
PRR and avoid block data loss by using a small packet size. Briefly, it is a meaningful thing to find
some new error-correcting techniques to eliminate the hazards of block data loss, such that the data
transmission efficiency is optimized.
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(a) Packet size = 1
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(b) Packet size = 16

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

Block data loss size (samples)

O
cc

u
rr

en
ce

 n
u

m
b

er

(c) Packet size = 64

Figure 4. Histograms of the occurrence number for different sizes of block data loss under different
packet sizes.

3. Double-Layer CS Framework-Based DOA Estimation

In this paper, we focus on how to obtain high accuracy and efficient DOA estimation in a WSAN,
which consists of an H-element ULA and one single FC. The array sensors are connected to the FC
via low-power wireless links. Array sensors are battery powered and have limited computational
capacities, while the FC is linked to the infrastructure and able to bear heavy processing tasks.
Therefore, it is essential to shift as much of the processing burden to the FC as possible. Specifically,
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the array sensors just sample the impinging signals, perform computationally-simple operations
when needed and transmit the data to the FC, while the complicated DOA estimation algorithm
is implemented at the FC. Due to the lossy nature of low-power wireless links, the transmission
process from the sensor array to the FC is subjected to a high packet loss rate. Data loss, especially
block data loss resulting from a data packet with a large size being lost, damnifies the WSAN DOA
estimation performance significantly. To eliminate the adverse effects of block data loss on DOA
estimation, we propose the double-layer CS framework. The random packet loss during transmission
is modeled as a passive CS process, and an active CS process is introduced at each array sensor
to do a dimension-reduced projection on the acquired raw signal before transmission. Under the
double-layer CS framework, DOA estimation can be implemented using two techniques, named
DCS-DOA and DCS-DDOA, respectively. The entire process is described in Figure 5. For clarity,
the notations are summarized in Table 1.


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Figure 5. Schematic diagram of the double-layer compressive sensing (CS) framework and the DOA
estimation process of DCS-DOA and DCS-direct DOA (DDOA).

Table 1. Notations and explanations. FC, fusion center.

Notations Explanations

xh raw data samples at the h-th array sensor
Ψ Fourier sparsifying dictionary
αh sparse representation of xh under the basis Ψ

Φs the active CS projection matrix adopted at each array sensor
x̂h newly-generated data samples after a projection on xh
Φr the passive CS measurement matrix modeling the packet loss
yh received data samples at the FC from the h-th array sensor
x̃h recovered data samples for the h-th array sensor at the FC

3.1. Double-Layer CS Framework

In this part, we elaborate the double-layer CS framework, which consists of a passive CS
process modeling the random packet loss and an active CS process introduced at each array sensor.
Furthermore, we present the mutual coherence of the equivalent measurement matrix and the absolute
off-diagonal entries’ distribution of the corresponding Gram matrix, which account for the satisfactory
DOA estimation performance under the double-layer CS framework.

For comparison, we first present a single-layer CS framework. Assume N data samples are
acquired at each array sensor, and they are transmitted to the FC to complete one DOA estimate.
Under the single-layer CS framework, the raw data samples are directly assembled into packets for
transmission. The lossy nature of low-power wireless links is exploited by modeling the random
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packet loss during transmission as a passive CS process. Additionally, the passive CS measurement
matrix, denoted by Φr ∈ RM×N (M is the number of received data samples from each array sensor), is
constructed as follows:

Φr (i, j) =

{
1 if j = J (i) ≤ N
0 otherwise

(6)

where i is the row index and also the sequence number of the received data samples, j is the column
index and J (i) is the corresponding sequence number in the transmitted data vector of received
data. The passive CS measurement matrix is determined by the packet reception rate and the packet
size (in this paper, we ignore the overhead produced by MHR and MFR and refer to the number
of data samples in each packet as the packet size). For example, assume that there are 16 data
samples to be transmitted over a lossy link, with the packet reception rate being 50%. When the
packet size is one (only one data sample in each packet), the 16 data samples will be assembled into
16 packets for transmission, and eight packets are received with the corresponding packet number
being 1, 3, 6, 8, 10, 11, 13, 16; that is, J = {1, 3, 6, 8, 10, 11, 13, 16}. Then, the passive CS measurement
matrix can be depicted in Figure 6a. When the packet size is increased to four (four data samples in
each packet) for a higher transmission efficiency, the 16 data samples will be assembled into four
packets for transmission. Under the same packet reception rate, two packets are received with the
corresponding packet number being one and four. In this case, eight data samples are received,
but J = {1, 2, 3, 4, 13, 14, 15, 16}. Thus, the passive CS measurement matrix is depicted in Figure
6b. Obviously, when the packet size is larger than one, block data loss will emerge when a packet
is missing during transmission. Additionally, this is specifically exhibited in the distribution of the
element “1” of the passive CS measurement matrix. The “1”s will be less dispersive when the packet
size is larger. Note that the equivalent measurement matrix is A = ΦrΨ under the single-layer CS
framework. To account for the hazards of block data loss, we present the histograms of the absolute
off-diagonal elements of the corresponding Gram matrix under different packet sizes. As shown in
Figure 7a, when the packet size is increased from 1–64, the number of very correlated columns of the
equivalent measurement matrix A is increased greatly, so the distribution of entries keeps moving
towards the larger side. As a consequence, the DOA estimation performance gradually deteriorates
with an increased packet size, which will be discussed in our simulations later.

(a) Packet Size = 1 (b) Packet Size = 4

Figure 6. Examples of the passive CS measurement matrix under different packet sizes, with blue grids
denoting one and blank grids denoting zero.

To eliminate the adverse effects of block data loss on DOA estimation in WSAN, besides the
passive CS process, we introduce an active CS process at each array sensor to form the double-layer CS
framework. At the h-th array sensor, instead of directly transmitting the raw data vector xh, we perform
a dimension-reduced projection on it before its elements are assembled into packets for transmission,
as shown in Figure 8. The projection matrix can be a Gaussian matrix, which makes each of the
after-projection data samples a weighted average of the raw data samples. In this way, the transmitted
data samples all contain global information of the impinging signals. Besides, a permutation matrix is
also competent. By using this matrix, we can rearrange the raw data samples so that the originally
adjacent ones will not be assembled into the same data packet. The projection operation using either
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of the matrices mentioned above can get rid of the hazards of block data loss. The projection matrix
is generated in advance and stored in the ROM of the array sensors. For a favorable scalability, an
identical projection matrix is chosen for all array sensors. To compensate for the energy consumption
generated by the projection operation, we make it dimension-reduced to lower the data volume.
Therefore, the active CS projection matrix can be constructed by selecting Ms (Ms < N) random rows
from an N × N Gaussian or permutation matrix. After the completion of projection at each array
sensor, the newly-generated data samples are assembled into data packets according to the packet
size and then transmitted to the FC over lossy wireless links. Note that under the double-layer CS
framework, the equivalent measurement matrix is denoted by A = ΦrΦsΨ. Likewise, we present the
histograms of the absolute off-diagonal elements of the corresponding Gram matrix (taking the case
where Φs is a permutation matrix as an example) under different packet sizes. As shown in Figure 7b,
the distribution of entries almost stays unchanged since the effect of the projection operation (active CS
process) is to reduce the number of very correlated columns in A. Furthermore, the values of mutual
coherence for the single-layer CS and double-layer CS framework under different packet sizes are
provided in Table 2. The results are self-explanatory, the values of µ (A) and µav (A) keep rising with
the increase of packet size under the single-layer CS framework. However, under the double-layer
CS framework, the values remain low regardless of the packet size, which promises a superior DOA
estimation performance.

Table 2. The mutual coherence of the equivalent measurement matrix under the single-layer CS and
double-layer CS framework when N = 512 and M = 64.

Single-Layer CS Double-Layer CS

Packet Size µ (A) µav (A) µ (A) µav (A)

1 0.2859 0.2297 0.2825 0.2306
8 0.5911 0.3328 0.2905 0.2269

16 0.7489 0.4077 0.2920 0.2311
32 0.8866 0.5118 0.2927 0.2296
64 0.9745 0.5616 0.2929 0.2308
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Figure 7. Histograms of the absolute off-diagonal elements of the corresponding Gram matrix to the
equivalent measurement matrices under the single-layer CS and double-layer CS framework when
N = 512 and M = 64.



Sensors 2017, 7, 1688 9 of 21

ˆ
hx ,s hΦ hx

ˆ
hx ,s hΦ hx





(a) Permutation matrix

ˆ
hx ,s hΦ hx

ˆ
hx ,s hΦ hx





(b) Gaussian matrix

Figure 8. The active CS process at each array sensor using a projection matrix constructed from a
permutation or Gaussian matrix.

3.2. DOA Estimation by DCS-DOA

Under the double-layer CS framework, the received data samples from each array sensor can
be regarded as a measurement vector, and we have H measurement vectors in total at the FC.
For DCS-DOA, the DOA estimation results are obtained in two stages. In the first stage, the raw sparse
vectors are required to be recovered from the received data samples by sparsity-based techniques. In the
second stage, DOA estimation is implemented according to the recovered sparse vectors. The details
of the two stages are presented respectively in the following two subsections.

3.2.1. Signal Recovery

The active CS projection matrix at each array sensor is generated in advance and stored in the
ROM, as well as at the FC. Moreover, as the sending sequence number of each data packet can be
included in the packet header, the identities of the received data packets are known by the FC. For the
h-th array sensor, taking the passive CS process, the active CS process and the sparse representation in
the frequency domain into consideration simultaneously, we have:

yh = Φr,hΦs,hxh = Φr,hΦs,hΨαh = ΦhΨαh (7)

where yh is the received data vector (the measurement vector), Φr,h is the passive CS measurement
matrix modeling the packet loss, Φs,h is the active CS projection matrix adopted at the h-th array sensor,
Ψ is the N × N inverse discrete Fourier transform (IDFT) matrix and αh is the sparse vector in the
frequency domain. For the h-th array sensor, the double-layer CS measurement matrix is denoted
by Φh, and Φh = Φr,hΦs,h. Stacking all of the measurement vectors of the H array sensors together,
we have: 

y1

y2
...

yH

 =


Φ1Ψ

Φ2Ψ

. . .
ΦHΨ




α1

α2
...

αH

 (8)

or in a concise form:
y = Θα (9)

where y =
[
yT

1 , ..., yT
H
]T is the joint measurement vector, Θ = diag {Φ1Ψ, Φ2Ψ, ..., ΦHΨ} is the joint

measurement matrix of H array sensors and α =
[
αT

1 , ..., αT
H
]T is the joint sparse vector. To implement

DOA estimation, the sparse vector at each array sensor needs to be recovered. Considering that
αh, 1 ≤ h ≤ H share the same sparse structure under the assumption that signals of interest are
composed of identical harmonics, the sparse vector reconstruction, given Equation (9), can be realized
based on the concept of group-sparsity [26]. Define a matrix β = [α1, α2, ..., αH ], with βk denoting the
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k-th row of β, and ᾱ =
[
‖β1‖2, ‖β2‖2, ..., ‖βN‖2

]T ; then, αh, 1 ≤ h ≤ H can be recovered by solving the
following group sparsity-based l1-norm minimization problem:

min ‖ᾱ‖1
subject to y = Θα

(10)

which is representable in a second order cone programming (SOCP) frame and solved using the
SeDuMi toolbox [27].

3.2.2. DOA Estimation

After recovering the sparse vector at each array sensor, DOA estimation can be realized using
various algorithms, such as the MUSIC technique and the maximum likelihood estimator. In this paper,
a sparse signal reconstruction perspective is adopted for better estimation accuracy and robustness
to noise. We denote the recovered sparse vector at the h-th array sensor by α̃h, h = 1, ..., H. Now,
the array output data are already in the frequency domain, so we can directly perform DOA estimation
without the need for DFT conducted in the common wideband DOA estimation process. Assume that
α̃h contains K (K � N) nonzero elements; we only need to consider the specific K nonzero frequency
sub-bands. First, we investigate the DOA estimation problem at a single frequency sub-band (denoted
by fk, chosen from the K nonzero frequency components), and the array output vector at fk can be
denoted by α̃ [ fk] = [α̃1 [ fk] , ..., α̃H [ fk]]

T . Similarly, the noise vector for the sensor array at the frequency
sub-band fk is denoted by n [ fk] = [n1 [ fk] , ..., nH [ fk]]

T . Using a search grid of Q elements, with each
of them indicating a potential source signal at the corresponding incident angle, the array output
vector at the frequency sub-band fk can be formulated as follows:

α̃ [ fk] = Ã
(

fk, θ̃
)

s̃ [ fk] + n [ fk] (11)

where Ã
(

fk, θ̃
)
= [ã

(
fk, θ̃1

)
, ..., ã

(
fk, θ̃Q

)
] is the array manifold matrix corresponding to the virtual

source signal vector s̃ [ fk] =
[
s̃[ fk, θ̃1], s̃[ fk, θ̃2], ..., s̃[ fk, θ̃Q]

]T , and ã
(

fk, θ̃q
)

is the steering vector related

to θ̃q. The sampling grids of all potential directions are denoted by a vector θ̃ =
[
θ̃1, ..., θ̃Q

]T . As the
sampling grid is sufficiently fine, the number of nonzero elements in s̃ [ fk] is much smaller than Q.
That is to say, s̃ [ fk] is sparse, and the indexes of the nonzero elements indicate the DOAs of the actual
sources. A sparse signal reconstruction perspective for DOA estimation was proposed in [3], and it
can be applied to a single frequency sub-band in the wideband case directly, so the aforementioned
DOA estimation problem can be resolved by solving the optimization problem below:

min ‖s̃ [ fk]‖1
subject to

∥∥α̃ [ fk]− Ã
(

fk, θ̃
)

s̃ [ fk]
∥∥

2 ≤ ε1
(12)

where ε1 is the user-specified error bound, and the l1-norm and the l2-norm represent the sparsity
penalty and the residual error, respectively.

As the DOAs corresponding to the K (K � N) nonzero frequency components share the same
spatial sparse pattern, we can estimate the DOAs of wideband source signals based on the concept of
group-sparsity. Assume that the frequencies of the K nonzero sub-bands are denoted by f1, ..., fK. Now,
we construct two matrices: B = diag

{
Ã
(

f1, θ̃
)

, Ã
(

f2, θ̃
)

, ..., Ã
(

fK, θ̃
)}

, S̃ = [s̃ [ f1] , s̃ [ f2] , ..., s̃ [ fK]].
Combining all of the K nonzero frequency sub-bands, we have:

α̃ = Bs̃ + n (13)

where α̃ =
[
α̃H [ f1] , ..., α̃H [ fK]

]H is the joint array output vector covering the K sub-bands, and
s̃ = vec

(
S̃
)

is a KQ × 1 joint sparse indicator vector by vectorizing S̃. Additionally,

n =
[
nH [ f1] , ..., nH [ fK]

]H is the joint noise vector.
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We use the row vector sq, q = 1, ..., Q, to represent the q-th row of S̃. Based on the l2-norm of sq,

we can formulate a new Q× 1 column vector ŝ as ŝ =
[
‖s1‖2, ‖s2‖2, ...,

∥∥sQ
∥∥

2

]T . Ultimately, the DOA
estimation problem of wideband source signals based on group-sparsity is formulated as follows:

min ‖ŝ‖1
subject to ‖α̃− Bs̃‖2 ≤ ε2

(14)

where ε2 is the user-specified error bound, and the problem is representable in an SOCP frame and
solved using the SeDuMi toolbox [27]. The indexes of the nonzero elements in ŝ indicate the wideband
DOA estimation results.

3.3. Improved DOA Estimation by DCS-DDOA

To avoid the error propagation from signal recovery to DOA estimation in DCS-DOA, we develop
a new scheme DCS-DDOA, where a joint frequency and spatial domain sparse representation of the
sensor array data is constructed and leveraged. Therefore, we can directly conduct DOA estimation at
the FC based on the received data samples without the need for signal recovery.

3.3.1. Joint Sparse Representation

Suppose an N-point DFT has been performed on the raw data vector at each array sensor,
i.e., xh = Ψαh, h = 1, ..., H. As we plan to skip the step of signal recovery at the FC, the locations of the
nonzero elements in αh are unknown. Therefore, we need to deal with all of the N frequency sub-bands.
In a similar fashion, the array output vector at the n-th frequency sub-band ᾱ [n] is presented as:

ᾱ [n] = Ā
(
n, θ̄
)

s̄ [n] + w [n] (15)

where ᾱ [n] = [ᾱ1 [n] , ..., ᾱH [n]]T , Ā
(
n, θ̄
)
=
[
ā
(
n, θ̄1

)
, ..., ā

(
n, θ̄Q

)]
is the array manifold matrix

corresponding to the virtual source signal vector s̄ [n] and ā
(
n, θ̄q

)
is the steering vector related to

θ̄q. The sampling grid of all potential directions is denoted by θ̄ =
[
θ̄1, ..., θ̄Q

]T , and w [n] is the
noise vector.

Spontaneously, we can derive the joint array output vector across the N frequency sub-bands
as follows:

ᾱ = B̄s̄ + w (16)

where ᾱ =
[
ᾱH [0] , ᾱH [1] , ..., ᾱH [N − 1]

]H , s̄ =
[
s̄H [0] , s̄H [1] , ..., s̄H [N − 1]

]H is the joint

sparse indicator vector, w =
[
wH [0] , wH [1] , ..., wH [N − 1]

]H is the joint noise vector and
B̄ = diag

{
Ā
(
0, θ̄
)

, Ā
(
1, θ̄
)

, ..., Ā
(

N − 1, θ̄
)}

is the joint array manifold matrix, with a dimension
of HN ×QN.

Let us define a H × N matrix D = [ᾱ [0] , ᾱ [1] , ..., ᾱ [N − 1]]. Observe that D can also be
represented as D = [α1, α2, ..., αH ]

T . Obviously, ᾱ = vec (D) and α = vec
(
DT), so the elements in α

and ᾱ are just the identical elements from the matrix D. In this way, we can construct a permutation
matrix P such that:

α = Pᾱ (17)

where P is utilized to adjust the locations of the elements in D, mapping ᾱ onto α, which can be
easily obtained. Equation (17) relates α, which emphasizes the sparsity in the frequency domain, to ᾱ,
which is the virtual array output vector corresponding to the sparse sources in the spatial domain.
In other words, a joint frequency and spatial domain sparse representation of the sensor array data,
which will be used for DOA estimation in the next step, is exhibited through the elements in matrix D.
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3.3.2. Direct DOA Estimation

Leveraging the joint frequency and spatial domain sparse representation of the sensor array
data, DOA estimation can be directly implemented at the FC according to the received data samples.
Substituting Equations (16) and (17) into Equation (9), we can have:

y = Θα = ΘPᾱ = ΘP (B̄s̄ + w) = Γs̄ + w̄ (18)

where w̄ = ΘPw is the subsampled white Gaussian noise at the FC, and Γ = ΘPB̄ is the joint sparse
representation matrix with a dimension of HM× NQ, combining the frequency sparsity in Θ and the
spatial sparsity in B̄. The structure of Γ is shown as follows:

Γ =


Θ1,1ā1 (0) Θ1,2ā1 (1) · · · Θ1,N ā1 (N − 1)
Θ2,1ā2 (0) Θ2,2ā2 (1) · · · Θ2,N ā2 (N − 1)

...
...

...
...

ΘH,1āH (0) ΘH,2āH (1) · · · ΘH,N āH (N − 1)

 (19)

where Θh,n is the n-th column of Θh, i.e., Φr,hΦs,hΨ and āh (n) is the h-th row of Ā (n). Now, we can
reconstruct the joint sparse indicator vector s̄ from the joint measurement vector y to obtain the DOA
estimation results without the need for recovering the sparse vectors αh, 1 ≤ h ≤ H.

Define a matrix S̄ = [s̄ [0] , s̄ [1] , ..., s̄ [N − 1]], with s̄q, q = 1, ..., Q denoting the q-th row vector
of S̄. On the basis of the mentioned representations above and the concept of group sparsity, we can
formulate the DOA estimation problem as the following constrained l1-norm minimization problem:

min ‖γ‖1
subject to ‖y− Γs̄‖2 ≤ ε3

(20)

where γ =
[
‖s̄1‖2, ‖s̄2‖2, ...,

∥∥s̄Q
∥∥

2

]T is the sparse indicator vector and ε3 is the user-specified error
bound. In the same way, the problem in Equation (20) is solved using the SOCP approach by virtue
of the SeDuMi toolbox. Finally, the DOA estimation results of the wideband source signals are
spontaneously deduced according to the sparse solution to γ.

Different from the two-stage DCS-DOA, the DCS-DDOA can desirably exploit the joint sparsity in
the frequency and spatial domain. In this integrated approach, it can subtly avoid the error propagation
problem existing in the two-stage DCS-DOA. More specifically, the formulated problem is capable of
directly obtaining the DOA estimation results, as shown in (20). As a consequence, the DOA estimation
performance can be further improved.

4. Experimental Results

In this section, a series of numerical simulation results is presented to illustrate the DOA estimation
performance achieved by DCS-DOA and DCS-DDOA. We use CS-DOA as a baseline, where DOA
estimation is implemented under the single-layer CS framework. The simulations are performed
using MATLAB2010b running on an Intel Core i5-4460, 3.20-GHz processor with 12 GB memory,
under Windows 7.

4.1. Simulation Settings

The signals imitating passive acoustic targets are synthesized using four dominant frequencies
at 320 Hz, 480 Hz, 640 Hz and 800 Hz. In this section, we assume that the acoustic signal is spread
in the air and that the propagation speed is 340 m/s (the following mentioned guidelines on how to
design the array geometry can be easily extended to other scenarios, where the acoustic signal may
have a different propagation speed). Therefore, the minimum wavelength of the impinging signals
is 0.425 m. The received acoustic signals are contaminated with zero-mean, white Gaussian noise.
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Additionally, the variance of noise can be altered to obtain different SNR values. The sampling rate is
set to 4096 Hz, which is much more than twice the highest frequency of interest, to avoid the frequency
aliasing effect. We consider a WSAN consisting of a six-element ULA (note that the results in the paper
can be easily extended to non-uniform linear arrays) and one FC, where the inter-element spacing
in the ULA is set 0.2 m, which is smaller than half of the minimum wavelength of the impinging
signals to avoid angle ambiguity effects. Array sensors are connected to the FC through lossy wireless
links. For each array sensor, N = 512 data samples will be collected to implement one DOA estimation
process. The acquired data samples are assembled into data packets for transmission to the FC over
lossy wireless links. For the ease of simulation and analysis, we ignore the overhead produced by the
packet header and packet footer, and the data packet size is set to 1, 8, 16, 32 and 64, indicating the
number of data samples grouped into one data packet. The incident angles (DOAs) of the acoustic
signals are constrained within the range from −90◦–90◦, and this angle range is divided into 360
search grids, with 0.5◦ spacing. The number of data samples received from each array sensor at the
FC is denoted by M. In the following simulations, three evaluation criteria are used to describe and
compare the performance of CS-DOA, DCS-DOA and DCS-DDOA. The reconstruction error is defined

as η =

√
∑H

h=1 ‖x̃h − xh‖2
2

/
∑H

h=1 ‖xh‖2
2. Following a similar work [28], which takes into account both

the errors in estimating the actual source number and the corresponding DOAs, the root mean square
error is defined as: RMSE = 1

/
L ∑L

l=1 RMSE(l), and RMSE(l) is defined as:

when K̃(l) ≤ K̃,

RMSE(l) =

√√√√∑K̃(l)

k=1

∣∣∣θk − θ̃
(l)
k

∣∣∣2 + ∣∣K̃− K̃(l)
∣∣ (∆θmax)

2

K̃

when K̃(l) > K̃,

RMSE(l) =

√√√√∑K̃
k=1

∣∣∣θk − θ̃
(l)
k

∣∣∣2 + ∑K̃(l)

j=K̃+1

∣∣∣θ̃(l)j − θ̄
(l)
j

∣∣∣2
K̃

where K̃ is the number of actual sources, K̃(l) is the number of estimated sources of the l-th trial,

L is the number of detection trials and θ̄
(l)
j = arg

{
min

θk ,k=1,...,K̃

∣∣∣θk − θ̃
(l)
j

∣∣∣}, ∆θmax is a penalty term,

which is equal to the maximum admissible localization error (i.e., ∆θmax = 180◦). For completeness,
the detection frequency is defined as the percentage of successful detections (i.e., K̃ = K̃(l)) in L
independent trials.

4.2. Performance Analysis for DCS-DOA

To highlight the adverse effects of block data loss on DOA estimation in WSAN, we first present
the DOA estimation behavior of CS-DOA, where the projection operation (the active CS process) is
not adopted at each array sensor, while the passive CS process and DOA estimation are identical to
those in DCS-DOA. In this set of simulations, two (K̃ = 2) stationary acoustic sources from directions
θ1 = −60◦, θ2 = 30◦ are impinging on the ULA. The input SNR is set to 10 dB. The group LASSO
algorithm in [26] is leveraged to solve the optimization problems. Five hundred independent trials
are performed to provide the averaged results. As shown in Figure 9a–c, all of the metrics of signal
recovery error, DOA estimation RMSE and detection frequency become worse when a larger packet
size is chosen. In other words, the FC will need to receive more data samples to provide a satisfactory
DOA estimation result with a larger packet size, which explicitly reveals the hazards of block data loss.
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(a) Signal recovery error vs. M
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(b) DOA estimation RMSE vs. M
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Figure 9. The signal recovery error, DOA estimation RMSE and detection frequency versus the number
of received data samples M under different packet sizes when projection (active CS) is not introduced
at each array sensor.

In DCS-DOA, a projection operation (active CS process) is introduced at each array sensor.
To compensate for the energy consumption generated by the projection operation, we make the
projection matrix dimension-reduced; thus, the energy consumption for transmission is reduced. A
proper compression ratio of the active CS process is determined through trial and error to make sure
that an accurate DOA estimation result can be obtained even when there is a somewhat high packet
loss rate. We present the DOA spatial spectrum to make an intuitional comparison between CS-DOA
and DCS-DOA. According to the DOA spatial spectrum, DCS-DOA shows a better DOA estimation
behavior than CS-DOA. As shown in Figure 10, when the packet size is set to 32, the FC needs 160 data
samples from each array sensor to obtain an unambiguous DOA spectrum in CS-DOA, while the
number is just 128 in DCS-DOA. When the packet size is 64, as shown in Figure 11, 128 data samples
are still enough for DCS-DOA to provide an acceptable DOA estimation result, while CS-DOA fails
until the number reaches 192.
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Figure 10. The comparison of DOA spatial spectrum between CS-DOA and DCS-DOA with
packet size = 32.
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Figure 11. The comparison of DOA spatial spectrum between CS-DOA and DCS-DOA with
packet size = 64.

To clearly compare the DOA estimation performance for CS-DOA and DCS-DOA under different
packet sizes, the DOA RMSE and the detection frequency results are shown in Figures 12 and 13,
where each point is based on an average of the results obtained from 500 independent simulation
runs. DCS-DOA is denoted by DCS-DOA(1) if the projection matrix at each array sensor is
a dimension-reduced permutation matrix, and it is denoted by DCS-DOA(2) if the projection matrix is
constructed from a random Gaussian matrix.
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Figure 12. The comparison of DOA RMSE between CS-DOA and DCS-DOA under different packet sizes.
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Figure 13. The comparison of detection frequency between CS-DOA and DCS-DOA under different
packet sizes.

According to the simulation results, whatever the packet size, the DOA estimation performance
achieved by DCS-DOA has obvious advantages over CS-DOA. Additionally, the DOA estimation
RMSE and detection frequency for DCS-DOA is no longer affected by block data loss, as shown in
Figure 14. Therefore, we can exploit a larger packet size to achieve a higher data transmission efficiency.
The performances achieved by DCS-DOA(1) and DCS-DOA(2) are verified to be very close to each
other. Considering that the storage, fetch and processing of a permutation matrix is simpler and less
energy-consuming, the projection matrix is usually constructed from a permutation matrix. In the next
simulations, we use DCS-DOA(1) as a representative, simply denoted by DCS-DOA.
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Figure 14. The DOA RMSE and detection frequency for DCS-DOA versus M under different packet sizes.

4.3. Performance Analysis for DCS-DDOA

Similarly, we first present the behavior of DOA estimation for DCS-DDOA in a direct way. Assume
that there are two fixed sources with incident angles θ1 = −60◦ and θ2 = 30◦. The input SNR is 10 dB.
The DOA spatial spectrum corresponding to different packet sizes is shown in Figure 15. When the
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packet size is 32, DCS-DDOA provides a clear DOA spectrum with a high probability as long as the
FC receives 32 data samples from each array sensor, and the value becomes 64 when the packet size
is increased to 64. Leveraging the joint sparsity in the frequency and spatial domain, DCS-DDOA
is able to directly perform DOA estimation, skipping the signal recovery stage. Therefore, the error
propagation problem is avoided in DCS-DDOA, which yields a further improved DOA estimation
performance, as shown in Figures 16 and 17.
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Figure 15. The DOA spatial spectrum for DCS-DDOA with the packet size being 32 and 64.
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Figure 16. The comparison of DOA estimation RMSE among CS-DOA, DCS-DOA, DCS-DDOA under
different packet sizes.
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Figure 17. The comparison of detection frequency among CS-DOA, DCS-DOA, DCS-DDOA under
different packet sizes.

Furthermore, we make a comparison between DCS-DOA and DCS-DDOA under a varying
SNR, given that the packet size is 64 and the number of received data samples from each array
sensor is M = 64. The results are shown in Figure 18, where each point is based on an average of
500 independent trials. Obviously, the DOA estimation performance of DCS-DDOA is always better
than DCS-DOA regardless of the noise level. This results from the avoidance of the error propagation
and the exploitation of a joint sparse representation. However, it costs something else to obtain such a
satisfactory DOA estimation behavior. Now, we conduct a statistical analysis to get the computation
time spent on one DOA estimate for the two techniques. In accordance with previous simulation
results, when the packet size is 64, the behavior of DOA estimation is nearly perfect for both methods
when M reaches 128, so we just explore the computation time in cases where M = 64, 128. By the
same token, the cases of M = 32, 64, 96, 128 are investigated when the packet size is 32. The results are
shown in Figure 19, which is obtained based on an average of 500 independent trials.
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Figure 18. The comparison of DOA estimation RMSE and detection frequency between DCS-DOA and
DCS-DDOA under a varying SNR with the packet size being 64 and M being 64.
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Figure 19. The computation time spent on one DOA estimate for DCS-DOA and DCS-DDOA.

As depicted in Figure 19, it takes much more time for DCS-DDOA to complete one DOA estimation
process. Thus, it would be inapplicable in some scenarios where there is an urgent need for real-time
target localization and tracking. In practice, if the quality of wireless links can be estimated in real time,
we can combine it with the application requirements to decide which approach to adopt. If the link
quality is sufficiently good, we will choose DCS-DOA for a faster DOA estimation process. Otherwise,
we need to utilize DCS-DDOA to ensure the DOA estimation accuracy.

5. Conclusions

In this paper, we investigate the adverse effects of block data loss on DOA estimation in WSAN.
To eliminate the hazards of block data loss and realize high-accuracy and efficient DOA estimation,
we propose a double-layer compressive sensing framework, where the random packet loss during
transmission is modeled as a passive CS process, while the dimension-reduced random projection at
each array sensor is modeled as an active CS process. Under the double-layer CS framework, DOA
estimation can be implemented using two techniques, DCS-DOA and DCS-DDOA. In DCS-DOA,
the FC will first recover the raw sparse vectors and then perform DOA estimation based on them.
To avoid the error propagation from signal recovery to DOA estimation, DCS-DDOA is proposed.
Leveraging a joint frequency and spatial domain sparse representation of the sensor array data,
the FC can directly obtain the DOA estimation results according to the received data, skipping the
phase of signal recovery. Extensive simulations demonstrate that the double-layer CS framework
can be immune to block data loss and yield a satisfactory DOA estimation performance in WSAN.
Furthermore, a comparison is made between DCS-DOA and DCS-DDOA to show their merits
and deficiencies.
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