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Abstract: This paper addresses the two-dimensional (2D) direction-of-arrival (DOA) estimation
problem with two novel methods for mixed noncircular and circular signals. The first proposed
method is named the two-stage direction-of-arrival matrix (TSDOAM) method, and the other is called
the two-stage rank reduction (TSRARE) method. The proposed methods utilize both the circularity
and the direction-of-arrival differences between the noncircular and circular sources to estimate the
2D directions-of-arrival (DOAs). The maximum detectable 2D angle parameters of the TSDOAM
and TSRARE methods are twice those of the existing methods. Moreover, the TSRARE method can
detect more incident signals than the TSDOAM method due to the array aperture of two parallel
uniform linear arrays (ULAs) being fully utilized. Simulation results show that compared to the
existing methods for the small angle separation of 2D directions-of-arrival, the two proposed methods
perform well in terms of the signal-to-noise ratio (SNR) and snapshots.

Keywords: 2D direction-of-arrival estimation; noncircular signal; circularity difference; small
angle separation

1. Introduction

Recently, the noncircularity of incident signals has been widely reported in the field of array
signal processing, including direction-of-arrival (DOA) estimation [1–10] and beamforming [11–13] to
improve the performance of direction-of-arrival estimation accuracy and beamformers. The aforementioned
direction-of-arrival estimation algorithms are mainly focused on the one-dimensional (1D) domain.
However, in practice, two-dimensional (2D) direction-of-arrival estimation with various array structures,
such as two-parallel arrays [14–19], L-shaped arrays [20–27], and a uniform rectangular array [28–30],
are closer to the actual situation.

In order to improve the direction-of-arrival estimation performance, many effective noncircular
algorithms for 2D directions-of-arrival have been presented in [31–33]. In [31], Liu et al. proposed
an extended rank reduction (ERARE) method with noncircular information exploited for two-parallel
uniform linear arrays (ULAs) which achieved an improved estimation accuracy compared to [15].
Based on [25], the conjugate information of the observed data was utilized to realize a better 2D
direction-of-arrival estimation [32]. use of the conjugate information of the observed data to realize
a better 2D direction-of-arrival estimation. A method that applied noncircular direction finding
to the hexagonally-shaped electronically steerable parasitic antenna radiator (ESPAR) array was
presented in [33], and the Cramér–Rao bound (CRB) was analyzed for comparison. However, the
aforementioned algorithms cannot cope with the direction-of-arrival estimation problem for the mixed
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noncircular (e.g., binary phase shift keying, BPSK) and circular (e.g., quaternary phase shift keying,
QPSK) signal scenario. Although Yin’s method [15] and Xia’s method [16] could be applicable to the
above-mentioned mixed signal scenario, the distinguishable signals were less than the array elements.

In [34–36], direction-of-arrival estimation schemes for joint noncircular and circular signal
estimation were proposed for 1D direction finding. In [34], Gao. et al. proposed a method that
constructed a new data vector with the original data and the conjugate ones to form two estimators for
noncircular and circular signal finding, respectively. However, the method in [34] cannot deal with
the coincident directions-of-arrival of noncircular and circular signals, and its estimation performance
degraded severely in small angle separation . In addition, the maximum number of detected
signals was still limited. An improved method was presented in [35] to solve the above problems,
which adopted the direction-of-arrival circularity difference rather than the direction-of-arrival
difference between the noncircular and circular signals to estimate the direction-of-arrival. Nevertheless,
the direction-of-arrival estimation performance dropped due to few observed data being available.
In [36], a sparse representation method for mixed signals was proposed by exploiting overcomplete
dictionaries that were subject to the sparsity constraint to jointly represent the covariance and elliptic
covariance matrices of the array output. However, for 2D situations, there are few research works
for joint noncircular and circular signal direction finding. Additionally, much of the work in array
processing has also been focused on optimization problems, such as genetic algorithms [37–40].

In this paper, inspired by the method in [35], two novel 2D direction-of-arrival estimation algorithms
using two parallel ULAs with a two-stage direction-of-arrival matrix (TSDOAM) method and a two-stage
rank reduction (TSRARE) method, separately, are proposed for mixed noncircular and circular signals
estimation. The direction-of-arrival circularity difference rather than the direction-of-arrival difference
between the noncircular and circular signals for the 2D directions-of-arrival’s estimation is utilized
in the two proposed methods. The maximum number of distinguished mixed signals of the two
proposed methods are identified compared to the conventional methods, which show that the detected
number of the signals is more than that of the array elements. Moreover, when both of the 2D
directions-of-arrival are incoming from small angle separation—even when both of them are from the
overlapping direction—the estimation accuracy of the two proposed methods is better than Yin’s and
Xia’s method.

The rest of this paper is organized as follows. The array signal model is introduced in Section
2. The TSDOAM and TSRARE methods are described in detail in Section 3. The maximum number
of detective mixed signals is analyzed in Section 4. Simulation results are presented to verify the
performance of the two proposed methods in Section 5. Conclusions are drawn in Section 6.

Throughout this paper, the following notations are used. (·)∗, (·)T , (·)−1, (·)+, and (·)H represent
conjugation, transpose, inverse, pseudo-inverse, and conjugate transpose, respectively. E(·) indicates
the expectation operator; arg(·) is to get the phase; diag(·) stands for the diagonalization operation of
a vector.

2. Array Signal Model

As shown in Figure 1, suppose that there are K = Kn + Kc (assume the number of mixed signals
is known to the receiver) uncorrelated far-field sources that are mixed Kn noncircular sources sn,k(t)
and Kc circular sources sc,k(t) from direction (θk, βk), k = 1, 2, . . . , K, impinging on two parallel ULAs
with each array having M elements. The distance between the two arrays is λ/2, denoted as dy,
and the interelement spacing dx on each array is also λ/2, where λ is the wavelength of the incident
waves. The additive noises of two ULAs are circular Gaussian noises, which are uncorrelated with the
incoming signals.
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Figure 1. The geometry configuration of the array.

The observed data vectors X(t) = [x1(t), x2(t), . . . , xM(t)]T and Y(t) = [y1(t), y2(t), . . . , yM(t)]T

from two parallel ULAs are given by:

X(t) = AS(t) + Nx(t) = AnSn(t) + AcSc(t) + Nx(t) (1)

Y(t) = ABS(t) + Ny(t) = AnBSn(t) + AcBSc(t) + Ny(t) (2)

where A is called the steering vector with each column denoted a(θk) and a(θk) = [a0(θk), . . . , aM−1(θk)]
T,

whose element can be expressed as ai(θk) = e−j 2π
λ dx(i) cos θk . B(β) is termed as the steering

element matrix with the expression B = diag[v(β1), v(β2), . . . , v(βK)], and the element v(βk) has
the form of ej 2π

λ dy cos βk . S(t) = [s1(t), s2(t), . . . , sK(t)] denotes the radiating signal vector. Nx(t) =

[nx,1(t), . . . , nx,M(t)]T and Ny(t) = [ny,1(t), . . . , ny,M(t)]T represent the circular Gaussian noise vectors
of the two arrays, respectively.

3. The Two Proposed Algorithms

3.1. The TSDOAM Method

A novel method called the TSDOAM method with the two-stage direction-of-arrival matrix
(DOAM) method and direction-of-arrival circularity difference, is proposed in this part. According to
Equations (1) and (2), and based on the assumption that the noise and the signals are uncorrelated
and that the mixed signals are also uncorrelated, the auto-covariance matrix Rxx and cross-covariance
matrix Ryx can be written, respectively, as follows.

Rxx = E[X(t)XH(t)] = AnRnAH
n + AcRcAH

c + σ2Ixx (3)

Ryx = E[X(t)YH(t)] = AnΦnRnAH
n + AcΦcRcAH

c (4)

where An and Ac denote the steering matrices associated with noncircular and circular signals,
separately. σ2 is the variance of the circular Gaussian noises, and Rn and Rc have the form of
Rn = diag{ E[sn,1s∗n,1], ..., E[sn,Kn s∗n,Kn

]} and Rc = diag{ E[sc,1s∗c,1], ..., E[sc,Kc s∗c,Kc
]} , respectively.

In practice, non-circularity and circularity are important properties of a random variable;
their concept comes directly from the geometrical interpretation of a complex random variable. The
source would be called a circular source if its statistical characteristics have a rotational invariance
characteristic; otherwise, it would be called a noncircular source. Based on this, we only consider the
rotational invariance characteristic of the first- and second-order statistical properties of the sources.
For a complex random source sk, we define E[sk], E[sks∗k ], and E[s2

k] as the mean, the covariance, and
the elliptic covariance of the source sk, respectively. For an arbitrary phase ϕk as follows:

E[skejϕk ] = E[sk] (5)
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E[skejϕk(skejϕk)∗] = E[sks∗k ] (6)

E[skejϕ
k (skejϕ

k )] = E[s2
k] (7)

If the source’s first- and second-order statistical properties are rotationally invariant, the source is
identified as circular; otherwise, it is determined to be noncircular. Therefore, the elliptic auto-covariance
matrix R′xx can be expressed as follows:

R′xx = E[X(t)XT(t)] = AnR′nAT
n + AcR′cAT

c + E[Nx(t)NT
x (t)] (8)

Notice that for a complex circular random variable h, E[hh] = 0 [6]. Therefore, the circular
component and the circular Gaussian noise component of Equation (8) both equal zero, and the elliptic
auto-covariance matrix R′xx can be rewritten as:

R′xx = AnR′nAT
n (9)

where R′n = diag{ E[sn,1sn,1], ..., E[sn,Kn sn,Kn ]} .
Similarly, the elliptic cross-covariance matrix R′yx is computed as follows:

R′yx = AnΦnR′nAT
n (10)

We then estimate the 2D directions-of-arrival of noncircular signals with Equations (9) and (10).
First, let {ηn,1, ..., ηn,Kn} and {vn,1, ..., vn,Kn} be the eigenvalues and corresponding eigenvectors of R′xx,
respectively, namely:

R′xx =
Kn

∑
k=1

ηn,kvn,kvH
n,k (11)

The pseudo-inverse of R′+xx is:

R′+xx =
Kn

∑
k=1

η−1
n,k vn,kvH

n,k (12)

Due to R′n being a diagonal matrix and An a column full-rank matrix, we attain the following
formula with Equation (9):

R′nAT
n = (AH

n An)
−1AH

n R′xx (13)

Combining Equation (13) with (10), we obtain an alternative expression of R′yx:

R′yx = AnΦnR′nAT
n

= AnΦn(AH
n An)

−1AH
n R′xx

(14)

Right-multiplying both sides of Equation (14) by R′+xxAn, we get:

R′yxR′+xxAn = AnΦnR′nAT
n R′+xxAn

= AnΦn(AH
n An)

−1AH
n R′xxR′+xxAn

(15)

Substituting Equations (11) and (12) into Equation (15),

R′yxR′+xxAn = AnΦn(AH
n An)

−1AH
n

(
Kn

∑
k=1

ηn,kvn,kvH
n,k

)(
Kn

∑
k=1

η−1
n,k vn,kvH

n,k

)
An

= AnΦn(AH
n An)

−1AH
n

(
Kn

∑
k=1

vn,kvH
n,k

)
An

(16)
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From Equations (1) and (2), we can see that the dimensions of the observed data vectors X(t) and
Y(t) are both M× 1. Then, based on Equations (3) and (4), it is easy to know that the dimensions of
the auto-covariance matrix Rxx and cross-covariance matrix Ryx are both M×M. From Equation (8),
we can see that the dimension of the elliptic auto-covariance matrix R′xx is also M×M. Therefore,
R′xx is a square matrix. Specifically for the first proposed method in this paper, the R′+xx—which is
the pseudo-inverse of R′xx—is equivalent to the inverse of R′xx. That is to say, the R′xx and R′+xx in the
first proposed method are both square matrices. Moreover, the diagonal elements of R′+xx are nonzero

elements , and R′+xx is full rank. Therefore,
Kn
∑

k=1
vn,kvH

n,k is an identity matrix, and Equation (16) can be

simplified as:

R′yxR′+xxAn = AnΦn(AH
n An)

−1AH
n An

= AnΦn
(17)

From Equation (17), 2D directions-of-arrival of noncircular signals—which are obtained by
performing eigenvalue decomposition (EVD) of R′yxR′+xx , denoted as the direction-of-arrival matrix,
lie in An and Φn, respectively.

R′yxR′+xx =
Kn

∑
k=1

ξn,kun,kuH
n,k (18)

where ξn,k and un,k are the eigenvalues and the corresponding eigenvectors of R′yxR′+xx , respectively.
It can be verified that the spanned subspace from the steering matrix An and the signal subspace
Un = [un,1, . . . , un,Kn ] are the same.

Unlike Yin’s method obtaining the 1D angle by the spectrum search with a certain region
(which entailed high complexity), here, define hn,k = un,k/un,k(1); we can get:

κn,k =
1

M− 1

M−1

∑
i=1

arg
[

hn,k(i + 1)
hn,k(i)

]
. (19)

Integrating the expression ai(θn,k) and v(βn,k) with Equations (18) and (19), the estimated 2D
directions-of-arrival of noncircular signals are achieved as follows:

θn,k = arccos(− λ

2πdx
κn,k), (20)

βn,k = arccos
[

λ

2πdy
arg(ξn,k)

]
. (21)

In the next stage, the 2D direction-of-arrival of the circular signals can be obtained with the
estimates θn,k and βn,k above.

With Equation (9), R′n can be estimated as:

R′n = A+
n R′xx(A

T
n )

+ (22)

where A+
n = (AH

n An)−1AH
n and (AT

n )
+ = A∗n(A

T
n A∗n)−1 [41].

Let the kth diagonal element of R′n be R′n(k, k); we get:

R′n(k, k) = E[sn,ksn,k]. (23)

here, we assume that the noncircular signals are BPSK-modulated signals. Therefore, E[sn,ksn,k] =

σ2
n,kejϕn,k , where σ2

n,k = E[sn,ks∗n,k] and ϕn,k are the noncircular phases. It is easily deduced that
σ2

n,k = |R
′
n(k, k)|. Due to Rn being diagonal, it follows that:
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Rn = diag[σ2
n,1, . . . , σ2

n,Kn
]

= diag[|R′n(1, 1)|, . . . , |R′n(Kn, Kn)|].
(24)

Then, let Rxx,1 = AnRnAH
n and Ryx,1 = AnΦnRnAH

n ; we attain:

Rxx −Rxx,1 = AcRcAH
c + σ2Ixx. (25)

Ryx −Ryx,1 = AcΦnRcAH
c . (26)

Define:
Rxx,2 = Rxx −Rxx,1 − σ2Ixx = AcRcAH

c (27)

Ryx,2 = Ryx −Ryx,1 = AcΦcRcAH
c (28)

We have another direction-of-arrival matrix Ryx,2R+
xx,2 that is related to circular signals.

Just as the way of attaining the 2D directions-of-arrival of noncircular signals, the 2D
directions-of-arrival θc,k and βc,k of circular signals are obtained with the direction-of-arrival matrix
Ryx,2R+

xx,2 using the same direction-of-arrival matrix (DOAM) method.
Until now, the TSDOAM method is summarized as follows.

Step 1: Calculate Rxx, Ryx, R′xx, and R′yx from Equations (3)–(10);
Step 2: Execute the EVD of R′xx to get its pseudo-inverse matrix R′+xx ;
Step 3: Perform the EVD of R′yxR′+xx with Equation (18);
Step 4: Attain θn,k and βn,k using Equations (20) and (21);
Step 5: Construct the matrix R′n with the estimate R′xx and An;
Step 6: Construct the direction-of-arrival matrix Ryx,2R+

xx,2 with Equations (27) and (28);
Step 7: Repeat Step 2 to Step 4 for the θc,k and βc,k.

3.2. The TSRARE Method

In this section, in order to make full use of array elements of two ULAs, another novel method
called the TSRARE method—which is based on the direction-of-arrival circularity difference and the
rank reduction (RARE) method—is proposed in the two-stage estimation procedure.

By concatenating the observed data vectors X(t) and Y(t), we get:

Z(t) =

[
X(t)
Y(t)

]
=

[
A

AB

]
S(t) +

[
Nx(t)
Ny(t)

]
= CS(t) + N(t).

(29)

where C = [c(θ1, β1), . . . , c(θK, βK)] is termed as the extended steering matrix, and:

c(θk, βk) =

[
a(θk)

a(θk)v(βk)

]

=

[
a(θk) 0

0 a(θk)

] [
1

v(βk)

]
.

(30)

As the radiating mixed signals are uncorrelated with each other, the conjugated covariance matrix
R of Z(t) can be written as:

R = E[Z(t)ZH(t)] = CnRnCH
n + CcRcCH

c + σ2I, (31)

and the elliptic covariance matrix R′ of Z(t) is as follows:

R′ = E[Z(t)ZT(t)] = CnR′nCT
n (32)
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where Cn and Cc denote the noncircular and circular extended steering matrix, respectively.
Next, we perform singular-value decomposition (SVD) of R′ to estimate the 2D directions-of-arrival of

noncircular signals as follows:

R′ = [Un,1 Un,2]

[
Λn 0
0 0

]
VH

n (33)

where Λn denotes the Kn ×Kn diagonal matrix containing Kn nonzero singular values in the diagonal.
It is verified that all of the columns of Cn are orthogonal to all of the columns of Un,2; that is,

CH
n (θn,k, βn,k)Un,2UH

n,2Cn(θn,k, βn,k) = 0, k = 1, . . . , Kn. (34)

Associated with Equation (30), Equation (34) can be rewritten as:

rHTr = 0 (35)

where r = [1 vT(βn,k)]
T, and:

T(θn,k) =

[
aH(θn,k)U′n,1a(θn,k) aH(θn,k)U′n,2a(θn,k)

aH(θn,k)U′n,3a(θn,k) aH(θn,k)U′n,4a(θn,k)

]
(36)

where U′n,1 = Un,21UH
n,21, U′n,2 = Un,21UH

n,22, U′n,3 = Un,22UH
n,21, and U′n,4 = Un,22UH

n,22, Un,21 and Un,22

are obtained by dividing Un,2 into the same two-dimensional matrices—namely Un,2 = [UT
n,21 UT

n,22]
T.

In order to use the RARE method, we define a(θn,k) as:

a(bn,k) = [1, bn,k, b2
n,k, . . . , bM−1

n,k ]T (37)

where bn,k = e−j 2π
λ dx cos θn,k , and the matrix T is a function of bn,k. Then, the 1D directions-of-arrival θn,k

can be obtained by finding the values of bn,k such that det[T(bn,k)] = 0. Additionally, the polynomial of
bn,k has the following form:

det[T(bn,k)] = mn,1mn,4−mn,2mn,3 (38)

where mn,p = aT(1/bn,k)U′n,pa(bn,k), p = 1, 2, 3, 4. mn,p is the polynomial of bn,k whose lth
coefficient is given by the sum of the elements of the lth diagonal of U′n,p, where l = −M +

1, . . . , M − 1. Collecting the coefficients of the polynomial mn,p as a column vector denoted as
µn,p = [µnp,1, . . . , µnp,l, . . . , µnp,2M−1]

T, we get mn,p = onµn,p, where on = [b−M+1
n,k , . . . , 1, . . . , bM−1

n,k ],

µnp,l =
min[M,2M−l]

∑
i = max [1,M−l + 1]

[U′n,p]i,l+i−M.

Thus, we have that mn,1mn,4 = onµn,1µT
n,4oT

n and mn,2mn,3 = onµn,2µT
n,3oT

n , and the coefficients of
the polynomials mn,1mn,4 and mn,2mn,3 equal the sum of the antidiagonal elements of the matrix µn,1µT

n,4
and µn,2µT

n,3, respectively. Let δn, f = [δn f ,1, . . . , δn f ,l, . . . , δn f ,4M−3]
T, f = 1, 2 be the column vectors of the

4m− 3 coefficients of the polynomials mn,1mn,4 and mn,2mn,3, where δn f ,l =
min[2M−1,l]

∑
i = max [1,l−2M + 2]

[Φn, f ]i,l−i+1,

Φn,1 = µn,1µT
n,4 and Φn,2 = µn,2µT

n,3.
Hence, Equation (38) can be expressed as:

det[T(bn,k)] =
4M−3

∑
l=1

(δn1,l − δn2,l)b
l−(2M−1)
n,k = 0. (39)

The roots of the polynomial det[T(bn,k)] can be computed by exploiting the
computationally-efficient polynomial root multiple signal classification (MUSIC) algorithm,
and the 1D noncircular angles θn,k are obtained as:
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θn,k = arccos[
λ

2πdx
arg(bn,k)]. (40)

Substituting the estimated θn,k into Equation (35), we then seek out the minima of the following
function [42]:

βn,k = min
βn

rHTr (41)

From Equation (41), we obtain βn,k that are given by the eigenvector corresponding to the smallest
eigenvalue associated with T(θn,k) as:

βn,k = arccos
[

λ

2πdy
arg[−aH(θn,k)U

′
n,3a(θn,k)]

]
. (42)

Next, we estimate the 2D directions-of-arrival of circular signals based on the estimates θn,k and
βn,k. With Equations (30) and (32), R′n,1—denoted as the estimated R′n in the TSRARE method—can be
expressed as:

R′n,1 = C+
n R′(CT

n)
+ (43)

where C+
n = (CH

n Cn)−1CH
n and (CT

n)
+ = C∗n(C

T
n C∗n)−1 [41].

Denoting the kth diagonal element of R′n,1 as R′n,1(k, k), we have:

R′n,1(k, k) = E[sn,ksn,k]. (44)

Similarly, the noncircular signals here are BPSK-modulated signals. It is easily deduced that
σ2

n,k = |R
′
n,1(k, k)|. Because Rn is diagonal, it follows that Rn,1, which is the estimate of Rn as follows:

Rn,1 = diag[σ2
n,1, . . . , σ2

n,Kn
]

= diag[|R′n,1(1, 1)|, . . . , |R′n,1(Kn, Kn)|].
(45)

Then, let R1 = CnRn,1CH
n ; we attain:

R−R1 = CcRcCH
c + σ2I. (46)

Perform the EVD of R−R1 as follows:

R−R1 = Uc,xΛc,xUH
c,x + Uc,zΛc,zUH

c,z (47)

where Uc,x and Uc,z are called the signal and noise subspaces associated with the signal eigenvalue
matrix Λc,x and noise eigenvalue matrix Λc,z, respectively. Similarly, we get the following relationship:

CH
c (θc,k, βc,k)Uc,zUH

c,zCc(θc,k, βc,k) = 0, k = 1, . . . , Kc. (48)

and estimate the 2D directions-of-arrival (namely θc,k and βc,k) of circular signals in the same way as
the 2D directions-of-arrival of noncircular signals.

At this point, the 2D directions-of-arrival of noncircular and circular signals have been achieved
by the TSRARE algorithm. The simple summary of the TSRARE algorithm is as follows.

Step 1: Calculate R and R′ with the observed data Z(t) with Equations (31) and (32);
Step 2: Perform the SVD of R′ to get Un,2 using Equation (33);
Step 3: Calculate the roots of det[T(bn,k)] associated with noncircular signals from Equation (34) to

Equation (39);
Step 4: Attain θn,k and βn,k using Equations (40) and (42);
Step 5: Construct R1 with the estimate Rn,1 and Cn;
Step 6: Perform the EVD of R−R1 to get Uc,z using Equation (47);
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Step 7: Repeat Step 3 to Step 4 for the θc,k and βc,k.

Remark 1: In practice, it can be noted that only a finite number of observed data is available.

Thus, Rxx, Ryx, R′xx, R′yx, R, and R′ must be estimated by R̂xx = 1
L

L
∑

l=1
X(l)XH(l), R̂yx = 1

L

L
∑

l=1
Y(l)XH(l),

R̂′xx = 1
L

L
∑

l=1
X(l)XT(l), R̂′yx = 1

L

L
∑

l=1
Y(l)XT(l), R̂ = 1

L

L
∑

l=1
Z(l)ZH(l), and R̂′ = 1

L

L
∑

l=1
Z(l)ZT(l). When less

observed data are available, such that the estimated covariance matrices are no longer strictly diagonal
matrices, this leads to the estimation performance reduction in the small 2D angle separation condition.

Remark 2: As we know, one of the awkward problems about 2D direction-of-arrival estimation is
the pair situation, which causes severe estimation error without exact pair process. However, the two
proposed methods can pair the 2D directions-of-arrival of mixed signals automatically. This is because,
in the two-stage estimation procedures, the TSDOAM method pairs the 2D directions-of-arrival by
performing one EVD whose eigenvalues and eigenvectors are a one-to-one correspondence relationship,
while the TSRARE method pairs them by decoupling the 2D directions-of-arrival into two successive
1D processes.

4. Location Discussion and Analysis

The maximum number of sources to estimate is analyzed in this section by the two proposed
methods. Since the two proposed methods estimate the mixed signals separately, and the number
of sources can be resolved is related to the dimensions of the elliptic auto-covariance matrix R′xx
(see Equation (8)) and the conjugated covariance matrix R (see Equation (31)), it follows that
M > max {Kn, Kc} with the TSDOAM method and 2M > max {Kn, Kc} with the TSRARE method
must be satisfied, respectively, so as to resolve all noncircular and circular signals, while Yin’s [15]
and Xia’s [16] method estimate them simultaneously, so M > (Kn + Kc) and 2M > (Kn + Kc) should
be satisfied, respectively. In other words, the maximum detectable signals of the TSDOAM method
that are detected by two ULAs with 2M elements are (M− 1) noncircular signals plus (M− 1) circular
signals, namely (2M− 2), and the TSRARE method can detect (2M− 2) noncircular signals plus
(2M− 2) circular signals, namely (4M− 4); while Yin’s and Xia’s method can distinguish (M− 1)
and (2M− 2) mixed signals, respectively. Therefore, the TSDOAM and TSRARE methods can detect
twice the mixed signals as Yin’s and Xia’s method, respectively. In addition, the TSRARE method can
identify twice the signals as the TSDOAM method.

5. Simulation Results

In this section, some simulation results are presented to show the performance of the TSDOAM
and TSRARE methods, compared with the existing methods, which include Yin’s method and Xia’s
method. Assume two ULAs with each array consisting of omnidirectional sensors spaced by a half
wavelength of the mixed noncircular and circular signals; the distance between the two ULAs is spaced
by a half wavelength as well. Additionally, the noncircular signals employ BPSK-modulated sources,
while the circular signals are QPSK-modulated sources for the simulation.

5.1. 2D Direction-of-Arrival Estimation Performance

In this part, the maximum detectable 2D directions-of-arrival are investigated. Four BPSK signals
with θn,k and βn,k impinge from {70◦, 60◦, 85◦, 100◦} and {65◦, 80◦, 85◦, 65◦}, separately, and four QPSK
signals are emitted from the same 2D directions-of-arrival. The number M of isotropic sensors of
each array is three. Figure 2 plots the paired results of eight radiating signals from 50 Monte Carlo
trials with the signal-to-noise ratio (SNR) set at 30 dB and snapshots L = 2000, which show that the
2D directions-of-arrival of eight (4M− 4 = 8) signals are paired correctly with the TSRARE method;
even a common β is shared in both noncircular and circular signals. However, the TSDOAM method
and the methods in [15,16] can detect up to four (2M− 2 = 4) signals, four (2M− 2 = 4) signals, and two
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(M− 1 = 2) signals, respectively, which fail to distinguish the mixed eight signals due to the limited
array elements.
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Figure 2. The 2D direction-of-arrival estimation scattergram of the two-stage rank reduction (TSRARE)
method.

5.2. The Effect of SNR

In this subsection, we compare the 2D direction-of-arrival performance of the TSDOAM and
TSRARE methods versus SNR with existing methods in [15,16]. Furthermore, the average root mean
square error (ARMSE) is defined for precision evaluation as:

ARMSE =

√√√√ K

∑
k = 1

Mc

∑
q=1

[(ζ̂qk - ζk)2] (49)

where ζk stands for θk or βk, and ζ̂qk is the parameter to be estimated for θ̂k or β̂k, while Mc denotes the
number of Monte Carlo runs.

Two BPSK signals together with two QPSK signals incoming from (75◦, 50◦), (100◦, 65◦) and
(75◦, 50◦), (100◦, 65◦), respectively, impinge onto the ULAs with each array having five omnidirectional
sensors. The snapshots of this test are set to 500, and the variable SNR of the four incident signals
varies from −10 dB to 30 dB. The ARMSE of the four methods derived from the 2000 trials are given
in Figure 3. It can be seen from Figure 3 that Yin’s method and Xia’s method fail to work; however,
the two proposed methods perform well with increasing SNR. This is because the two proposed
methods estimate the 2D directions-of-arrival of noncircular and circular signals separately based on
the circularity difference between noncircular and circular signals rather than the direction-of-arrival
difference utilized in Yin’s and Xia’s methods. Moreover, the TSRARE method has a lower ARMSE
than the TSDOAM method, which results from the fact that the array aperture is fully utilized with the
TSRARE method during the two-stage estimation for the BPSK and QPSK signals.

−10 −5 0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

SNR(dB) 

A
R

M
S

E
(d

eg
re

e)

 

 

θ−−Xia’s method
θ−−Yin’s method
θ−−TSRARE method
θ−−TSDOAM method

β−−Xia’s method
β−−Yin’s method
β−−TSRARE method
β−−TSDOAM method

Figure 3. The average root mean square error (ARMSE) versus signal-to-noise ratio (SNR). TSDOAM:
two-stage direction-of-arrival matrix.
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5.3. The Effect of Snapshots

The 2D direction-of-arrival performance of the TSDOAM and TSRARE methods versus snapshots
with Yin’s and Xia’s methods is verified in this part. The simulation parameters are the same as
Experiment 2, except the SNR is fixed at 5 dB, and the number of the collected snapshots varies from 10
to 490. At each snapshot setting, 2000 independent runs are executed for each method to obtain their
2D direction-of-arrival estimation in the statistical sense, whose results are given in Figure 4. Similar
conclusions and reasons can be drawn from Figure 4 that as snapshots are increasing, the curves of
the two proposed methods work well, while those of Yin’s and Xia’s methods remain unchanged.
In addition, the TSRARE method has better estimation performance than the TSDOAM method in
both 2D directions-of-arrival.
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Figure 4. The ARMSE versus Snapshots.

5.4. The Effect of Angle Separation

In this part, we testify to the 2D direction-of-arrival estimation performance of the two proposed
methods coupled with Yin’s and Xia’s methods versus angular separation. The number of each array of
the two ULAs is also five. Additionally, four signals consist of two BPSK signals and two QPSK signals
with θk and βk incoming from {70◦, 100◦, (100 + ∆)◦, (70 + ∆)◦} and {50◦, 85◦, (85 + ∆)◦, (50 + ∆)◦},
separately, and ∆ is varied from 0 to 12. In addition, the SNR is fixed at 15 dB, and the snapshots L = 300.

The ARMSE versus angular separation is shown in Figure 5 with 2000 Monte Carlo trials
used. From Figure 5, it can be seen that the two proposed methods outperform Yin’s and Xia’s
methods in both 2D small angle separations; however, with the angle separation increasing, the 2D
direction-of-arrival estimation performance achieved by the two proposed methods is inferior to that
by Yin’s and Xia’s methods. This is because in small angle separation,

the 2D direction-of-arrival information of circular signals included in the elliptic covariance
matrix can be equivalent to that of noncircular signals, due to the fact that the 2D direction-of-arrival
of the circular signal is close to that of the noncircular signal; thus, the estimation precision
of the noncircular signals can be improved. A similar reason is suitable for the improved 2D
direction-of-arrival estimation accuracy of circular signals; while Yin’s and Xia’s methods estimate
the 2D direction-of-arrival of noncircular and circular signals simultaneously, which are based on
the direction-of-arrival difference of noncircular and circular signals that inevitably gives rise to the
degradation of the performance in small 2D direction-of-arrival separation [35]. As for large 2D
direction-of-arrival separation, the estimation performance of the two proposed methods behaved
with lower accuracy than Yin’s and Xia’s methods. The reason is that in the condition of a few
snapshots, the incident mixed signals’ covariance matrix and elliptic covariance matrix are not strictly
diagonal matrices, which results in making it difficult to separate the mixed signals from the two-stage
estimation procedures. Furthermore, the TSRARE method performs better than the TSDOAM method
all the way, with the full usage of array elements in the two-stage estimation procedures.
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Figure 5. The ARMSE versus angular separation.

6. Conclusions

Two novel 2D direction-of-arrival estimation methods, named, respectively, as the TSDOAM and
TSRARE methods for mixed noncircular and circular signals’ estimation with two parallel ULAs are
presented in this paper. The direction-of-arrival circularity difference rather than the direction-of-arrival
difference between the noncircular and circular signals for the 2D directions-of-arrival’ estimation is
utilized in the two proposed methods. The explicit derivation of the two proposed methods is
described, and the maximum number of incident signals of the two proposed methods is analyzed,
which shows that the detected number of signals is more than that of the array elements compared to
the conventional methods. Simulation results demonstrate the usefulness of the two proposed methods.
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Abbreviations

The following abbreviations are used in this manuscript:

DOA direction-of-arrival
DOAs directions-of-arrival
TSDOAM two-stage direction-of-arrival matrix
TSRARE two-stage rank reduction
ERARE extended rank reduction
ULAs uniform linear arrays
ESPAR electronically steerable parasitic antenna radiator
EVD eigen-value decomposition
SVD singular-value decomposition
MUSIC multiple signal classification
SNR signal-to-noise ratio
ARMSE average root mean square error
CRB Cramér–Rao bound
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