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Abstract: The application of the sensor optical fibers in the areas of scientific instrumentation
and industrial instrumentation is very attractive due to its numerous advantages. In the industry
of civil engineering for example, quasi-distributed sensors made with optical fiber are used for
reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency
domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where
each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by
pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer
sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal
represents the superposition of all interference patterns which can be decomposed using the Fourier
transform. The frequency spectrum was analyzed and sensor’s properties were defined. Following
that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor
properties, signal processing, noise system, and instrumentation. The numerical results show the
behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high
resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase
Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift.

Keywords: quasi-distributed sensor; low-finesse Fabry-Perot interferometer; sensor simulation;
frequency-domain multiplexing and resolution vs. signal-to-noise ratio

1. Introduction

Bragg grating has a very particular peak in its reflection spectrum; the peak is centered at
the Bragg wavelength λBG = 2nΛ [1], where Λ is the grating pitch and n is the effective fiber
refraction index. The operational principle of a fiber Brag grating sensor is based on the spectral
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shift of the central Bragg wavelength due to the variation of the pitch and refraction index because of
temperature or strain change on the grating. The monitoring system needs to detect the wavelength
shift with very high resolution, permitting its correct evaluation. This shift is evaluated from optical
measurements, for example, a dual-OFC FBG (OFC: Optical Frequency Combs and FBG: Fiber Bragg
Grating) interrogation system [2], tunable Fabry-Perot filter with a piezoelectric actuator [3], and direct
spectroscopic detection [4].

Bragg gratings play an important role in fiber-optic sensor technology. Such sensors are very
attractive for quasi-distributed sensing, employing only one optical fiber with many gratings printed
along a fiber length. The conventional Bragg grating sensors use a broadband light source and a direct
spectrometric detection technique. Their principal problem concerns the detection of relatively small
shifts in the resonant wavelength of grating arrays exposed to strain or slow temperature changes. An
additional application of Bragg gratings in sensor technology is to build interferometers within a single
path fiber. In this case, Bragg gratings act as selective mirrors. The positions of gratings along the
fiber length define the optical path difference. Frequency-division multiplexing, wavelength-division
multiplexing, and time-division multiplexing can be implemented [5–12].

The low-finesse Fabry-Perot interferometer has low reflectivity and it can be built with the
end-faces of the lead-in/out and the target fibers [13], polymer sensing film [14], chirped Bragg
gratings [15], Si plates and single mode optical fibers [16], the fiber end and a mirror [17], micro
bubble structure [18], dielectric thin films [19] and Bragg gratings [20–22]. In particular, the low-finesse
Fabry-Perot interferometer based on Bragg gratings has important advantages, for example, high
accuracy, excellent measurement sensitivity, potential industrial application, easy implementation, easy
multiplexing, security, and the electromagnetic field does not affect the interferometry sensor. Whereas,
its disadvantages are its fragility and high cost. To reduce the cost per sensing point, the capability of the
multiplexing topology and the multiplexing technique was increased. By applying frequency-division
multiplexing, wavelength-division multiplexing, and wavelength-frequency-division multiplexing
techniques, the quasi-distributed fiber optic sensors can be developed. These quasi-distributed sensors
can measure temperature [23,24], strain [25], and vibration [26].

The twin-grating fiber optic sensor was used for the temperature measurement. The optical
sensor acts as a low-finesse Fabry-Perot interferometer and it consists of two identical Bragg gratings
separated by a short distance. The Fourier Domain Phase Analysis (FDPA) algorithm was used for
its signal demodulation. The FDPA algorithm evaluates the Bragg wavelength shift at the frequency
domain. The algorithm is based on the evaluation of the phase of the interference pattern produced
by light reflected from both gratings and on the determination of the Bragg wavelength shift.
The wavelength shift sensitivity was measured to 0.00985 nm/◦C [27]. This fiber sensor was also
used for the measurement of static strain. Resolution of 0.2 µm/m was reported [28].

In reference [29], a quasi-distributed sensor was experimentally proposed. Twin-grating sensors
were applied as local sensors. Frequency-division multiplexing was implemented. In reference [30], this
quasi-distributed sensor was described. The authors described the application of frequency-division
multiplexing. A tunable external cavity diode laser was used for the sensor interrogation. The sensing
systems consisted of a serial array of 14 twin grating sensors. All Bragg gratings had the same length of
0.5 mm and reflectivity of 0.8%. The Bragg wavelength of all gratings was 1550.6 nm. The cavities were
into the interval of 2 mm to 34 mm. The optical spectrum was acquired. Their frequency components
were separated applying the fast Fourier transform (FFT) algorithm. There were 14 channels. Each
channel was generated from each Fabry-Perot sensor. Other quasi-distributed fiber optic sensors can
be found in references [31–36].

To our knowledge, the quasi-distributed sensor described in [30] does not have an analytic
analysis. Therefore, local sensor limitations are not known. Here, a theoretical analysis and numerical
simulation is elaborated for the quasi-distributed sensor described in reference [30]. A broadband light
source, direct spectrometric detection technique, and frequency-domain multiplexing are considered
in our study. Knowing its operation principle, the optical spectrum was represented mathematically.
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We analyzed the optical signal and then the quasi-distributed sensor’s properties were defined, for
example, minimum and maximum cavities, number of samples, spatial resolution, and multiplexing
capability of a twin-grating fiber sensor. All parameters are expressed in terms of physical parameters
and instrumentation characteristics. Then, the quasi-distributed sensor was numerically simulated
(in operation) and we obtained the graph of demodulation errors vs. signal-to-noise ratio. From our
numerical results, the cavity length augments the resolution and all Fabry-Perot sensors have two
resolutions: a high resolution and low resolution. The cavity length, low resolution, and noise system
define the transition between both resolutions. In general, our theoretical analysis and numerical
simulation permit its optimal implementation and its design.

2. Optical Signal

Figure 1 shows our optical sensing system schematically. The optical system consists of a
broadband source, an optical circulator 50/50, an optical spectrometer analyzer (OSA spectrometer), a
personal computer and a quasi-distributed sensor. The quasi-distributed sensor can be implemented
by using a serial array of low-finesse Fabry-Perot interferometers [29,30]. The local sensors are formed
by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. Each Fabry-Perot
interferometer has a unique optical path length which obtains the frequency-division multiplexing
(FDM). The Bragg gratings have approximately the same length and typical reflectivity of 0.1%. Thus,
wavelength-division multiplexing was eliminated for our optical sensor.
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Figure 1. Sensing system: LBG is the length of gratings, LFP1 is the minimum cavity length, LSR is the
spatial resolution, LFPm is the m-th cavity length, LFPM is the maximum cavity length and OSA is the
Optical Spectrometer Analyzer.

2.1. RT(λ) and RT(ν) Spectrums

When the quasi-distributed sensor does not have external perturbations, the optical signal RT(λ)

will be the superposition of all interference patterns,

RT(λ) =
M

∑
m=1

Rm(λ) = R1(λ) + R2(λ) + R3(λ) + . . . + RM(λ) (1)

RT(λ) is the optical signal detected by the OSA spectrometer and R1(λ), R2(λ), R3(λ) . . . RM(λ)

are interference patterns generated by all interferometer sensors. Considering the physical parameters,
the optical signal can be re-written as [27]
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RT(ν) =
M

∑
m=1

2am

[(
πn1LBG

λBG

)2
sin c2

(
2n1LBG(λ− λBG)

λ2
BG

)][
1 + cos

(
4πnLFPm(λ− λBG)

λ2
BG

)]
(2)

where λ is the wavelength, am is amplitude factor, n1 is the amplitude of the effective refractive index
modulation of the gratings, LBG is the length of gratings, λBG is the Bragg wavelength, n is the effective
index of the core, LFPm is the mth cavity length, and M is the number of low-finesse Fabry-Perot
interferometers (local sensors). Analyzing the optical signal (2), all interference patterns have a similar
enveloped function (sinc function), the sinc function is the reflection spectrum of the gratings, the
width ∆BG is defined as the spectral distance between its +1 and −1 zeros,

∆BG =
λ2

BG
n1LBG

(3)

Each interference pattern has its own frequency component. There are M modulate functions
where the frequency component νFPm will be

νFPm =
2nLFPm

λ2
BG

(4)

To know the frequency components, we apply the Fourier transform to the optical signal

RT(ν) = F{RT(λ)} =
∞∫
−∞

RT(λ)e−i2πνλdλ (5)

RT(ν) is the frequency spectrum, F{ } is the Fourier operator, and ν is the frequency. Substituting
Equations (2)–(4) into Equation (5), the frequency spectrum is

RT(ν) =

∞∫
−∞

M

∑
m=1

2am

[(
πn1LBG

λBG

)2
sin c2

(
λ− λBG

∆BG

)]
[1 + cos(2πνFPm(λ− λBG))]e−i2πνλdλ (6)

Invoking the convolution properties and Fourier operator, we have

RT(ν) = F
{[(

πn1LBG
λBG

)2
sin c2

(
λ− λBG

∆BG

)]}
⊗F

{
M

∑
m=1

2am[1 + cos(2πνFPm(λ− λBG))]

}
(7)

the symbol ⊗ indicates the convolution. Using the identities cos2(ϕ) = 1
2 (1 + cos(2ϕ)),

cos(ϕ) = eiϕ+e−iϕ

2 , ∑M
m=1 e−iϕm = ∑−1

m=−M eiϕm , then solving the frequency spectrum R(ν) is

RT(ν) =
M

∑
m=−M

Rm(ν) =
M

∑
m=−M

cmtri
(

ν− νFPm
νBG

)
(8)

RT(ν) spectrum is a set of triangle functions where the function tri(x) is defined as

tri(x) =

{
1− |x| |x| ≤ 1

0 otherwise
, cm are amplitude factors, and νBG is the bandwidth

νBG =
4n1LBG

λ2
BG

(9)

In addition, νFPm is the center position of each triangle function. Here, all frequency components
were separated as Figure 2 illustrates.
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2.2. RT(λ, δλ) and RT(ν, δλ) Spectrums

When the quasi-distributed sensor has external perturbations, the measured temperature or
string affects the gating period Λ, the refraction index n, the length of gratings LBG, and cavity length
LFPm [27]. In turn, interference patterns have a small shift in response to a measured variation, and the
optical signal detected by the OSA spectrometer is

RT(λ, δλ) =
M
∑

m=1
2am

[(
πn1LBG

λBG

)2
sinc2

(
2n1LBG(λ−λBG−δλBGm)

λ2
BG

)][
1 + cos

(
4πnLFPm(λ−λBG−δλBGm)

λ2
BG

)]
(10)

The optical spectrum RT(λ, δλ) can be expressed as

RT(λ, δλ) =
M

∑
m=1

Rm(λ− δλBGm) = R1(λ− δλBG1) + R2(λ− δλBG2) + . . . + RM(λ− δλBGM) (11)

where RT(λ, δλ) is the optical signal due to external perturbations and δλBGm is the Bragg wavelength
shift due to measured change. Now, we estimate their frequency components through

RT(ν, δλ) = F{RT(λ, δλ)} =
∞∫
−∞

M

∑
m=1

Rm(λ− δλBGm)e−i2πνλdλ (12)

Invoking the shift property, the Fourier transform is

RT(ν, δλ) =
M

∑
m=−M

Rm(ν)e−i2πνδλBGm (13)

Observing the Equation (13), the frequency spectrum RT(ν, δλ) is the multiplication between
RT(ν) (Equation (8)) and a set of phases. Those phases contain the information about the perturbations.

3. Cavity Length

For all quasi-distributed sensors based on interferometers (optical fiber), the cavity length is a very
important parameter since it defines the sensor characteristics. Their limits depend of instrumentation,
local sensor characteristics, and signal demodulation. In the following sections, we determine minimum
and maximum cavities where the low-finesse Fabry-Perot interferometer can be applied.

3.1. Minimum Cavity Length

The Fourier Domain Phase Analysis (FDPA) algorithm was developed for the twin-grating
fiber optic sensor [27]. This algorithm does not accept additional information and does not lose
information, therefore, good signal detection and good frequency component identification are
necessary. From Figure 2, first frequency components νFP1 can be defined by
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νFP1 = νBG (14)

The condition (14) eliminates the overlapping between components, νFP1 and νFP0. Using the
Equations (4) and (9), we have

2nLFP1

λ2
BG

=
4n1LBG

λ2
BG

(15)

As n1 ≈ n, the minimum cavity length will be

LFP1 = 2LBG (16)

It is not possible to have smaller cavities because the FDPA algorithm cannot demodulate the
optical signal.

3.2. Maximum Cavity Length

The optical sensing system applies the direct spectroscopic detection [4]. This technique uses an
optical spectrometer analyzer which defines the maximum cavity length LFPM. The OSA spectrometer
has a limit for the optical signal detection. The limit is the Full-With Half-Maximum (FWHM).
Considering the sampling theorem, the OSA spectrometer can detect the signal if and only if the next
condition is true,

∆λFPmin = 2∆λ (17)

where ∆λFPmin is the minimum period detectable (FWHM) and ∆λ is its spectrometer resolution. Then,
the maximum frequency component can be expressed as

νFPM =
1

∆λFPmin
(18)

From Figure 2 and Equation (4), last frequency component νFPM can be determined by

νFPM =
2nLFPM

λ2
BG

(19)

Combining Equations (17)–(19), the maximum cavity length is

LFPM =
λ2

BG
4n∆λ

(20)

Equation (20) indicates the maximum cavity length where OSA spectrometer can detect the optical
signal. It is not possible to have bigger cavities because the instrumentation cannot detect the optical
signal. Using Equations (16) and (20), the cavity length can be within the interval of

2LBG ≤ LFP ≤
λ2

BG
4n∆λ

(21)

4. Capacity of Frequency-Division Multiplexing

In the quasi-distributed sensor, each low-finesse Fabry-Perot interferometer generates an
interference pattern and then each pattern produces a channel in the frequency domain. The enveloped
function produces the bandwidth νBG and the modulate function provokes the frequency components
−νFPm, νFP0, and νFPm. The term νFP0 contains information from all Fabry-Perot interferometers while
−νFPm and νFPm contain similar information from the mth Fabry-Perot sensor. From Figure 2, we have
the next condition

M =
νFPM
νFP1

(22)
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In other words, the capacity of frequency-division multiplexing M is given by the relation between
last and first frequency components. Substituting the Equations (14), (15), and (17) into (22), the capacity
M can be re-written as

M =
LFPM
LFP1

(23)

Finally, substituting the Equations (16) and (20) into Equation (22), we have

M =
λ2

BG
8nLBG∆λ

(24)

This expression gives the limit for the multiplexing capacity within one wavelength channel.

5. Number of Samples

When the optical spectrometer analyzer instrument acquires the optical signal, the reflection
spectrum is recorded as a series of digital samples. If a minimum and maximum wavelength within
a working interval λw = λmax − λmin, then λmax is the maximum wavelength, λmin is the minimum
wavelength and δλ is the wavelength step. The signal samples RT(λk) are taken as wavelengths
λk = λmin + kδλ where k = 0, 1, 2, . . . , N − 1, N is the number of samples. The representation of such
a signal in the Fourier domain is also discrete. Therefore, we obtain the next condition from Figure 2

νs ≥ 2νmax = 2
(

νFPM +
νBG

2

)
(25)

where νmax is the maximum frequency, νs is the sampling frequency, and the Nyquist theorem was
considered. Substituting Equations (9) and (19) into Equation (25), we have

νs ≥
4n

λ2
BG

(LFPM + 2LBG) (26)

Since νs =
1
δλ , we have

δλ ≤
λ2

BG
4n(LFPM + 2LBG)

(27)

Finally, the number of samples is

N =
λw

δλ
=

4λwn(LFPM + 2LBG)

λ2
BG

(28)

The number of samples depends of optical system parameters.

6. Digital Demodulation

The demodulation is the complete signal processing algorithm developed for a quasi-distributed
sensor based on the low-finesse Fabry-Perot interferometers. The complete processing algorithm
combines the Fourier Domain Phase Analysis (FDPA) algorithm and a bank of M filters. The FDPA
algorithm was described in [27] while the bank of filters is

F(ν) = rect
(

ν

νBG

)
⊗

M

∑
m=1

δ(ν− νFPm) (29)

where the symbol ⊗ indicates the convolution operation, the rect function is definition as

rect(ν) =

{
1 |ν| < νBG

2

0 |ν| > νBG
2

(30)
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where δ is the Dirac delta. Invoking the Dirac delta properties, the bank of M filters is

F(ν) =
M

∑
m=1

rect
(

ν− νFPm
νBG

)
(31)

The bank filter of M filters is a series of rect functions where νFPm is the central position and νBG
is its bandwidth.

The digital demodulation consists of two phases: calibration and measurements. In the
calibration, there are four steps: (1) RT(λ) is acquired, (2) RT(ν) is computed, (3) Rm(ν) is filtered
Rm(ν) = RT(ν)F(ν), and (4) we calculate its complex conjugate R∗m(ν) where * indicates a complex
conjugate. In the measurement, there are seven steps: (1) RT(λ, δλ) is acquired, (2) RT(ν, δλ) is
computed, (3) R̃m(ν, δλ) is filtered R̃m(ν, δλ) = RT(ν, δλ)F(ν), (4) the relative phase ϕrel is calculated,
(5) the ambiguity 2πP is eliminated and then absolute phase ϕabs is calculated, (6), the Bragg
wavelength shift is computed, and (7) a digital adaptive filter is applied [37].

Due to the presence of the noise in the original signal, the calculated phase will be fluctuating.
To minimize the noise influence and provide the best estimate, the absolute phase is multiplied
with a set of coefficients. Those coefficients act as an adaptive filter. Figure 3 illustrates the digital
demodulation schematically.
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7. Numerical Simulation and Discussion 

7.1. Parameters and Results 

To test and compare our theoretical analysis, we performed a numerical simulation of a 
quasi-distributed sensor based on low-finesse Fabry-Perot interferometers. Three Fabry-Perot 
sensors were simulated. Their physical parameters can be observed in Table 1. Discrete spectrums 
were simulated using the physical parameters. Noise was simulated by adding to those samples 
pseudorandom numbers with Gaussian distribution; the interval was from √ = 10  to √ =10 . Typical of Bragg gratings with rectangular profiles, a refractive index modulation was used. In 
most of our numerical experiments, the number of samples was equal to 1024 (Fast Fourier 
transform algorithm was considered). For each local sensor, the reference spectrum and 50 
measurements were simulated. The measurements were in the intervals of S1 → 0 to 0.2 nm, S2 → 0 
to 0.4 nm, and S3 → 0 to 0.7nm. Figure 4 shows the spectrum ( ), Figure 5 shows the spectrum ( ), and Figure 6 presents our numerical results: Demodulation errors vs SNR1/2. A Laptop 
Toshiba 45C was used, with 512 Mb of RAM memory and a velocity of 1.7 GHz. 
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7. Numerical Simulation and Discussion

7.1. Parameters and Results

To test and compare our theoretical analysis, we performed a numerical simulation of
a quasi-distributed sensor based on low-finesse Fabry-Perot interferometers. Three Fabry-Perot
sensors were simulated. Their physical parameters can be observed in Table 1. Discrete spectrums
were simulated using the physical parameters. Noise was simulated by adding to those samples
pseudorandom numbers with Gaussian distribution; the interval was from

√
SNR = 100 to√

SNR = 104. Typical of Bragg gratings with rectangular profiles, a refractive index modulation
was used. In most of our numerical experiments, the number of samples was equal to 1024
(Fast Fourier transform algorithm was considered). For each local sensor, the reference spectrum and
50 measurements were simulated. The measurements were in the intervals of S1→ 0 to 0.2 nm, S2→ 0
to 0.4 nm, and S3→ 0 to 0.7nm. Figure 4 shows the spectrum RT(λ), Figure 5 shows the spectrum
RT(ν), and Figure 6 presents our numerical results: Demodulation errors vs SNR1/2. A Laptop Toshiba
45C was used, with 512 Mb of RAM memory and a velocity of 1.7 GHz.

Table 1. Quasi-distributed sensor parameters.

Sensor Number Sensor Parameters Signal Values

Low-finesse Fabry-Perot
interferometer 1

(S1)

LFP1 = 4 [mm] ∆λBG = 3.22 [nm] (Equation (3))
νFP1 = 4.95 [Ciclos/nm] (Equation (4))
νBG = 1.23 [Ciclos/nm] (Equation (9))

LBG = 0.5 [mm]
n = 1.46

λBG = 1532.5 [nm]

Low-finesse Fabry-Perot
interferometer 2

(S2)

LFP2 = 8 [mm] ∆λBG = 3.22 [nm] (Equation (3))
νFP2 = 9.91 [Ciclos/nm] (Equation (4))
νBG = 1.23 [Ciclos/nm] (Equation (9))

LBG = 0.5 [mm]
n = 1.46

λBG = 1532.5 [nm]

Low-finesse Fabry-Perot
interferometer 3

(S3)

LFP3 = 16 [mm] ∆λBG = 3.22 [nm] (Equation (3))
νFP3 = 19.82 [Ciclos/nm] (Equation (4))
νBG = 1.23 [Ciclos/nm] (Equation (9))

LBG = 0.5 [mm]
n = 1.46

λBG = 1532.5 [nm]
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If the OSA spectrometer has ∆λ = 10 pm (typical value), the quasi-distributed sensor will have
its limits as Table 2 illustrates.

Table 2. Quasi-distributed sensor limits. (∆λ = 10 pm)

Parameters Value Equation

LFPmin 1 [mm] Equation (16)
LFPM 40.2 [mm] Equation (20)

LFPmin ≤ LFP ≤ LFPM 1 ≤ LFP ≤ 40 [mm] Equation (21)
M 40 Equations (23) and (24)

νmax 102.47 [Ciclos/nm] Equation (25)
νs 204.95 [Ciclos/nm] Equation (26)
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From Tables 1 and 2, the simulated quasi-distributed sensor satisfies the instrumentation and
signal requirements. Observing Table 1 and Figures 4 and 5, numerical results are in concordance
with the theory. Thus, we confirm our theoretical analysis. Our numerical results can be observed in
Figure 6. The theoretical analysis and our numerical results are in concordance with experimental
results presented by Shlyagin et al. [30]; frequency-division multiplexing can be implemented based
on a twin grating sensor. The presented study optimizes significantly the quasi-distributed sensor
implementation and the sensibility of local sensors. To develop the sensing system based on the
frequency-division multiplexing (Figure 1), the broadband light source can have the following
parameters: a central wavelength of λc = 1532.5 nm, λmin = 1520 nm, and λmax = 1570 nm. The low
reflectivity eliminates the cross-talk noise and its value can be selected from the references [29,38].

Figure 6 shows the behavior of Demodulation errors vs signal-to-noise rate SNR1/2. If the
demodulation error is denominated resolution, then low-finesse Fabry-Perot has two resolutions:
low resolution and high resolution. Two resolutions are possible because the FDPA algorithm does two
evaluations of the Bragg wavelength shift [27,37]. All Fabry-Perot sensors have similar low resolution,
however, each local sensor has its own high resolution. The high resolution depends of cavity length.
If the cavity length is bigger than the Fabry-Perot sensor, it will have better resolution.

7.2. Discussion

Based on our theoretical analysis and numerical simulation, the quasi-distributed sensor
would be built on the low-finesse Fabry-Perot interferometer. Our theoretical analysis optimizes
its implementation. Instrumentation, local sensor properties, noise (Gaussian distribution), and signal
processing were considered. The quasi-distributed sensor has good sensitivity and excellent resolution.
All Fabry-Perot sensors have two resolutions: low resolution and high resolution (See Figure 6).
Low resolution was obtained when the Bragg wavelength shift was evaluated with an enveloped
function. High resolution was obtained when the Bragg wavelength shift was evaluated combining
the enveloped and modulated functions [27,37].

When the noise is big, signal-to-noise ratio (SNR) is small. In this case, the FDPA algorithm cannot
evaluate the Bragg wavelength shift, causing the transition from high resolution to low resolution.
This can be observed in Figure 6. As the (necessary) signal is within the interval of –π to π, and based
on the signal detection theory, the thresholding value is

3σenv <
∆λFPm

2
(32)

where σenv is the low resolution (resolution by enveloped function) and ∆λFPm = 1
νFPm

is the period
of our frequency component. The threshold divides between low and high resolutions. Substituting
Equation (4) into Equation (32), we have

σenv <
λ2

BG
12nLFPm

(33)

From Equation (33), each low-finesse Fabry-Perot interferometer has its own thresholding value.
This one depends on the cavity length, Bragg wavelength, and refraction index. For example: our
Fabry-Perot sensors have next thresholding values, S1→ 0.033 nm, S2→ 0.016 nm, and S3→ 0.008 nm.
The thresholding value is smaller if the cavity length is bigger.

In the quasi-distributed sensor, ghost interferometers are eliminated if the separation between
any two interferometers satisfies the expression Lsp > LFPM, where Lsp is the spatial resolution.
If Fabry-Perot interferometers are formed by uniform unapodized gratings with equal length LBG, the
bandwidth of each peak is given by Equation (9). To be separated in the frequency domain, two peaks
should not overlap. This condition imposes the following constraints: the minimum distance between
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centers of gratings for the shortest interferometers is 2LBG, and the difference in the cavity lengths of
any two Fabry-Perot interferometers must exceed 2LBG.

Our future research work is in the following direction: wavelength-division multiplexing (WDM)
can be implemented based on the low-finesse Fabry-Perot interferometers. The theoretical resolution
is another direction. Technical applications are possible, for example: temperature, strain, humidity,
force measurement, and oil detection.

8. Conclusions

The quasi-distributed optical fiber sensor based on the low-finesse Fabry-Perot interferometer
was studied theoretically and simulated numerically. Theory and simulation are in concordance.
Our study considers quasi-distributed sensor properties, local sensor properties, signal processing,
noise source, frequency-division multiplexing, and instrumentation. Our numerical results showed
that all Fabry-Perot sensors have two resolutions: low resolution and high resolution. Low resolution is
similar for all sensors, however, each Fabry-Perot sensor has its own high resolution. The thresholding
value (from high resolution to low resolution) was defined in terms of low resolution and
physical parameters.

The quasi-distributed sensor has potential industrial applications, for example: structure
monitoring, security system, humidity sensing, and level sensing.
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